| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmlift3.b | ⊢ 𝐵  =  ∪  𝐶 | 
						
							| 2 |  | cvmlift3.y | ⊢ 𝑌  =  ∪  𝐾 | 
						
							| 3 |  | cvmlift3.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 4 |  | cvmlift3.k | ⊢ ( 𝜑  →  𝐾  ∈  SConn ) | 
						
							| 5 |  | cvmlift3.l | ⊢ ( 𝜑  →  𝐾  ∈  𝑛-Locally  PConn ) | 
						
							| 6 |  | cvmlift3.o | ⊢ ( 𝜑  →  𝑂  ∈  𝑌 ) | 
						
							| 7 |  | cvmlift3.g | ⊢ ( 𝜑  →  𝐺  ∈  ( 𝐾  Cn  𝐽 ) ) | 
						
							| 8 |  | cvmlift3.p | ⊢ ( 𝜑  →  𝑃  ∈  𝐵 ) | 
						
							| 9 |  | cvmlift3.e | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑂 ) ) | 
						
							| 10 |  | cvmlift3.h | ⊢ 𝐻  =  ( 𝑥  ∈  𝑌  ↦  ( ℩ 𝑧  ∈  𝐵 ∃ 𝑓  ∈  ( II  Cn  𝐾 ) ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑥  ∧  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  𝑧 ) ) ) | 
						
							| 11 |  | cvmlift3lem7.s | ⊢ 𝑆  =  ( 𝑘  ∈  𝐽  ↦  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑐  ∈  𝑠 ( ∀ 𝑑  ∈  ( 𝑠  ∖  { 𝑐 } ) ( 𝑐  ∩  𝑑 )  =  ∅  ∧  ( 𝐹  ↾  𝑐 )  ∈  ( ( 𝐶  ↾t  𝑐 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } ) | 
						
							| 12 |  | cvmlift3lem7.1 | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑋 )  ∈  𝐴 ) | 
						
							| 13 |  | cvmlift3lem7.2 | ⊢ ( 𝜑  →  𝑇  ∈  ( 𝑆 ‘ 𝐴 ) ) | 
						
							| 14 |  | cvmlift3lem7.3 | ⊢ ( 𝜑  →  𝑀  ⊆  ( ◡ 𝐺  “  𝐴 ) ) | 
						
							| 15 |  | cvmlift3lem7.w | ⊢ 𝑊  =  ( ℩ 𝑏  ∈  𝑇 ( 𝐻 ‘ 𝑋 )  ∈  𝑏 ) | 
						
							| 16 |  | cvmlift3lem6.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑀 ) | 
						
							| 17 |  | cvmlift3lem6.z | ⊢ ( 𝜑  →  𝑍  ∈  𝑀 ) | 
						
							| 18 |  | cvmlift3lem6.q | ⊢ ( 𝜑  →  𝑄  ∈  ( II  Cn  𝐾 ) ) | 
						
							| 19 |  | cvmlift3lem6.r | ⊢ 𝑅  =  ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑄 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) | 
						
							| 20 |  | cvmlift3lem6.1 | ⊢ ( 𝜑  →  ( ( 𝑄 ‘ 0 )  =  𝑂  ∧  ( 𝑄 ‘ 1 )  =  𝑋  ∧  ( 𝑅 ‘ 1 )  =  ( 𝐻 ‘ 𝑋 ) ) ) | 
						
							| 21 |  | cvmlift3lem6.n | ⊢ ( 𝜑  →  𝑁  ∈  ( II  Cn  ( 𝐾  ↾t  𝑀 ) ) ) | 
						
							| 22 |  | cvmlift3lem6.2 | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ 0 )  =  𝑋  ∧  ( 𝑁 ‘ 1 )  =  𝑍 ) ) | 
						
							| 23 |  | cvmlift3lem6.i | ⊢ 𝐼  =  ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑁 )  ∧  ( 𝑔 ‘ 0 )  =  ( 𝐻 ‘ 𝑋 ) ) ) | 
						
							| 24 |  | sconntop | ⊢ ( 𝐾  ∈  SConn  →  𝐾  ∈  Top ) | 
						
							| 25 | 4 24 | syl | ⊢ ( 𝜑  →  𝐾  ∈  Top ) | 
						
							| 26 |  | cnrest2r | ⊢ ( 𝐾  ∈  Top  →  ( II  Cn  ( 𝐾  ↾t  𝑀 ) )  ⊆  ( II  Cn  𝐾 ) ) | 
						
							| 27 | 25 26 | syl | ⊢ ( 𝜑  →  ( II  Cn  ( 𝐾  ↾t  𝑀 ) )  ⊆  ( II  Cn  𝐾 ) ) | 
						
							| 28 | 27 21 | sseldd | ⊢ ( 𝜑  →  𝑁  ∈  ( II  Cn  𝐾 ) ) | 
						
							| 29 | 20 | simp2d | ⊢ ( 𝜑  →  ( 𝑄 ‘ 1 )  =  𝑋 ) | 
						
							| 30 | 22 | simpld | ⊢ ( 𝜑  →  ( 𝑁 ‘ 0 )  =  𝑋 ) | 
						
							| 31 | 29 30 | eqtr4d | ⊢ ( 𝜑  →  ( 𝑄 ‘ 1 )  =  ( 𝑁 ‘ 0 ) ) | 
						
							| 32 | 18 28 31 | pcocn | ⊢ ( 𝜑  →  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 )  ∈  ( II  Cn  𝐾 ) ) | 
						
							| 33 | 18 28 | pco0 | ⊢ ( 𝜑  →  ( ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ‘ 0 )  =  ( 𝑄 ‘ 0 ) ) | 
						
							| 34 | 20 | simp1d | ⊢ ( 𝜑  →  ( 𝑄 ‘ 0 )  =  𝑂 ) | 
						
							| 35 | 33 34 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ‘ 0 )  =  𝑂 ) | 
						
							| 36 | 18 28 | pco1 | ⊢ ( 𝜑  →  ( ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ‘ 1 )  =  ( 𝑁 ‘ 1 ) ) | 
						
							| 37 | 22 | simprd | ⊢ ( 𝜑  →  ( 𝑁 ‘ 1 )  =  𝑍 ) | 
						
							| 38 | 36 37 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ‘ 1 )  =  𝑍 ) | 
						
							| 39 |  | cnco | ⊢ ( ( 𝑄  ∈  ( II  Cn  𝐾 )  ∧  𝐺  ∈  ( 𝐾  Cn  𝐽 ) )  →  ( 𝐺  ∘  𝑄 )  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 40 | 18 7 39 | syl2anc | ⊢ ( 𝜑  →  ( 𝐺  ∘  𝑄 )  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 41 | 34 | fveq2d | ⊢ ( 𝜑  →  ( 𝐺 ‘ ( 𝑄 ‘ 0 ) )  =  ( 𝐺 ‘ 𝑂 ) ) | 
						
							| 42 |  | iiuni | ⊢ ( 0 [,] 1 )  =  ∪  II | 
						
							| 43 | 42 2 | cnf | ⊢ ( 𝑄  ∈  ( II  Cn  𝐾 )  →  𝑄 : ( 0 [,] 1 ) ⟶ 𝑌 ) | 
						
							| 44 | 18 43 | syl | ⊢ ( 𝜑  →  𝑄 : ( 0 [,] 1 ) ⟶ 𝑌 ) | 
						
							| 45 |  | 0elunit | ⊢ 0  ∈  ( 0 [,] 1 ) | 
						
							| 46 |  | fvco3 | ⊢ ( ( 𝑄 : ( 0 [,] 1 ) ⟶ 𝑌  ∧  0  ∈  ( 0 [,] 1 ) )  →  ( ( 𝐺  ∘  𝑄 ) ‘ 0 )  =  ( 𝐺 ‘ ( 𝑄 ‘ 0 ) ) ) | 
						
							| 47 | 44 45 46 | sylancl | ⊢ ( 𝜑  →  ( ( 𝐺  ∘  𝑄 ) ‘ 0 )  =  ( 𝐺 ‘ ( 𝑄 ‘ 0 ) ) ) | 
						
							| 48 | 41 47 9 | 3eqtr4rd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑃 )  =  ( ( 𝐺  ∘  𝑄 ) ‘ 0 ) ) | 
						
							| 49 | 1 19 3 40 8 48 | cvmliftiota | ⊢ ( 𝜑  →  ( 𝑅  ∈  ( II  Cn  𝐶 )  ∧  ( 𝐹  ∘  𝑅 )  =  ( 𝐺  ∘  𝑄 )  ∧  ( 𝑅 ‘ 0 )  =  𝑃 ) ) | 
						
							| 50 | 49 | simp2d | ⊢ ( 𝜑  →  ( 𝐹  ∘  𝑅 )  =  ( 𝐺  ∘  𝑄 ) ) | 
						
							| 51 |  | cnco | ⊢ ( ( 𝑁  ∈  ( II  Cn  𝐾 )  ∧  𝐺  ∈  ( 𝐾  Cn  𝐽 ) )  →  ( 𝐺  ∘  𝑁 )  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 52 | 28 7 51 | syl2anc | ⊢ ( 𝜑  →  ( 𝐺  ∘  𝑁 )  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 53 | 1 2 3 4 5 6 7 8 9 10 | cvmlift3lem3 | ⊢ ( 𝜑  →  𝐻 : 𝑌 ⟶ 𝐵 ) | 
						
							| 54 |  | cnvimass | ⊢ ( ◡ 𝐺  “  𝐴 )  ⊆  dom  𝐺 | 
						
							| 55 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 56 | 2 55 | cnf | ⊢ ( 𝐺  ∈  ( 𝐾  Cn  𝐽 )  →  𝐺 : 𝑌 ⟶ ∪  𝐽 ) | 
						
							| 57 | 7 56 | syl | ⊢ ( 𝜑  →  𝐺 : 𝑌 ⟶ ∪  𝐽 ) | 
						
							| 58 | 54 57 | fssdm | ⊢ ( 𝜑  →  ( ◡ 𝐺  “  𝐴 )  ⊆  𝑌 ) | 
						
							| 59 | 14 58 | sstrd | ⊢ ( 𝜑  →  𝑀  ⊆  𝑌 ) | 
						
							| 60 | 59 16 | sseldd | ⊢ ( 𝜑  →  𝑋  ∈  𝑌 ) | 
						
							| 61 | 53 60 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐻 ‘ 𝑋 )  ∈  𝐵 ) | 
						
							| 62 | 30 | fveq2d | ⊢ ( 𝜑  →  ( 𝐺 ‘ ( 𝑁 ‘ 0 ) )  =  ( 𝐺 ‘ 𝑋 ) ) | 
						
							| 63 | 42 2 | cnf | ⊢ ( 𝑁  ∈  ( II  Cn  𝐾 )  →  𝑁 : ( 0 [,] 1 ) ⟶ 𝑌 ) | 
						
							| 64 | 28 63 | syl | ⊢ ( 𝜑  →  𝑁 : ( 0 [,] 1 ) ⟶ 𝑌 ) | 
						
							| 65 |  | fvco3 | ⊢ ( ( 𝑁 : ( 0 [,] 1 ) ⟶ 𝑌  ∧  0  ∈  ( 0 [,] 1 ) )  →  ( ( 𝐺  ∘  𝑁 ) ‘ 0 )  =  ( 𝐺 ‘ ( 𝑁 ‘ 0 ) ) ) | 
						
							| 66 | 64 45 65 | sylancl | ⊢ ( 𝜑  →  ( ( 𝐺  ∘  𝑁 ) ‘ 0 )  =  ( 𝐺 ‘ ( 𝑁 ‘ 0 ) ) ) | 
						
							| 67 |  | fvco3 | ⊢ ( ( 𝐻 : 𝑌 ⟶ 𝐵  ∧  𝑋  ∈  𝑌 )  →  ( ( 𝐹  ∘  𝐻 ) ‘ 𝑋 )  =  ( 𝐹 ‘ ( 𝐻 ‘ 𝑋 ) ) ) | 
						
							| 68 | 53 60 67 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐹  ∘  𝐻 ) ‘ 𝑋 )  =  ( 𝐹 ‘ ( 𝐻 ‘ 𝑋 ) ) ) | 
						
							| 69 | 1 2 3 4 5 6 7 8 9 10 | cvmlift3lem5 | ⊢ ( 𝜑  →  ( 𝐹  ∘  𝐻 )  =  𝐺 ) | 
						
							| 70 | 69 | fveq1d | ⊢ ( 𝜑  →  ( ( 𝐹  ∘  𝐻 ) ‘ 𝑋 )  =  ( 𝐺 ‘ 𝑋 ) ) | 
						
							| 71 | 68 70 | eqtr3d | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 𝐻 ‘ 𝑋 ) )  =  ( 𝐺 ‘ 𝑋 ) ) | 
						
							| 72 | 62 66 71 | 3eqtr4rd | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 𝐻 ‘ 𝑋 ) )  =  ( ( 𝐺  ∘  𝑁 ) ‘ 0 ) ) | 
						
							| 73 | 1 23 3 52 61 72 | cvmliftiota | ⊢ ( 𝜑  →  ( 𝐼  ∈  ( II  Cn  𝐶 )  ∧  ( 𝐹  ∘  𝐼 )  =  ( 𝐺  ∘  𝑁 )  ∧  ( 𝐼 ‘ 0 )  =  ( 𝐻 ‘ 𝑋 ) ) ) | 
						
							| 74 | 73 | simp2d | ⊢ ( 𝜑  →  ( 𝐹  ∘  𝐼 )  =  ( 𝐺  ∘  𝑁 ) ) | 
						
							| 75 | 50 74 | oveq12d | ⊢ ( 𝜑  →  ( ( 𝐹  ∘  𝑅 ) ( *𝑝 ‘ 𝐽 ) ( 𝐹  ∘  𝐼 ) )  =  ( ( 𝐺  ∘  𝑄 ) ( *𝑝 ‘ 𝐽 ) ( 𝐺  ∘  𝑁 ) ) ) | 
						
							| 76 | 49 | simp1d | ⊢ ( 𝜑  →  𝑅  ∈  ( II  Cn  𝐶 ) ) | 
						
							| 77 | 73 | simp1d | ⊢ ( 𝜑  →  𝐼  ∈  ( II  Cn  𝐶 ) ) | 
						
							| 78 | 20 | simp3d | ⊢ ( 𝜑  →  ( 𝑅 ‘ 1 )  =  ( 𝐻 ‘ 𝑋 ) ) | 
						
							| 79 | 73 | simp3d | ⊢ ( 𝜑  →  ( 𝐼 ‘ 0 )  =  ( 𝐻 ‘ 𝑋 ) ) | 
						
							| 80 | 78 79 | eqtr4d | ⊢ ( 𝜑  →  ( 𝑅 ‘ 1 )  =  ( 𝐼 ‘ 0 ) ) | 
						
							| 81 |  | cvmcn | ⊢ ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  →  𝐹  ∈  ( 𝐶  Cn  𝐽 ) ) | 
						
							| 82 | 3 81 | syl | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐶  Cn  𝐽 ) ) | 
						
							| 83 | 76 77 80 82 | copco | ⊢ ( 𝜑  →  ( 𝐹  ∘  ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) )  =  ( ( 𝐹  ∘  𝑅 ) ( *𝑝 ‘ 𝐽 ) ( 𝐹  ∘  𝐼 ) ) ) | 
						
							| 84 | 18 28 31 7 | copco | ⊢ ( 𝜑  →  ( 𝐺  ∘  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) )  =  ( ( 𝐺  ∘  𝑄 ) ( *𝑝 ‘ 𝐽 ) ( 𝐺  ∘  𝑁 ) ) ) | 
						
							| 85 | 75 83 84 | 3eqtr4d | ⊢ ( 𝜑  →  ( 𝐹  ∘  ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) )  =  ( 𝐺  ∘  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ) ) | 
						
							| 86 | 76 77 | pco0 | ⊢ ( 𝜑  →  ( ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) ‘ 0 )  =  ( 𝑅 ‘ 0 ) ) | 
						
							| 87 | 49 | simp3d | ⊢ ( 𝜑  →  ( 𝑅 ‘ 0 )  =  𝑃 ) | 
						
							| 88 | 86 87 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) ‘ 0 )  =  𝑃 ) | 
						
							| 89 | 76 77 80 | pcocn | ⊢ ( 𝜑  →  ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 )  ∈  ( II  Cn  𝐶 ) ) | 
						
							| 90 |  | cnco | ⊢ ( ( ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 )  ∈  ( II  Cn  𝐾 )  ∧  𝐺  ∈  ( 𝐾  Cn  𝐽 ) )  →  ( 𝐺  ∘  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) )  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 91 | 32 7 90 | syl2anc | ⊢ ( 𝜑  →  ( 𝐺  ∘  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) )  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 92 | 35 | fveq2d | ⊢ ( 𝜑  →  ( 𝐺 ‘ ( ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ‘ 0 ) )  =  ( 𝐺 ‘ 𝑂 ) ) | 
						
							| 93 | 42 2 | cnf | ⊢ ( ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 )  ∈  ( II  Cn  𝐾 )  →  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) : ( 0 [,] 1 ) ⟶ 𝑌 ) | 
						
							| 94 | 32 93 | syl | ⊢ ( 𝜑  →  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) : ( 0 [,] 1 ) ⟶ 𝑌 ) | 
						
							| 95 |  | fvco3 | ⊢ ( ( ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) : ( 0 [,] 1 ) ⟶ 𝑌  ∧  0  ∈  ( 0 [,] 1 ) )  →  ( ( 𝐺  ∘  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ) ‘ 0 )  =  ( 𝐺 ‘ ( ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ‘ 0 ) ) ) | 
						
							| 96 | 94 45 95 | sylancl | ⊢ ( 𝜑  →  ( ( 𝐺  ∘  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ) ‘ 0 )  =  ( 𝐺 ‘ ( ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ‘ 0 ) ) ) | 
						
							| 97 | 92 96 9 | 3eqtr4rd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑃 )  =  ( ( 𝐺  ∘  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ) ‘ 0 ) ) | 
						
							| 98 | 1 | cvmlift | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  ( 𝐺  ∘  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) )  ∈  ( II  Cn  𝐽 ) )  ∧  ( 𝑃  ∈  𝐵  ∧  ( 𝐹 ‘ 𝑃 )  =  ( ( 𝐺  ∘  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ) ‘ 0 ) ) )  →  ∃! 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) | 
						
							| 99 | 3 91 8 97 98 | syl22anc | ⊢ ( 𝜑  →  ∃! 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) | 
						
							| 100 |  | coeq2 | ⊢ ( 𝑔  =  ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 )  →  ( 𝐹  ∘  𝑔 )  =  ( 𝐹  ∘  ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) ) ) | 
						
							| 101 | 100 | eqeq1d | ⊢ ( 𝑔  =  ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 )  →  ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) )  ↔  ( 𝐹  ∘  ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) )  =  ( 𝐺  ∘  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ) ) ) | 
						
							| 102 |  | fveq1 | ⊢ ( 𝑔  =  ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 )  →  ( 𝑔 ‘ 0 )  =  ( ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) ‘ 0 ) ) | 
						
							| 103 | 102 | eqeq1d | ⊢ ( 𝑔  =  ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 )  →  ( ( 𝑔 ‘ 0 )  =  𝑃  ↔  ( ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) ‘ 0 )  =  𝑃 ) ) | 
						
							| 104 | 101 103 | anbi12d | ⊢ ( 𝑔  =  ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 )  →  ( ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 )  ↔  ( ( 𝐹  ∘  ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) )  =  ( 𝐺  ∘  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) )  ∧  ( ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) ‘ 0 )  =  𝑃 ) ) ) | 
						
							| 105 | 104 | riota2 | ⊢ ( ( ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 )  ∈  ( II  Cn  𝐶 )  ∧  ∃! 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) )  →  ( ( ( 𝐹  ∘  ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) )  =  ( 𝐺  ∘  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) )  ∧  ( ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) ‘ 0 )  =  𝑃 )  ↔  ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) )  =  ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) ) ) | 
						
							| 106 | 89 99 105 | syl2anc | ⊢ ( 𝜑  →  ( ( ( 𝐹  ∘  ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) )  =  ( 𝐺  ∘  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) )  ∧  ( ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) ‘ 0 )  =  𝑃 )  ↔  ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) )  =  ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) ) ) | 
						
							| 107 | 85 88 106 | mpbi2and | ⊢ ( 𝜑  →  ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) )  =  ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) ) | 
						
							| 108 | 107 | fveq1d | ⊢ ( 𝜑  →  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) ‘ 1 ) ) | 
						
							| 109 | 76 77 | pco1 | ⊢ ( 𝜑  →  ( ( 𝑅 ( *𝑝 ‘ 𝐶 ) 𝐼 ) ‘ 1 )  =  ( 𝐼 ‘ 1 ) ) | 
						
							| 110 | 108 109 | eqtrd | ⊢ ( 𝜑  →  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐼 ‘ 1 ) ) | 
						
							| 111 |  | fveq1 | ⊢ ( 𝑓  =  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 )  →  ( 𝑓 ‘ 0 )  =  ( ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ‘ 0 ) ) | 
						
							| 112 | 111 | eqeq1d | ⊢ ( 𝑓  =  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 )  →  ( ( 𝑓 ‘ 0 )  =  𝑂  ↔  ( ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ‘ 0 )  =  𝑂 ) ) | 
						
							| 113 |  | fveq1 | ⊢ ( 𝑓  =  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 )  →  ( 𝑓 ‘ 1 )  =  ( ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ‘ 1 ) ) | 
						
							| 114 | 113 | eqeq1d | ⊢ ( 𝑓  =  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 )  →  ( ( 𝑓 ‘ 1 )  =  𝑍  ↔  ( ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ‘ 1 )  =  𝑍 ) ) | 
						
							| 115 |  | coeq2 | ⊢ ( 𝑓  =  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 )  →  ( 𝐺  ∘  𝑓 )  =  ( 𝐺  ∘  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ) ) | 
						
							| 116 | 115 | eqeq2d | ⊢ ( 𝑓  =  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 )  →  ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ↔  ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ) ) ) | 
						
							| 117 | 116 | anbi1d | ⊢ ( 𝑓  =  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 )  →  ( ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 )  ↔  ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ) | 
						
							| 118 | 117 | riotabidv | ⊢ ( 𝑓  =  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 )  →  ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) )  =  ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ) | 
						
							| 119 | 118 | fveq1d | ⊢ ( 𝑓  =  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 )  →  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 ) ) | 
						
							| 120 | 119 | eqeq1d | ⊢ ( 𝑓  =  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 )  →  ( ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐼 ‘ 1 )  ↔  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐼 ‘ 1 ) ) ) | 
						
							| 121 | 112 114 120 | 3anbi123d | ⊢ ( 𝑓  =  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 )  →  ( ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑍  ∧  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐼 ‘ 1 ) )  ↔  ( ( ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ‘ 0 )  =  𝑂  ∧  ( ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ‘ 1 )  =  𝑍  ∧  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐼 ‘ 1 ) ) ) ) | 
						
							| 122 | 121 | rspcev | ⊢ ( ( ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 )  ∈  ( II  Cn  𝐾 )  ∧  ( ( ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ‘ 0 )  =  𝑂  ∧  ( ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) ‘ 1 )  =  𝑍  ∧  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  ( 𝑄 ( *𝑝 ‘ 𝐾 ) 𝑁 ) )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐼 ‘ 1 ) ) )  →  ∃ 𝑓  ∈  ( II  Cn  𝐾 ) ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑍  ∧  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐼 ‘ 1 ) ) ) | 
						
							| 123 | 32 35 38 110 122 | syl13anc | ⊢ ( 𝜑  →  ∃ 𝑓  ∈  ( II  Cn  𝐾 ) ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑍  ∧  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐼 ‘ 1 ) ) ) | 
						
							| 124 | 59 17 | sseldd | ⊢ ( 𝜑  →  𝑍  ∈  𝑌 ) | 
						
							| 125 | 1 2 3 4 5 6 7 8 9 10 | cvmlift3lem4 | ⊢ ( ( 𝜑  ∧  𝑍  ∈  𝑌 )  →  ( ( 𝐻 ‘ 𝑍 )  =  ( 𝐼 ‘ 1 )  ↔  ∃ 𝑓  ∈  ( II  Cn  𝐾 ) ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑍  ∧  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐼 ‘ 1 ) ) ) ) | 
						
							| 126 | 124 125 | mpdan | ⊢ ( 𝜑  →  ( ( 𝐻 ‘ 𝑍 )  =  ( 𝐼 ‘ 1 )  ↔  ∃ 𝑓  ∈  ( II  Cn  𝐾 ) ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑍  ∧  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐼 ‘ 1 ) ) ) ) | 
						
							| 127 | 123 126 | mpbird | ⊢ ( 𝜑  →  ( 𝐻 ‘ 𝑍 )  =  ( 𝐼 ‘ 1 ) ) | 
						
							| 128 |  | iiconn | ⊢ II  ∈  Conn | 
						
							| 129 | 128 | a1i | ⊢ ( 𝜑  →  II  ∈  Conn ) | 
						
							| 130 |  | cvmtop1 | ⊢ ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  →  𝐶  ∈  Top ) | 
						
							| 131 | 3 130 | syl | ⊢ ( 𝜑  →  𝐶  ∈  Top ) | 
						
							| 132 | 1 | toptopon | ⊢ ( 𝐶  ∈  Top  ↔  𝐶  ∈  ( TopOn ‘ 𝐵 ) ) | 
						
							| 133 | 131 132 | sylib | ⊢ ( 𝜑  →  𝐶  ∈  ( TopOn ‘ 𝐵 ) ) | 
						
							| 134 | 74 | rneqd | ⊢ ( 𝜑  →  ran  ( 𝐹  ∘  𝐼 )  =  ran  ( 𝐺  ∘  𝑁 ) ) | 
						
							| 135 |  | rnco2 | ⊢ ran  ( 𝐹  ∘  𝐼 )  =  ( 𝐹  “  ran  𝐼 ) | 
						
							| 136 |  | rnco2 | ⊢ ran  ( 𝐺  ∘  𝑁 )  =  ( 𝐺  “  ran  𝑁 ) | 
						
							| 137 | 134 135 136 | 3eqtr3g | ⊢ ( 𝜑  →  ( 𝐹  “  ran  𝐼 )  =  ( 𝐺  “  ran  𝑁 ) ) | 
						
							| 138 |  | iitopon | ⊢ II  ∈  ( TopOn ‘ ( 0 [,] 1 ) ) | 
						
							| 139 | 138 | a1i | ⊢ ( 𝜑  →  II  ∈  ( TopOn ‘ ( 0 [,] 1 ) ) ) | 
						
							| 140 | 2 | toptopon | ⊢ ( 𝐾  ∈  Top  ↔  𝐾  ∈  ( TopOn ‘ 𝑌 ) ) | 
						
							| 141 | 25 140 | sylib | ⊢ ( 𝜑  →  𝐾  ∈  ( TopOn ‘ 𝑌 ) ) | 
						
							| 142 |  | resttopon | ⊢ ( ( 𝐾  ∈  ( TopOn ‘ 𝑌 )  ∧  𝑀  ⊆  𝑌 )  →  ( 𝐾  ↾t  𝑀 )  ∈  ( TopOn ‘ 𝑀 ) ) | 
						
							| 143 | 141 59 142 | syl2anc | ⊢ ( 𝜑  →  ( 𝐾  ↾t  𝑀 )  ∈  ( TopOn ‘ 𝑀 ) ) | 
						
							| 144 |  | cnf2 | ⊢ ( ( II  ∈  ( TopOn ‘ ( 0 [,] 1 ) )  ∧  ( 𝐾  ↾t  𝑀 )  ∈  ( TopOn ‘ 𝑀 )  ∧  𝑁  ∈  ( II  Cn  ( 𝐾  ↾t  𝑀 ) ) )  →  𝑁 : ( 0 [,] 1 ) ⟶ 𝑀 ) | 
						
							| 145 | 139 143 21 144 | syl3anc | ⊢ ( 𝜑  →  𝑁 : ( 0 [,] 1 ) ⟶ 𝑀 ) | 
						
							| 146 | 145 | frnd | ⊢ ( 𝜑  →  ran  𝑁  ⊆  𝑀 ) | 
						
							| 147 | 146 14 | sstrd | ⊢ ( 𝜑  →  ran  𝑁  ⊆  ( ◡ 𝐺  “  𝐴 ) ) | 
						
							| 148 | 57 | ffund | ⊢ ( 𝜑  →  Fun  𝐺 ) | 
						
							| 149 | 147 54 | sstrdi | ⊢ ( 𝜑  →  ran  𝑁  ⊆  dom  𝐺 ) | 
						
							| 150 |  | funimass3 | ⊢ ( ( Fun  𝐺  ∧  ran  𝑁  ⊆  dom  𝐺 )  →  ( ( 𝐺  “  ran  𝑁 )  ⊆  𝐴  ↔  ran  𝑁  ⊆  ( ◡ 𝐺  “  𝐴 ) ) ) | 
						
							| 151 | 148 149 150 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐺  “  ran  𝑁 )  ⊆  𝐴  ↔  ran  𝑁  ⊆  ( ◡ 𝐺  “  𝐴 ) ) ) | 
						
							| 152 | 147 151 | mpbird | ⊢ ( 𝜑  →  ( 𝐺  “  ran  𝑁 )  ⊆  𝐴 ) | 
						
							| 153 | 137 152 | eqsstrd | ⊢ ( 𝜑  →  ( 𝐹  “  ran  𝐼 )  ⊆  𝐴 ) | 
						
							| 154 | 1 55 | cnf | ⊢ ( 𝐹  ∈  ( 𝐶  Cn  𝐽 )  →  𝐹 : 𝐵 ⟶ ∪  𝐽 ) | 
						
							| 155 | 82 154 | syl | ⊢ ( 𝜑  →  𝐹 : 𝐵 ⟶ ∪  𝐽 ) | 
						
							| 156 | 155 | ffund | ⊢ ( 𝜑  →  Fun  𝐹 ) | 
						
							| 157 | 42 1 | cnf | ⊢ ( 𝐼  ∈  ( II  Cn  𝐶 )  →  𝐼 : ( 0 [,] 1 ) ⟶ 𝐵 ) | 
						
							| 158 | 77 157 | syl | ⊢ ( 𝜑  →  𝐼 : ( 0 [,] 1 ) ⟶ 𝐵 ) | 
						
							| 159 | 158 | frnd | ⊢ ( 𝜑  →  ran  𝐼  ⊆  𝐵 ) | 
						
							| 160 | 155 | fdmd | ⊢ ( 𝜑  →  dom  𝐹  =  𝐵 ) | 
						
							| 161 | 159 160 | sseqtrrd | ⊢ ( 𝜑  →  ran  𝐼  ⊆  dom  𝐹 ) | 
						
							| 162 |  | funimass3 | ⊢ ( ( Fun  𝐹  ∧  ran  𝐼  ⊆  dom  𝐹 )  →  ( ( 𝐹  “  ran  𝐼 )  ⊆  𝐴  ↔  ran  𝐼  ⊆  ( ◡ 𝐹  “  𝐴 ) ) ) | 
						
							| 163 | 156 161 162 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐹  “  ran  𝐼 )  ⊆  𝐴  ↔  ran  𝐼  ⊆  ( ◡ 𝐹  “  𝐴 ) ) ) | 
						
							| 164 | 153 163 | mpbid | ⊢ ( 𝜑  →  ran  𝐼  ⊆  ( ◡ 𝐹  “  𝐴 ) ) | 
						
							| 165 |  | cnvimass | ⊢ ( ◡ 𝐹  “  𝐴 )  ⊆  dom  𝐹 | 
						
							| 166 | 165 155 | fssdm | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  𝐴 )  ⊆  𝐵 ) | 
						
							| 167 |  | cnrest2 | ⊢ ( ( 𝐶  ∈  ( TopOn ‘ 𝐵 )  ∧  ran  𝐼  ⊆  ( ◡ 𝐹  “  𝐴 )  ∧  ( ◡ 𝐹  “  𝐴 )  ⊆  𝐵 )  →  ( 𝐼  ∈  ( II  Cn  𝐶 )  ↔  𝐼  ∈  ( II  Cn  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝐴 ) ) ) ) ) | 
						
							| 168 | 133 164 166 167 | syl3anc | ⊢ ( 𝜑  →  ( 𝐼  ∈  ( II  Cn  𝐶 )  ↔  𝐼  ∈  ( II  Cn  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝐴 ) ) ) ) ) | 
						
							| 169 | 77 168 | mpbid | ⊢ ( 𝜑  →  𝐼  ∈  ( II  Cn  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝐴 ) ) ) ) | 
						
							| 170 | 11 | cvmsss | ⊢ ( 𝑇  ∈  ( 𝑆 ‘ 𝐴 )  →  𝑇  ⊆  𝐶 ) | 
						
							| 171 | 13 170 | syl | ⊢ ( 𝜑  →  𝑇  ⊆  𝐶 ) | 
						
							| 172 | 71 12 | eqeltrd | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 𝐻 ‘ 𝑋 ) )  ∈  𝐴 ) | 
						
							| 173 | 11 1 15 | cvmsiota | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  ( 𝑇  ∈  ( 𝑆 ‘ 𝐴 )  ∧  ( 𝐻 ‘ 𝑋 )  ∈  𝐵  ∧  ( 𝐹 ‘ ( 𝐻 ‘ 𝑋 ) )  ∈  𝐴 ) )  →  ( 𝑊  ∈  𝑇  ∧  ( 𝐻 ‘ 𝑋 )  ∈  𝑊 ) ) | 
						
							| 174 | 3 13 61 172 173 | syl13anc | ⊢ ( 𝜑  →  ( 𝑊  ∈  𝑇  ∧  ( 𝐻 ‘ 𝑋 )  ∈  𝑊 ) ) | 
						
							| 175 | 174 | simpld | ⊢ ( 𝜑  →  𝑊  ∈  𝑇 ) | 
						
							| 176 | 171 175 | sseldd | ⊢ ( 𝜑  →  𝑊  ∈  𝐶 ) | 
						
							| 177 |  | elssuni | ⊢ ( 𝑊  ∈  𝑇  →  𝑊  ⊆  ∪  𝑇 ) | 
						
							| 178 | 175 177 | syl | ⊢ ( 𝜑  →  𝑊  ⊆  ∪  𝑇 ) | 
						
							| 179 | 11 | cvmsuni | ⊢ ( 𝑇  ∈  ( 𝑆 ‘ 𝐴 )  →  ∪  𝑇  =  ( ◡ 𝐹  “  𝐴 ) ) | 
						
							| 180 | 13 179 | syl | ⊢ ( 𝜑  →  ∪  𝑇  =  ( ◡ 𝐹  “  𝐴 ) ) | 
						
							| 181 | 178 180 | sseqtrd | ⊢ ( 𝜑  →  𝑊  ⊆  ( ◡ 𝐹  “  𝐴 ) ) | 
						
							| 182 | 11 | cvmsrcl | ⊢ ( 𝑇  ∈  ( 𝑆 ‘ 𝐴 )  →  𝐴  ∈  𝐽 ) | 
						
							| 183 | 13 182 | syl | ⊢ ( 𝜑  →  𝐴  ∈  𝐽 ) | 
						
							| 184 |  | cnima | ⊢ ( ( 𝐹  ∈  ( 𝐶  Cn  𝐽 )  ∧  𝐴  ∈  𝐽 )  →  ( ◡ 𝐹  “  𝐴 )  ∈  𝐶 ) | 
						
							| 185 | 82 183 184 | syl2anc | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  𝐴 )  ∈  𝐶 ) | 
						
							| 186 |  | restopn2 | ⊢ ( ( 𝐶  ∈  Top  ∧  ( ◡ 𝐹  “  𝐴 )  ∈  𝐶 )  →  ( 𝑊  ∈  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝐴 ) )  ↔  ( 𝑊  ∈  𝐶  ∧  𝑊  ⊆  ( ◡ 𝐹  “  𝐴 ) ) ) ) | 
						
							| 187 | 131 185 186 | syl2anc | ⊢ ( 𝜑  →  ( 𝑊  ∈  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝐴 ) )  ↔  ( 𝑊  ∈  𝐶  ∧  𝑊  ⊆  ( ◡ 𝐹  “  𝐴 ) ) ) ) | 
						
							| 188 | 176 181 187 | mpbir2and | ⊢ ( 𝜑  →  𝑊  ∈  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝐴 ) ) ) | 
						
							| 189 | 11 | cvmscld | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝐴 )  ∧  𝑊  ∈  𝑇 )  →  𝑊  ∈  ( Clsd ‘ ( 𝐶  ↾t  ( ◡ 𝐹  “  𝐴 ) ) ) ) | 
						
							| 190 | 3 13 175 189 | syl3anc | ⊢ ( 𝜑  →  𝑊  ∈  ( Clsd ‘ ( 𝐶  ↾t  ( ◡ 𝐹  “  𝐴 ) ) ) ) | 
						
							| 191 | 45 | a1i | ⊢ ( 𝜑  →  0  ∈  ( 0 [,] 1 ) ) | 
						
							| 192 | 174 | simprd | ⊢ ( 𝜑  →  ( 𝐻 ‘ 𝑋 )  ∈  𝑊 ) | 
						
							| 193 | 79 192 | eqeltrd | ⊢ ( 𝜑  →  ( 𝐼 ‘ 0 )  ∈  𝑊 ) | 
						
							| 194 | 42 129 169 188 190 191 193 | conncn | ⊢ ( 𝜑  →  𝐼 : ( 0 [,] 1 ) ⟶ 𝑊 ) | 
						
							| 195 |  | 1elunit | ⊢ 1  ∈  ( 0 [,] 1 ) | 
						
							| 196 |  | ffvelcdm | ⊢ ( ( 𝐼 : ( 0 [,] 1 ) ⟶ 𝑊  ∧  1  ∈  ( 0 [,] 1 ) )  →  ( 𝐼 ‘ 1 )  ∈  𝑊 ) | 
						
							| 197 | 194 195 196 | sylancl | ⊢ ( 𝜑  →  ( 𝐼 ‘ 1 )  ∈  𝑊 ) | 
						
							| 198 | 127 197 | eqeltrd | ⊢ ( 𝜑  →  ( 𝐻 ‘ 𝑍 )  ∈  𝑊 ) |