Metamath Proof Explorer


Theorem cvmlift3lem6

Description: Lemma for cvmlift3 . (Contributed by Mario Carneiro, 9-Jul-2015)

Ref Expression
Hypotheses cvmlift3.b B = C
cvmlift3.y Y = K
cvmlift3.f φ F C CovMap J
cvmlift3.k φ K SConn
cvmlift3.l φ K N-Locally PConn
cvmlift3.o φ O Y
cvmlift3.g φ G K Cn J
cvmlift3.p φ P B
cvmlift3.e φ F P = G O
cvmlift3.h H = x Y ι z B | f II Cn K f 0 = O f 1 = x ι g II Cn C | F g = G f g 0 = P 1 = z
cvmlift3lem7.s S = k J s 𝒫 C | s = F -1 k c s d s c c d = F c C 𝑡 c Homeo J 𝑡 k
cvmlift3lem7.1 φ G X A
cvmlift3lem7.2 φ T S A
cvmlift3lem7.3 φ M G -1 A
cvmlift3lem7.w W = ι b T | H X b
cvmlift3lem6.x φ X M
cvmlift3lem6.z φ Z M
cvmlift3lem6.q φ Q II Cn K
cvmlift3lem6.r R = ι g II Cn C | F g = G Q g 0 = P
cvmlift3lem6.1 φ Q 0 = O Q 1 = X R 1 = H X
cvmlift3lem6.n φ N II Cn K 𝑡 M
cvmlift3lem6.2 φ N 0 = X N 1 = Z
cvmlift3lem6.i I = ι g II Cn C | F g = G N g 0 = H X
Assertion cvmlift3lem6 φ H Z W

Proof

Step Hyp Ref Expression
1 cvmlift3.b B = C
2 cvmlift3.y Y = K
3 cvmlift3.f φ F C CovMap J
4 cvmlift3.k φ K SConn
5 cvmlift3.l φ K N-Locally PConn
6 cvmlift3.o φ O Y
7 cvmlift3.g φ G K Cn J
8 cvmlift3.p φ P B
9 cvmlift3.e φ F P = G O
10 cvmlift3.h H = x Y ι z B | f II Cn K f 0 = O f 1 = x ι g II Cn C | F g = G f g 0 = P 1 = z
11 cvmlift3lem7.s S = k J s 𝒫 C | s = F -1 k c s d s c c d = F c C 𝑡 c Homeo J 𝑡 k
12 cvmlift3lem7.1 φ G X A
13 cvmlift3lem7.2 φ T S A
14 cvmlift3lem7.3 φ M G -1 A
15 cvmlift3lem7.w W = ι b T | H X b
16 cvmlift3lem6.x φ X M
17 cvmlift3lem6.z φ Z M
18 cvmlift3lem6.q φ Q II Cn K
19 cvmlift3lem6.r R = ι g II Cn C | F g = G Q g 0 = P
20 cvmlift3lem6.1 φ Q 0 = O Q 1 = X R 1 = H X
21 cvmlift3lem6.n φ N II Cn K 𝑡 M
22 cvmlift3lem6.2 φ N 0 = X N 1 = Z
23 cvmlift3lem6.i I = ι g II Cn C | F g = G N g 0 = H X
24 sconntop K SConn K Top
25 4 24 syl φ K Top
26 cnrest2r K Top II Cn K 𝑡 M II Cn K
27 25 26 syl φ II Cn K 𝑡 M II Cn K
28 27 21 sseldd φ N II Cn K
29 20 simp2d φ Q 1 = X
30 22 simpld φ N 0 = X
31 29 30 eqtr4d φ Q 1 = N 0
32 18 28 31 pcocn φ Q * 𝑝 K N II Cn K
33 18 28 pco0 φ Q * 𝑝 K N 0 = Q 0
34 20 simp1d φ Q 0 = O
35 33 34 eqtrd φ Q * 𝑝 K N 0 = O
36 18 28 pco1 φ Q * 𝑝 K N 1 = N 1
37 22 simprd φ N 1 = Z
38 36 37 eqtrd φ Q * 𝑝 K N 1 = Z
39 cnco Q II Cn K G K Cn J G Q II Cn J
40 18 7 39 syl2anc φ G Q II Cn J
41 34 fveq2d φ G Q 0 = G O
42 iiuni 0 1 = II
43 42 2 cnf Q II Cn K Q : 0 1 Y
44 18 43 syl φ Q : 0 1 Y
45 0elunit 0 0 1
46 fvco3 Q : 0 1 Y 0 0 1 G Q 0 = G Q 0
47 44 45 46 sylancl φ G Q 0 = G Q 0
48 41 47 9 3eqtr4rd φ F P = G Q 0
49 1 19 3 40 8 48 cvmliftiota φ R II Cn C F R = G Q R 0 = P
50 49 simp2d φ F R = G Q
51 cnco N II Cn K G K Cn J G N II Cn J
52 28 7 51 syl2anc φ G N II Cn J
53 1 2 3 4 5 6 7 8 9 10 cvmlift3lem3 φ H : Y B
54 cnvimass G -1 A dom G
55 eqid J = J
56 2 55 cnf G K Cn J G : Y J
57 7 56 syl φ G : Y J
58 54 57 fssdm φ G -1 A Y
59 14 58 sstrd φ M Y
60 59 16 sseldd φ X Y
61 53 60 ffvelrnd φ H X B
62 30 fveq2d φ G N 0 = G X
63 42 2 cnf N II Cn K N : 0 1 Y
64 28 63 syl φ N : 0 1 Y
65 fvco3 N : 0 1 Y 0 0 1 G N 0 = G N 0
66 64 45 65 sylancl φ G N 0 = G N 0
67 fvco3 H : Y B X Y F H X = F H X
68 53 60 67 syl2anc φ F H X = F H X
69 1 2 3 4 5 6 7 8 9 10 cvmlift3lem5 φ F H = G
70 69 fveq1d φ F H X = G X
71 68 70 eqtr3d φ F H X = G X
72 62 66 71 3eqtr4rd φ F H X = G N 0
73 1 23 3 52 61 72 cvmliftiota φ I II Cn C F I = G N I 0 = H X
74 73 simp2d φ F I = G N
75 50 74 oveq12d φ F R * 𝑝 J F I = G Q * 𝑝 J G N
76 49 simp1d φ R II Cn C
77 73 simp1d φ I II Cn C
78 20 simp3d φ R 1 = H X
79 73 simp3d φ I 0 = H X
80 78 79 eqtr4d φ R 1 = I 0
81 cvmcn F C CovMap J F C Cn J
82 3 81 syl φ F C Cn J
83 76 77 80 82 copco φ F R * 𝑝 C I = F R * 𝑝 J F I
84 18 28 31 7 copco φ G Q * 𝑝 K N = G Q * 𝑝 J G N
85 75 83 84 3eqtr4d φ F R * 𝑝 C I = G Q * 𝑝 K N
86 76 77 pco0 φ R * 𝑝 C I 0 = R 0
87 49 simp3d φ R 0 = P
88 86 87 eqtrd φ R * 𝑝 C I 0 = P
89 76 77 80 pcocn φ R * 𝑝 C I II Cn C
90 cnco Q * 𝑝 K N II Cn K G K Cn J G Q * 𝑝 K N II Cn J
91 32 7 90 syl2anc φ G Q * 𝑝 K N II Cn J
92 35 fveq2d φ G Q * 𝑝 K N 0 = G O
93 42 2 cnf Q * 𝑝 K N II Cn K Q * 𝑝 K N : 0 1 Y
94 32 93 syl φ Q * 𝑝 K N : 0 1 Y
95 fvco3 Q * 𝑝 K N : 0 1 Y 0 0 1 G Q * 𝑝 K N 0 = G Q * 𝑝 K N 0
96 94 45 95 sylancl φ G Q * 𝑝 K N 0 = G Q * 𝑝 K N 0
97 92 96 9 3eqtr4rd φ F P = G Q * 𝑝 K N 0
98 1 cvmlift F C CovMap J G Q * 𝑝 K N II Cn J P B F P = G Q * 𝑝 K N 0 ∃! g II Cn C F g = G Q * 𝑝 K N g 0 = P
99 3 91 8 97 98 syl22anc φ ∃! g II Cn C F g = G Q * 𝑝 K N g 0 = P
100 coeq2 g = R * 𝑝 C I F g = F R * 𝑝 C I
101 100 eqeq1d g = R * 𝑝 C I F g = G Q * 𝑝 K N F R * 𝑝 C I = G Q * 𝑝 K N
102 fveq1 g = R * 𝑝 C I g 0 = R * 𝑝 C I 0
103 102 eqeq1d g = R * 𝑝 C I g 0 = P R * 𝑝 C I 0 = P
104 101 103 anbi12d g = R * 𝑝 C I F g = G Q * 𝑝 K N g 0 = P F R * 𝑝 C I = G Q * 𝑝 K N R * 𝑝 C I 0 = P
105 104 riota2 R * 𝑝 C I II Cn C ∃! g II Cn C F g = G Q * 𝑝 K N g 0 = P F R * 𝑝 C I = G Q * 𝑝 K N R * 𝑝 C I 0 = P ι g II Cn C | F g = G Q * 𝑝 K N g 0 = P = R * 𝑝 C I
106 89 99 105 syl2anc φ F R * 𝑝 C I = G Q * 𝑝 K N R * 𝑝 C I 0 = P ι g II Cn C | F g = G Q * 𝑝 K N g 0 = P = R * 𝑝 C I
107 85 88 106 mpbi2and φ ι g II Cn C | F g = G Q * 𝑝 K N g 0 = P = R * 𝑝 C I
108 107 fveq1d φ ι g II Cn C | F g = G Q * 𝑝 K N g 0 = P 1 = R * 𝑝 C I 1
109 76 77 pco1 φ R * 𝑝 C I 1 = I 1
110 108 109 eqtrd φ ι g II Cn C | F g = G Q * 𝑝 K N g 0 = P 1 = I 1
111 fveq1 f = Q * 𝑝 K N f 0 = Q * 𝑝 K N 0
112 111 eqeq1d f = Q * 𝑝 K N f 0 = O Q * 𝑝 K N 0 = O
113 fveq1 f = Q * 𝑝 K N f 1 = Q * 𝑝 K N 1
114 113 eqeq1d f = Q * 𝑝 K N f 1 = Z Q * 𝑝 K N 1 = Z
115 coeq2 f = Q * 𝑝 K N G f = G Q * 𝑝 K N
116 115 eqeq2d f = Q * 𝑝 K N F g = G f F g = G Q * 𝑝 K N
117 116 anbi1d f = Q * 𝑝 K N F g = G f g 0 = P F g = G Q * 𝑝 K N g 0 = P
118 117 riotabidv f = Q * 𝑝 K N ι g II Cn C | F g = G f g 0 = P = ι g II Cn C | F g = G Q * 𝑝 K N g 0 = P
119 118 fveq1d f = Q * 𝑝 K N ι g II Cn C | F g = G f g 0 = P 1 = ι g II Cn C | F g = G Q * 𝑝 K N g 0 = P 1
120 119 eqeq1d f = Q * 𝑝 K N ι g II Cn C | F g = G f g 0 = P 1 = I 1 ι g II Cn C | F g = G Q * 𝑝 K N g 0 = P 1 = I 1
121 112 114 120 3anbi123d f = Q * 𝑝 K N f 0 = O f 1 = Z ι g II Cn C | F g = G f g 0 = P 1 = I 1 Q * 𝑝 K N 0 = O Q * 𝑝 K N 1 = Z ι g II Cn C | F g = G Q * 𝑝 K N g 0 = P 1 = I 1
122 121 rspcev Q * 𝑝 K N II Cn K Q * 𝑝 K N 0 = O Q * 𝑝 K N 1 = Z ι g II Cn C | F g = G Q * 𝑝 K N g 0 = P 1 = I 1 f II Cn K f 0 = O f 1 = Z ι g II Cn C | F g = G f g 0 = P 1 = I 1
123 32 35 38 110 122 syl13anc φ f II Cn K f 0 = O f 1 = Z ι g II Cn C | F g = G f g 0 = P 1 = I 1
124 59 17 sseldd φ Z Y
125 1 2 3 4 5 6 7 8 9 10 cvmlift3lem4 φ Z Y H Z = I 1 f II Cn K f 0 = O f 1 = Z ι g II Cn C | F g = G f g 0 = P 1 = I 1
126 124 125 mpdan φ H Z = I 1 f II Cn K f 0 = O f 1 = Z ι g II Cn C | F g = G f g 0 = P 1 = I 1
127 123 126 mpbird φ H Z = I 1
128 iiconn II Conn
129 128 a1i φ II Conn
130 cvmtop1 F C CovMap J C Top
131 3 130 syl φ C Top
132 1 toptopon C Top C TopOn B
133 131 132 sylib φ C TopOn B
134 74 rneqd φ ran F I = ran G N
135 rnco2 ran F I = F ran I
136 rnco2 ran G N = G ran N
137 134 135 136 3eqtr3g φ F ran I = G ran N
138 iitopon II TopOn 0 1
139 138 a1i φ II TopOn 0 1
140 2 toptopon K Top K TopOn Y
141 25 140 sylib φ K TopOn Y
142 resttopon K TopOn Y M Y K 𝑡 M TopOn M
143 141 59 142 syl2anc φ K 𝑡 M TopOn M
144 cnf2 II TopOn 0 1 K 𝑡 M TopOn M N II Cn K 𝑡 M N : 0 1 M
145 139 143 21 144 syl3anc φ N : 0 1 M
146 145 frnd φ ran N M
147 146 14 sstrd φ ran N G -1 A
148 57 ffund φ Fun G
149 147 54 sstrdi φ ran N dom G
150 funimass3 Fun G ran N dom G G ran N A ran N G -1 A
151 148 149 150 syl2anc φ G ran N A ran N G -1 A
152 147 151 mpbird φ G ran N A
153 137 152 eqsstrd φ F ran I A
154 1 55 cnf F C Cn J F : B J
155 82 154 syl φ F : B J
156 155 ffund φ Fun F
157 42 1 cnf I II Cn C I : 0 1 B
158 77 157 syl φ I : 0 1 B
159 158 frnd φ ran I B
160 155 fdmd φ dom F = B
161 159 160 sseqtrrd φ ran I dom F
162 funimass3 Fun F ran I dom F F ran I A ran I F -1 A
163 156 161 162 syl2anc φ F ran I A ran I F -1 A
164 153 163 mpbid φ ran I F -1 A
165 cnvimass F -1 A dom F
166 165 155 fssdm φ F -1 A B
167 cnrest2 C TopOn B ran I F -1 A F -1 A B I II Cn C I II Cn C 𝑡 F -1 A
168 133 164 166 167 syl3anc φ I II Cn C I II Cn C 𝑡 F -1 A
169 77 168 mpbid φ I II Cn C 𝑡 F -1 A
170 11 cvmsss T S A T C
171 13 170 syl φ T C
172 71 12 eqeltrd φ F H X A
173 11 1 15 cvmsiota F C CovMap J T S A H X B F H X A W T H X W
174 3 13 61 172 173 syl13anc φ W T H X W
175 174 simpld φ W T
176 171 175 sseldd φ W C
177 elssuni W T W T
178 175 177 syl φ W T
179 11 cvmsuni T S A T = F -1 A
180 13 179 syl φ T = F -1 A
181 178 180 sseqtrd φ W F -1 A
182 11 cvmsrcl T S A A J
183 13 182 syl φ A J
184 cnima F C Cn J A J F -1 A C
185 82 183 184 syl2anc φ F -1 A C
186 restopn2 C Top F -1 A C W C 𝑡 F -1 A W C W F -1 A
187 131 185 186 syl2anc φ W C 𝑡 F -1 A W C W F -1 A
188 176 181 187 mpbir2and φ W C 𝑡 F -1 A
189 11 cvmscld F C CovMap J T S A W T W Clsd C 𝑡 F -1 A
190 3 13 175 189 syl3anc φ W Clsd C 𝑡 F -1 A
191 45 a1i φ 0 0 1
192 174 simprd φ H X W
193 79 192 eqeltrd φ I 0 W
194 42 129 169 188 190 191 193 conncn φ I : 0 1 W
195 1elunit 1 0 1
196 ffvelrn I : 0 1 W 1 0 1 I 1 W
197 194 195 196 sylancl φ I 1 W
198 127 197 eqeltrd φ H Z W