| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvmlift3.b |
⊢ 𝐵 = ∪ 𝐶 |
| 2 |
|
cvmlift3.y |
⊢ 𝑌 = ∪ 𝐾 |
| 3 |
|
cvmlift3.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
| 4 |
|
cvmlift3.k |
⊢ ( 𝜑 → 𝐾 ∈ SConn ) |
| 5 |
|
cvmlift3.l |
⊢ ( 𝜑 → 𝐾 ∈ 𝑛-Locally PConn ) |
| 6 |
|
cvmlift3.o |
⊢ ( 𝜑 → 𝑂 ∈ 𝑌 ) |
| 7 |
|
cvmlift3.g |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐾 Cn 𝐽 ) ) |
| 8 |
|
cvmlift3.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝐵 ) |
| 9 |
|
cvmlift3.e |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑂 ) ) |
| 10 |
|
cvmlift3.h |
⊢ 𝐻 = ( 𝑥 ∈ 𝑌 ↦ ( ℩ 𝑧 ∈ 𝐵 ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑂 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = 𝑧 ) ) ) |
| 11 |
|
cvmlift3lem7.s |
⊢ 𝑆 = ( 𝑘 ∈ 𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑐 ∈ 𝑠 ( ∀ 𝑑 ∈ ( 𝑠 ∖ { 𝑐 } ) ( 𝑐 ∩ 𝑑 ) = ∅ ∧ ( 𝐹 ↾ 𝑐 ) ∈ ( ( 𝐶 ↾t 𝑐 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } ) |
| 12 |
|
cvmlift3lem7.1 |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) ∈ 𝐴 ) |
| 13 |
|
cvmlift3lem7.2 |
⊢ ( 𝜑 → 𝑇 ∈ ( 𝑆 ‘ 𝐴 ) ) |
| 14 |
|
cvmlift3lem7.3 |
⊢ ( 𝜑 → 𝑀 ⊆ ( ◡ 𝐺 “ 𝐴 ) ) |
| 15 |
|
cvmlift3lem7.w |
⊢ 𝑊 = ( ℩ 𝑏 ∈ 𝑇 ( 𝐻 ‘ 𝑋 ) ∈ 𝑏 ) |
| 16 |
|
cvmlift3lem6.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑀 ) |
| 17 |
|
cvmlift3lem6.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑀 ) |
| 18 |
|
cvmlift3lem6.q |
⊢ ( 𝜑 → 𝑄 ∈ ( II Cn 𝐾 ) ) |
| 19 |
|
cvmlift3lem6.r |
⊢ 𝑅 = ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑄 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) |
| 20 |
|
cvmlift3lem6.1 |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 0 ) = 𝑂 ∧ ( 𝑄 ‘ 1 ) = 𝑋 ∧ ( 𝑅 ‘ 1 ) = ( 𝐻 ‘ 𝑋 ) ) ) |
| 21 |
|
cvmlift3lem6.n |
⊢ ( 𝜑 → 𝑁 ∈ ( II Cn ( 𝐾 ↾t 𝑀 ) ) ) |
| 22 |
|
cvmlift3lem6.2 |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 0 ) = 𝑋 ∧ ( 𝑁 ‘ 1 ) = 𝑍 ) ) |
| 23 |
|
cvmlift3lem6.i |
⊢ 𝐼 = ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑁 ) ∧ ( 𝑔 ‘ 0 ) = ( 𝐻 ‘ 𝑋 ) ) ) |
| 24 |
|
sconntop |
⊢ ( 𝐾 ∈ SConn → 𝐾 ∈ Top ) |
| 25 |
4 24
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 26 |
|
cnrest2r |
⊢ ( 𝐾 ∈ Top → ( II Cn ( 𝐾 ↾t 𝑀 ) ) ⊆ ( II Cn 𝐾 ) ) |
| 27 |
25 26
|
syl |
⊢ ( 𝜑 → ( II Cn ( 𝐾 ↾t 𝑀 ) ) ⊆ ( II Cn 𝐾 ) ) |
| 28 |
27 21
|
sseldd |
⊢ ( 𝜑 → 𝑁 ∈ ( II Cn 𝐾 ) ) |
| 29 |
20
|
simp2d |
⊢ ( 𝜑 → ( 𝑄 ‘ 1 ) = 𝑋 ) |
| 30 |
22
|
simpld |
⊢ ( 𝜑 → ( 𝑁 ‘ 0 ) = 𝑋 ) |
| 31 |
29 30
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑄 ‘ 1 ) = ( 𝑁 ‘ 0 ) ) |
| 32 |
18 28 31
|
pcocn |
⊢ ( 𝜑 → ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ∈ ( II Cn 𝐾 ) ) |
| 33 |
18 28
|
pco0 |
⊢ ( 𝜑 → ( ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ‘ 0 ) = ( 𝑄 ‘ 0 ) ) |
| 34 |
20
|
simp1d |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) = 𝑂 ) |
| 35 |
33 34
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ‘ 0 ) = 𝑂 ) |
| 36 |
18 28
|
pco1 |
⊢ ( 𝜑 → ( ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ‘ 1 ) = ( 𝑁 ‘ 1 ) ) |
| 37 |
22
|
simprd |
⊢ ( 𝜑 → ( 𝑁 ‘ 1 ) = 𝑍 ) |
| 38 |
36 37
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ‘ 1 ) = 𝑍 ) |
| 39 |
|
cnco |
⊢ ( ( 𝑄 ∈ ( II Cn 𝐾 ) ∧ 𝐺 ∈ ( 𝐾 Cn 𝐽 ) ) → ( 𝐺 ∘ 𝑄 ) ∈ ( II Cn 𝐽 ) ) |
| 40 |
18 7 39
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ∘ 𝑄 ) ∈ ( II Cn 𝐽 ) ) |
| 41 |
34
|
fveq2d |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝑄 ‘ 0 ) ) = ( 𝐺 ‘ 𝑂 ) ) |
| 42 |
|
iiuni |
⊢ ( 0 [,] 1 ) = ∪ II |
| 43 |
42 2
|
cnf |
⊢ ( 𝑄 ∈ ( II Cn 𝐾 ) → 𝑄 : ( 0 [,] 1 ) ⟶ 𝑌 ) |
| 44 |
18 43
|
syl |
⊢ ( 𝜑 → 𝑄 : ( 0 [,] 1 ) ⟶ 𝑌 ) |
| 45 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
| 46 |
|
fvco3 |
⊢ ( ( 𝑄 : ( 0 [,] 1 ) ⟶ 𝑌 ∧ 0 ∈ ( 0 [,] 1 ) ) → ( ( 𝐺 ∘ 𝑄 ) ‘ 0 ) = ( 𝐺 ‘ ( 𝑄 ‘ 0 ) ) ) |
| 47 |
44 45 46
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝑄 ) ‘ 0 ) = ( 𝐺 ‘ ( 𝑄 ‘ 0 ) ) ) |
| 48 |
41 47 9
|
3eqtr4rd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) = ( ( 𝐺 ∘ 𝑄 ) ‘ 0 ) ) |
| 49 |
1 19 3 40 8 48
|
cvmliftiota |
⊢ ( 𝜑 → ( 𝑅 ∈ ( II Cn 𝐶 ) ∧ ( 𝐹 ∘ 𝑅 ) = ( 𝐺 ∘ 𝑄 ) ∧ ( 𝑅 ‘ 0 ) = 𝑃 ) ) |
| 50 |
49
|
simp2d |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝑅 ) = ( 𝐺 ∘ 𝑄 ) ) |
| 51 |
|
cnco |
⊢ ( ( 𝑁 ∈ ( II Cn 𝐾 ) ∧ 𝐺 ∈ ( 𝐾 Cn 𝐽 ) ) → ( 𝐺 ∘ 𝑁 ) ∈ ( II Cn 𝐽 ) ) |
| 52 |
28 7 51
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ∘ 𝑁 ) ∈ ( II Cn 𝐽 ) ) |
| 53 |
1 2 3 4 5 6 7 8 9 10
|
cvmlift3lem3 |
⊢ ( 𝜑 → 𝐻 : 𝑌 ⟶ 𝐵 ) |
| 54 |
|
cnvimass |
⊢ ( ◡ 𝐺 “ 𝐴 ) ⊆ dom 𝐺 |
| 55 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 56 |
2 55
|
cnf |
⊢ ( 𝐺 ∈ ( 𝐾 Cn 𝐽 ) → 𝐺 : 𝑌 ⟶ ∪ 𝐽 ) |
| 57 |
7 56
|
syl |
⊢ ( 𝜑 → 𝐺 : 𝑌 ⟶ ∪ 𝐽 ) |
| 58 |
54 57
|
fssdm |
⊢ ( 𝜑 → ( ◡ 𝐺 “ 𝐴 ) ⊆ 𝑌 ) |
| 59 |
14 58
|
sstrd |
⊢ ( 𝜑 → 𝑀 ⊆ 𝑌 ) |
| 60 |
59 16
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ 𝑌 ) |
| 61 |
53 60
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑋 ) ∈ 𝐵 ) |
| 62 |
30
|
fveq2d |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝑁 ‘ 0 ) ) = ( 𝐺 ‘ 𝑋 ) ) |
| 63 |
42 2
|
cnf |
⊢ ( 𝑁 ∈ ( II Cn 𝐾 ) → 𝑁 : ( 0 [,] 1 ) ⟶ 𝑌 ) |
| 64 |
28 63
|
syl |
⊢ ( 𝜑 → 𝑁 : ( 0 [,] 1 ) ⟶ 𝑌 ) |
| 65 |
|
fvco3 |
⊢ ( ( 𝑁 : ( 0 [,] 1 ) ⟶ 𝑌 ∧ 0 ∈ ( 0 [,] 1 ) ) → ( ( 𝐺 ∘ 𝑁 ) ‘ 0 ) = ( 𝐺 ‘ ( 𝑁 ‘ 0 ) ) ) |
| 66 |
64 45 65
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝑁 ) ‘ 0 ) = ( 𝐺 ‘ ( 𝑁 ‘ 0 ) ) ) |
| 67 |
|
fvco3 |
⊢ ( ( 𝐻 : 𝑌 ⟶ 𝐵 ∧ 𝑋 ∈ 𝑌 ) → ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑋 ) = ( 𝐹 ‘ ( 𝐻 ‘ 𝑋 ) ) ) |
| 68 |
53 60 67
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑋 ) = ( 𝐹 ‘ ( 𝐻 ‘ 𝑋 ) ) ) |
| 69 |
1 2 3 4 5 6 7 8 9 10
|
cvmlift3lem5 |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐻 ) = 𝐺 ) |
| 70 |
69
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑋 ) = ( 𝐺 ‘ 𝑋 ) ) |
| 71 |
68 70
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐻 ‘ 𝑋 ) ) = ( 𝐺 ‘ 𝑋 ) ) |
| 72 |
62 66 71
|
3eqtr4rd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐻 ‘ 𝑋 ) ) = ( ( 𝐺 ∘ 𝑁 ) ‘ 0 ) ) |
| 73 |
1 23 3 52 61 72
|
cvmliftiota |
⊢ ( 𝜑 → ( 𝐼 ∈ ( II Cn 𝐶 ) ∧ ( 𝐹 ∘ 𝐼 ) = ( 𝐺 ∘ 𝑁 ) ∧ ( 𝐼 ‘ 0 ) = ( 𝐻 ‘ 𝑋 ) ) ) |
| 74 |
73
|
simp2d |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐼 ) = ( 𝐺 ∘ 𝑁 ) ) |
| 75 |
50 74
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐹 ∘ 𝑅 ) ( *𝑝 ‘ 𝐽 ) ( 𝐹 ∘ 𝐼 ) ) = ( ( 𝐺 ∘ 𝑄 ) ( *𝑝 ‘ 𝐽 ) ( 𝐺 ∘ 𝑁 ) ) ) |
| 76 |
49
|
simp1d |
⊢ ( 𝜑 → 𝑅 ∈ ( II Cn 𝐶 ) ) |
| 77 |
73
|
simp1d |
⊢ ( 𝜑 → 𝐼 ∈ ( II Cn 𝐶 ) ) |
| 78 |
20
|
simp3d |
⊢ ( 𝜑 → ( 𝑅 ‘ 1 ) = ( 𝐻 ‘ 𝑋 ) ) |
| 79 |
73
|
simp3d |
⊢ ( 𝜑 → ( 𝐼 ‘ 0 ) = ( 𝐻 ‘ 𝑋 ) ) |
| 80 |
78 79
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑅 ‘ 1 ) = ( 𝐼 ‘ 0 ) ) |
| 81 |
|
cvmcn |
⊢ ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ) |
| 82 |
3 81
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ) |
| 83 |
76 77 80 82
|
copco |
⊢ ( 𝜑 → ( 𝐹 ∘ ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) ) = ( ( 𝐹 ∘ 𝑅 ) ( *𝑝 ‘ 𝐽 ) ( 𝐹 ∘ 𝐼 ) ) ) |
| 84 |
18 28 31 7
|
copco |
⊢ ( 𝜑 → ( 𝐺 ∘ ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ) = ( ( 𝐺 ∘ 𝑄 ) ( *𝑝 ‘ 𝐽 ) ( 𝐺 ∘ 𝑁 ) ) ) |
| 85 |
75 83 84
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ∘ ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) ) = ( 𝐺 ∘ ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ) ) |
| 86 |
76 77
|
pco0 |
⊢ ( 𝜑 → ( ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) ‘ 0 ) = ( 𝑅 ‘ 0 ) ) |
| 87 |
49
|
simp3d |
⊢ ( 𝜑 → ( 𝑅 ‘ 0 ) = 𝑃 ) |
| 88 |
86 87
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) ‘ 0 ) = 𝑃 ) |
| 89 |
76 77 80
|
pcocn |
⊢ ( 𝜑 → ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) ∈ ( II Cn 𝐶 ) ) |
| 90 |
|
cnco |
⊢ ( ( ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ∈ ( II Cn 𝐾 ) ∧ 𝐺 ∈ ( 𝐾 Cn 𝐽 ) ) → ( 𝐺 ∘ ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ) ∈ ( II Cn 𝐽 ) ) |
| 91 |
32 7 90
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ∘ ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ) ∈ ( II Cn 𝐽 ) ) |
| 92 |
35
|
fveq2d |
⊢ ( 𝜑 → ( 𝐺 ‘ ( ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ‘ 0 ) ) = ( 𝐺 ‘ 𝑂 ) ) |
| 93 |
42 2
|
cnf |
⊢ ( ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ∈ ( II Cn 𝐾 ) → ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) : ( 0 [,] 1 ) ⟶ 𝑌 ) |
| 94 |
32 93
|
syl |
⊢ ( 𝜑 → ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) : ( 0 [,] 1 ) ⟶ 𝑌 ) |
| 95 |
|
fvco3 |
⊢ ( ( ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) : ( 0 [,] 1 ) ⟶ 𝑌 ∧ 0 ∈ ( 0 [,] 1 ) ) → ( ( 𝐺 ∘ ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ) ‘ 0 ) = ( 𝐺 ‘ ( ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ‘ 0 ) ) ) |
| 96 |
94 45 95
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐺 ∘ ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ) ‘ 0 ) = ( 𝐺 ‘ ( ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ‘ 0 ) ) ) |
| 97 |
92 96 9
|
3eqtr4rd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) = ( ( 𝐺 ∘ ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ) ‘ 0 ) ) |
| 98 |
1
|
cvmlift |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝐺 ∘ ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ) ∈ ( II Cn 𝐽 ) ) ∧ ( 𝑃 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑃 ) = ( ( 𝐺 ∘ ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ) ‘ 0 ) ) ) → ∃! 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) |
| 99 |
3 91 8 97 98
|
syl22anc |
⊢ ( 𝜑 → ∃! 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) |
| 100 |
|
coeq2 |
⊢ ( 𝑔 = ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) → ( 𝐹 ∘ 𝑔 ) = ( 𝐹 ∘ ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) ) ) |
| 101 |
100
|
eqeq1d |
⊢ ( 𝑔 = ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) → ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ) ↔ ( 𝐹 ∘ ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) ) = ( 𝐺 ∘ ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ) ) ) |
| 102 |
|
fveq1 |
⊢ ( 𝑔 = ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) → ( 𝑔 ‘ 0 ) = ( ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) ‘ 0 ) ) |
| 103 |
102
|
eqeq1d |
⊢ ( 𝑔 = ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) → ( ( 𝑔 ‘ 0 ) = 𝑃 ↔ ( ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) ‘ 0 ) = 𝑃 ) ) |
| 104 |
101 103
|
anbi12d |
⊢ ( 𝑔 = ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) → ( ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ↔ ( ( 𝐹 ∘ ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) ) = ( 𝐺 ∘ ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ) ∧ ( ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) ‘ 0 ) = 𝑃 ) ) ) |
| 105 |
104
|
riota2 |
⊢ ( ( ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) ∈ ( II Cn 𝐶 ) ∧ ∃! 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) → ( ( ( 𝐹 ∘ ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) ) = ( 𝐺 ∘ ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ) ∧ ( ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) ‘ 0 ) = 𝑃 ) ↔ ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) = ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) ) ) |
| 106 |
89 99 105
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝐹 ∘ ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) ) = ( 𝐺 ∘ ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ) ∧ ( ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) ‘ 0 ) = 𝑃 ) ↔ ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) = ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) ) ) |
| 107 |
85 88 106
|
mpbi2and |
⊢ ( 𝜑 → ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) = ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) ) |
| 108 |
107
|
fveq1d |
⊢ ( 𝜑 → ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) ‘ 1 ) ) |
| 109 |
76 77
|
pco1 |
⊢ ( 𝜑 → ( ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) ‘ 1 ) = ( 𝐼 ‘ 1 ) ) |
| 110 |
108 109
|
eqtrd |
⊢ ( 𝜑 → ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐼 ‘ 1 ) ) |
| 111 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) → ( 𝑓 ‘ 0 ) = ( ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ‘ 0 ) ) |
| 112 |
111
|
eqeq1d |
⊢ ( 𝑓 = ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) → ( ( 𝑓 ‘ 0 ) = 𝑂 ↔ ( ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ‘ 0 ) = 𝑂 ) ) |
| 113 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) → ( 𝑓 ‘ 1 ) = ( ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ‘ 1 ) ) |
| 114 |
113
|
eqeq1d |
⊢ ( 𝑓 = ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) → ( ( 𝑓 ‘ 1 ) = 𝑍 ↔ ( ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ‘ 1 ) = 𝑍 ) ) |
| 115 |
|
coeq2 |
⊢ ( 𝑓 = ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) → ( 𝐺 ∘ 𝑓 ) = ( 𝐺 ∘ ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ) ) |
| 116 |
115
|
eqeq2d |
⊢ ( 𝑓 = ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) → ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑓 ) ↔ ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ) ) ) |
| 117 |
116
|
anbi1d |
⊢ ( 𝑓 = ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) → ( ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ↔ ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ) |
| 118 |
117
|
riotabidv |
⊢ ( 𝑓 = ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) → ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) = ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ) |
| 119 |
118
|
fveq1d |
⊢ ( 𝑓 = ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) → ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) ) |
| 120 |
119
|
eqeq1d |
⊢ ( 𝑓 = ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) → ( ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐼 ‘ 1 ) ↔ ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐼 ‘ 1 ) ) ) |
| 121 |
112 114 120
|
3anbi123d |
⊢ ( 𝑓 = ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) → ( ( ( 𝑓 ‘ 0 ) = 𝑂 ∧ ( 𝑓 ‘ 1 ) = 𝑍 ∧ ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐼 ‘ 1 ) ) ↔ ( ( ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ‘ 0 ) = 𝑂 ∧ ( ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ‘ 1 ) = 𝑍 ∧ ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐼 ‘ 1 ) ) ) ) |
| 122 |
121
|
rspcev |
⊢ ( ( ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ∈ ( II Cn 𝐾 ) ∧ ( ( ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ‘ 0 ) = 𝑂 ∧ ( ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ‘ 1 ) = 𝑍 ∧ ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐼 ‘ 1 ) ) ) → ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑂 ∧ ( 𝑓 ‘ 1 ) = 𝑍 ∧ ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐼 ‘ 1 ) ) ) |
| 123 |
32 35 38 110 122
|
syl13anc |
⊢ ( 𝜑 → ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑂 ∧ ( 𝑓 ‘ 1 ) = 𝑍 ∧ ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐼 ‘ 1 ) ) ) |
| 124 |
59 17
|
sseldd |
⊢ ( 𝜑 → 𝑍 ∈ 𝑌 ) |
| 125 |
1 2 3 4 5 6 7 8 9 10
|
cvmlift3lem4 |
⊢ ( ( 𝜑 ∧ 𝑍 ∈ 𝑌 ) → ( ( 𝐻 ‘ 𝑍 ) = ( 𝐼 ‘ 1 ) ↔ ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑂 ∧ ( 𝑓 ‘ 1 ) = 𝑍 ∧ ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐼 ‘ 1 ) ) ) ) |
| 126 |
124 125
|
mpdan |
⊢ ( 𝜑 → ( ( 𝐻 ‘ 𝑍 ) = ( 𝐼 ‘ 1 ) ↔ ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑂 ∧ ( 𝑓 ‘ 1 ) = 𝑍 ∧ ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐼 ‘ 1 ) ) ) ) |
| 127 |
123 126
|
mpbird |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑍 ) = ( 𝐼 ‘ 1 ) ) |
| 128 |
|
iiconn |
⊢ II ∈ Conn |
| 129 |
128
|
a1i |
⊢ ( 𝜑 → II ∈ Conn ) |
| 130 |
|
cvmtop1 |
⊢ ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → 𝐶 ∈ Top ) |
| 131 |
3 130
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ Top ) |
| 132 |
1
|
toptopon |
⊢ ( 𝐶 ∈ Top ↔ 𝐶 ∈ ( TopOn ‘ 𝐵 ) ) |
| 133 |
131 132
|
sylib |
⊢ ( 𝜑 → 𝐶 ∈ ( TopOn ‘ 𝐵 ) ) |
| 134 |
74
|
rneqd |
⊢ ( 𝜑 → ran ( 𝐹 ∘ 𝐼 ) = ran ( 𝐺 ∘ 𝑁 ) ) |
| 135 |
|
rnco2 |
⊢ ran ( 𝐹 ∘ 𝐼 ) = ( 𝐹 “ ran 𝐼 ) |
| 136 |
|
rnco2 |
⊢ ran ( 𝐺 ∘ 𝑁 ) = ( 𝐺 “ ran 𝑁 ) |
| 137 |
134 135 136
|
3eqtr3g |
⊢ ( 𝜑 → ( 𝐹 “ ran 𝐼 ) = ( 𝐺 “ ran 𝑁 ) ) |
| 138 |
|
iitopon |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
| 139 |
138
|
a1i |
⊢ ( 𝜑 → II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ) |
| 140 |
2
|
toptopon |
⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 141 |
25 140
|
sylib |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 142 |
|
resttopon |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝑀 ⊆ 𝑌 ) → ( 𝐾 ↾t 𝑀 ) ∈ ( TopOn ‘ 𝑀 ) ) |
| 143 |
141 59 142
|
syl2anc |
⊢ ( 𝜑 → ( 𝐾 ↾t 𝑀 ) ∈ ( TopOn ‘ 𝑀 ) ) |
| 144 |
|
cnf2 |
⊢ ( ( II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ∧ ( 𝐾 ↾t 𝑀 ) ∈ ( TopOn ‘ 𝑀 ) ∧ 𝑁 ∈ ( II Cn ( 𝐾 ↾t 𝑀 ) ) ) → 𝑁 : ( 0 [,] 1 ) ⟶ 𝑀 ) |
| 145 |
139 143 21 144
|
syl3anc |
⊢ ( 𝜑 → 𝑁 : ( 0 [,] 1 ) ⟶ 𝑀 ) |
| 146 |
145
|
frnd |
⊢ ( 𝜑 → ran 𝑁 ⊆ 𝑀 ) |
| 147 |
146 14
|
sstrd |
⊢ ( 𝜑 → ran 𝑁 ⊆ ( ◡ 𝐺 “ 𝐴 ) ) |
| 148 |
57
|
ffund |
⊢ ( 𝜑 → Fun 𝐺 ) |
| 149 |
147 54
|
sstrdi |
⊢ ( 𝜑 → ran 𝑁 ⊆ dom 𝐺 ) |
| 150 |
|
funimass3 |
⊢ ( ( Fun 𝐺 ∧ ran 𝑁 ⊆ dom 𝐺 ) → ( ( 𝐺 “ ran 𝑁 ) ⊆ 𝐴 ↔ ran 𝑁 ⊆ ( ◡ 𝐺 “ 𝐴 ) ) ) |
| 151 |
148 149 150
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐺 “ ran 𝑁 ) ⊆ 𝐴 ↔ ran 𝑁 ⊆ ( ◡ 𝐺 “ 𝐴 ) ) ) |
| 152 |
147 151
|
mpbird |
⊢ ( 𝜑 → ( 𝐺 “ ran 𝑁 ) ⊆ 𝐴 ) |
| 153 |
137 152
|
eqsstrd |
⊢ ( 𝜑 → ( 𝐹 “ ran 𝐼 ) ⊆ 𝐴 ) |
| 154 |
1 55
|
cnf |
⊢ ( 𝐹 ∈ ( 𝐶 Cn 𝐽 ) → 𝐹 : 𝐵 ⟶ ∪ 𝐽 ) |
| 155 |
82 154
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ∪ 𝐽 ) |
| 156 |
155
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
| 157 |
42 1
|
cnf |
⊢ ( 𝐼 ∈ ( II Cn 𝐶 ) → 𝐼 : ( 0 [,] 1 ) ⟶ 𝐵 ) |
| 158 |
77 157
|
syl |
⊢ ( 𝜑 → 𝐼 : ( 0 [,] 1 ) ⟶ 𝐵 ) |
| 159 |
158
|
frnd |
⊢ ( 𝜑 → ran 𝐼 ⊆ 𝐵 ) |
| 160 |
155
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = 𝐵 ) |
| 161 |
159 160
|
sseqtrrd |
⊢ ( 𝜑 → ran 𝐼 ⊆ dom 𝐹 ) |
| 162 |
|
funimass3 |
⊢ ( ( Fun 𝐹 ∧ ran 𝐼 ⊆ dom 𝐹 ) → ( ( 𝐹 “ ran 𝐼 ) ⊆ 𝐴 ↔ ran 𝐼 ⊆ ( ◡ 𝐹 “ 𝐴 ) ) ) |
| 163 |
156 161 162
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐹 “ ran 𝐼 ) ⊆ 𝐴 ↔ ran 𝐼 ⊆ ( ◡ 𝐹 “ 𝐴 ) ) ) |
| 164 |
153 163
|
mpbid |
⊢ ( 𝜑 → ran 𝐼 ⊆ ( ◡ 𝐹 “ 𝐴 ) ) |
| 165 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ 𝐴 ) ⊆ dom 𝐹 |
| 166 |
165 155
|
fssdm |
⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝐴 ) ⊆ 𝐵 ) |
| 167 |
|
cnrest2 |
⊢ ( ( 𝐶 ∈ ( TopOn ‘ 𝐵 ) ∧ ran 𝐼 ⊆ ( ◡ 𝐹 “ 𝐴 ) ∧ ( ◡ 𝐹 “ 𝐴 ) ⊆ 𝐵 ) → ( 𝐼 ∈ ( II Cn 𝐶 ) ↔ 𝐼 ∈ ( II Cn ( 𝐶 ↾t ( ◡ 𝐹 “ 𝐴 ) ) ) ) ) |
| 168 |
133 164 166 167
|
syl3anc |
⊢ ( 𝜑 → ( 𝐼 ∈ ( II Cn 𝐶 ) ↔ 𝐼 ∈ ( II Cn ( 𝐶 ↾t ( ◡ 𝐹 “ 𝐴 ) ) ) ) ) |
| 169 |
77 168
|
mpbid |
⊢ ( 𝜑 → 𝐼 ∈ ( II Cn ( 𝐶 ↾t ( ◡ 𝐹 “ 𝐴 ) ) ) ) |
| 170 |
11
|
cvmsss |
⊢ ( 𝑇 ∈ ( 𝑆 ‘ 𝐴 ) → 𝑇 ⊆ 𝐶 ) |
| 171 |
13 170
|
syl |
⊢ ( 𝜑 → 𝑇 ⊆ 𝐶 ) |
| 172 |
71 12
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐻 ‘ 𝑋 ) ) ∈ 𝐴 ) |
| 173 |
11 1 15
|
cvmsiota |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑇 ∈ ( 𝑆 ‘ 𝐴 ) ∧ ( 𝐻 ‘ 𝑋 ) ∈ 𝐵 ∧ ( 𝐹 ‘ ( 𝐻 ‘ 𝑋 ) ) ∈ 𝐴 ) ) → ( 𝑊 ∈ 𝑇 ∧ ( 𝐻 ‘ 𝑋 ) ∈ 𝑊 ) ) |
| 174 |
3 13 61 172 173
|
syl13anc |
⊢ ( 𝜑 → ( 𝑊 ∈ 𝑇 ∧ ( 𝐻 ‘ 𝑋 ) ∈ 𝑊 ) ) |
| 175 |
174
|
simpld |
⊢ ( 𝜑 → 𝑊 ∈ 𝑇 ) |
| 176 |
171 175
|
sseldd |
⊢ ( 𝜑 → 𝑊 ∈ 𝐶 ) |
| 177 |
|
elssuni |
⊢ ( 𝑊 ∈ 𝑇 → 𝑊 ⊆ ∪ 𝑇 ) |
| 178 |
175 177
|
syl |
⊢ ( 𝜑 → 𝑊 ⊆ ∪ 𝑇 ) |
| 179 |
11
|
cvmsuni |
⊢ ( 𝑇 ∈ ( 𝑆 ‘ 𝐴 ) → ∪ 𝑇 = ( ◡ 𝐹 “ 𝐴 ) ) |
| 180 |
13 179
|
syl |
⊢ ( 𝜑 → ∪ 𝑇 = ( ◡ 𝐹 “ 𝐴 ) ) |
| 181 |
178 180
|
sseqtrd |
⊢ ( 𝜑 → 𝑊 ⊆ ( ◡ 𝐹 “ 𝐴 ) ) |
| 182 |
11
|
cvmsrcl |
⊢ ( 𝑇 ∈ ( 𝑆 ‘ 𝐴 ) → 𝐴 ∈ 𝐽 ) |
| 183 |
13 182
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ 𝐽 ) |
| 184 |
|
cnima |
⊢ ( ( 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ∧ 𝐴 ∈ 𝐽 ) → ( ◡ 𝐹 “ 𝐴 ) ∈ 𝐶 ) |
| 185 |
82 183 184
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝐴 ) ∈ 𝐶 ) |
| 186 |
|
restopn2 |
⊢ ( ( 𝐶 ∈ Top ∧ ( ◡ 𝐹 “ 𝐴 ) ∈ 𝐶 ) → ( 𝑊 ∈ ( 𝐶 ↾t ( ◡ 𝐹 “ 𝐴 ) ) ↔ ( 𝑊 ∈ 𝐶 ∧ 𝑊 ⊆ ( ◡ 𝐹 “ 𝐴 ) ) ) ) |
| 187 |
131 185 186
|
syl2anc |
⊢ ( 𝜑 → ( 𝑊 ∈ ( 𝐶 ↾t ( ◡ 𝐹 “ 𝐴 ) ) ↔ ( 𝑊 ∈ 𝐶 ∧ 𝑊 ⊆ ( ◡ 𝐹 “ 𝐴 ) ) ) ) |
| 188 |
176 181 187
|
mpbir2and |
⊢ ( 𝜑 → 𝑊 ∈ ( 𝐶 ↾t ( ◡ 𝐹 “ 𝐴 ) ) ) |
| 189 |
11
|
cvmscld |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑇 ∈ ( 𝑆 ‘ 𝐴 ) ∧ 𝑊 ∈ 𝑇 ) → 𝑊 ∈ ( Clsd ‘ ( 𝐶 ↾t ( ◡ 𝐹 “ 𝐴 ) ) ) ) |
| 190 |
3 13 175 189
|
syl3anc |
⊢ ( 𝜑 → 𝑊 ∈ ( Clsd ‘ ( 𝐶 ↾t ( ◡ 𝐹 “ 𝐴 ) ) ) ) |
| 191 |
45
|
a1i |
⊢ ( 𝜑 → 0 ∈ ( 0 [,] 1 ) ) |
| 192 |
174
|
simprd |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑋 ) ∈ 𝑊 ) |
| 193 |
79 192
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐼 ‘ 0 ) ∈ 𝑊 ) |
| 194 |
42 129 169 188 190 191 193
|
conncn |
⊢ ( 𝜑 → 𝐼 : ( 0 [,] 1 ) ⟶ 𝑊 ) |
| 195 |
|
1elunit |
⊢ 1 ∈ ( 0 [,] 1 ) |
| 196 |
|
ffvelcdm |
⊢ ( ( 𝐼 : ( 0 [,] 1 ) ⟶ 𝑊 ∧ 1 ∈ ( 0 [,] 1 ) ) → ( 𝐼 ‘ 1 ) ∈ 𝑊 ) |
| 197 |
194 195 196
|
sylancl |
⊢ ( 𝜑 → ( 𝐼 ‘ 1 ) ∈ 𝑊 ) |
| 198 |
127 197
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑍 ) ∈ 𝑊 ) |