| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmlift3.b |  |-  B = U. C | 
						
							| 2 |  | cvmlift3.y |  |-  Y = U. K | 
						
							| 3 |  | cvmlift3.f |  |-  ( ph -> F e. ( C CovMap J ) ) | 
						
							| 4 |  | cvmlift3.k |  |-  ( ph -> K e. SConn ) | 
						
							| 5 |  | cvmlift3.l |  |-  ( ph -> K e. N-Locally PConn ) | 
						
							| 6 |  | cvmlift3.o |  |-  ( ph -> O e. Y ) | 
						
							| 7 |  | cvmlift3.g |  |-  ( ph -> G e. ( K Cn J ) ) | 
						
							| 8 |  | cvmlift3.p |  |-  ( ph -> P e. B ) | 
						
							| 9 |  | cvmlift3.e |  |-  ( ph -> ( F ` P ) = ( G ` O ) ) | 
						
							| 10 |  | cvmlift3.h |  |-  H = ( x e. Y |-> ( iota_ z e. B E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = x /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) ) | 
						
							| 11 |  | cvmlift3lem7.s |  |-  S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. c e. s ( A. d e. ( s \ { c } ) ( c i^i d ) = (/) /\ ( F |` c ) e. ( ( C |`t c ) Homeo ( J |`t k ) ) ) ) } ) | 
						
							| 12 |  | cvmlift3lem7.1 |  |-  ( ph -> ( G ` X ) e. A ) | 
						
							| 13 |  | cvmlift3lem7.2 |  |-  ( ph -> T e. ( S ` A ) ) | 
						
							| 14 |  | cvmlift3lem7.3 |  |-  ( ph -> M C_ ( `' G " A ) ) | 
						
							| 15 |  | cvmlift3lem7.w |  |-  W = ( iota_ b e. T ( H ` X ) e. b ) | 
						
							| 16 |  | cvmlift3lem6.x |  |-  ( ph -> X e. M ) | 
						
							| 17 |  | cvmlift3lem6.z |  |-  ( ph -> Z e. M ) | 
						
							| 18 |  | cvmlift3lem6.q |  |-  ( ph -> Q e. ( II Cn K ) ) | 
						
							| 19 |  | cvmlift3lem6.r |  |-  R = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. Q ) /\ ( g ` 0 ) = P ) ) | 
						
							| 20 |  | cvmlift3lem6.1 |  |-  ( ph -> ( ( Q ` 0 ) = O /\ ( Q ` 1 ) = X /\ ( R ` 1 ) = ( H ` X ) ) ) | 
						
							| 21 |  | cvmlift3lem6.n |  |-  ( ph -> N e. ( II Cn ( K |`t M ) ) ) | 
						
							| 22 |  | cvmlift3lem6.2 |  |-  ( ph -> ( ( N ` 0 ) = X /\ ( N ` 1 ) = Z ) ) | 
						
							| 23 |  | cvmlift3lem6.i |  |-  I = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. N ) /\ ( g ` 0 ) = ( H ` X ) ) ) | 
						
							| 24 |  | sconntop |  |-  ( K e. SConn -> K e. Top ) | 
						
							| 25 | 4 24 | syl |  |-  ( ph -> K e. Top ) | 
						
							| 26 |  | cnrest2r |  |-  ( K e. Top -> ( II Cn ( K |`t M ) ) C_ ( II Cn K ) ) | 
						
							| 27 | 25 26 | syl |  |-  ( ph -> ( II Cn ( K |`t M ) ) C_ ( II Cn K ) ) | 
						
							| 28 | 27 21 | sseldd |  |-  ( ph -> N e. ( II Cn K ) ) | 
						
							| 29 | 20 | simp2d |  |-  ( ph -> ( Q ` 1 ) = X ) | 
						
							| 30 | 22 | simpld |  |-  ( ph -> ( N ` 0 ) = X ) | 
						
							| 31 | 29 30 | eqtr4d |  |-  ( ph -> ( Q ` 1 ) = ( N ` 0 ) ) | 
						
							| 32 | 18 28 31 | pcocn |  |-  ( ph -> ( Q ( *p ` K ) N ) e. ( II Cn K ) ) | 
						
							| 33 | 18 28 | pco0 |  |-  ( ph -> ( ( Q ( *p ` K ) N ) ` 0 ) = ( Q ` 0 ) ) | 
						
							| 34 | 20 | simp1d |  |-  ( ph -> ( Q ` 0 ) = O ) | 
						
							| 35 | 33 34 | eqtrd |  |-  ( ph -> ( ( Q ( *p ` K ) N ) ` 0 ) = O ) | 
						
							| 36 | 18 28 | pco1 |  |-  ( ph -> ( ( Q ( *p ` K ) N ) ` 1 ) = ( N ` 1 ) ) | 
						
							| 37 | 22 | simprd |  |-  ( ph -> ( N ` 1 ) = Z ) | 
						
							| 38 | 36 37 | eqtrd |  |-  ( ph -> ( ( Q ( *p ` K ) N ) ` 1 ) = Z ) | 
						
							| 39 |  | cnco |  |-  ( ( Q e. ( II Cn K ) /\ G e. ( K Cn J ) ) -> ( G o. Q ) e. ( II Cn J ) ) | 
						
							| 40 | 18 7 39 | syl2anc |  |-  ( ph -> ( G o. Q ) e. ( II Cn J ) ) | 
						
							| 41 | 34 | fveq2d |  |-  ( ph -> ( G ` ( Q ` 0 ) ) = ( G ` O ) ) | 
						
							| 42 |  | iiuni |  |-  ( 0 [,] 1 ) = U. II | 
						
							| 43 | 42 2 | cnf |  |-  ( Q e. ( II Cn K ) -> Q : ( 0 [,] 1 ) --> Y ) | 
						
							| 44 | 18 43 | syl |  |-  ( ph -> Q : ( 0 [,] 1 ) --> Y ) | 
						
							| 45 |  | 0elunit |  |-  0 e. ( 0 [,] 1 ) | 
						
							| 46 |  | fvco3 |  |-  ( ( Q : ( 0 [,] 1 ) --> Y /\ 0 e. ( 0 [,] 1 ) ) -> ( ( G o. Q ) ` 0 ) = ( G ` ( Q ` 0 ) ) ) | 
						
							| 47 | 44 45 46 | sylancl |  |-  ( ph -> ( ( G o. Q ) ` 0 ) = ( G ` ( Q ` 0 ) ) ) | 
						
							| 48 | 41 47 9 | 3eqtr4rd |  |-  ( ph -> ( F ` P ) = ( ( G o. Q ) ` 0 ) ) | 
						
							| 49 | 1 19 3 40 8 48 | cvmliftiota |  |-  ( ph -> ( R e. ( II Cn C ) /\ ( F o. R ) = ( G o. Q ) /\ ( R ` 0 ) = P ) ) | 
						
							| 50 | 49 | simp2d |  |-  ( ph -> ( F o. R ) = ( G o. Q ) ) | 
						
							| 51 |  | cnco |  |-  ( ( N e. ( II Cn K ) /\ G e. ( K Cn J ) ) -> ( G o. N ) e. ( II Cn J ) ) | 
						
							| 52 | 28 7 51 | syl2anc |  |-  ( ph -> ( G o. N ) e. ( II Cn J ) ) | 
						
							| 53 | 1 2 3 4 5 6 7 8 9 10 | cvmlift3lem3 |  |-  ( ph -> H : Y --> B ) | 
						
							| 54 |  | cnvimass |  |-  ( `' G " A ) C_ dom G | 
						
							| 55 |  | eqid |  |-  U. J = U. J | 
						
							| 56 | 2 55 | cnf |  |-  ( G e. ( K Cn J ) -> G : Y --> U. J ) | 
						
							| 57 | 7 56 | syl |  |-  ( ph -> G : Y --> U. J ) | 
						
							| 58 | 54 57 | fssdm |  |-  ( ph -> ( `' G " A ) C_ Y ) | 
						
							| 59 | 14 58 | sstrd |  |-  ( ph -> M C_ Y ) | 
						
							| 60 | 59 16 | sseldd |  |-  ( ph -> X e. Y ) | 
						
							| 61 | 53 60 | ffvelcdmd |  |-  ( ph -> ( H ` X ) e. B ) | 
						
							| 62 | 30 | fveq2d |  |-  ( ph -> ( G ` ( N ` 0 ) ) = ( G ` X ) ) | 
						
							| 63 | 42 2 | cnf |  |-  ( N e. ( II Cn K ) -> N : ( 0 [,] 1 ) --> Y ) | 
						
							| 64 | 28 63 | syl |  |-  ( ph -> N : ( 0 [,] 1 ) --> Y ) | 
						
							| 65 |  | fvco3 |  |-  ( ( N : ( 0 [,] 1 ) --> Y /\ 0 e. ( 0 [,] 1 ) ) -> ( ( G o. N ) ` 0 ) = ( G ` ( N ` 0 ) ) ) | 
						
							| 66 | 64 45 65 | sylancl |  |-  ( ph -> ( ( G o. N ) ` 0 ) = ( G ` ( N ` 0 ) ) ) | 
						
							| 67 |  | fvco3 |  |-  ( ( H : Y --> B /\ X e. Y ) -> ( ( F o. H ) ` X ) = ( F ` ( H ` X ) ) ) | 
						
							| 68 | 53 60 67 | syl2anc |  |-  ( ph -> ( ( F o. H ) ` X ) = ( F ` ( H ` X ) ) ) | 
						
							| 69 | 1 2 3 4 5 6 7 8 9 10 | cvmlift3lem5 |  |-  ( ph -> ( F o. H ) = G ) | 
						
							| 70 | 69 | fveq1d |  |-  ( ph -> ( ( F o. H ) ` X ) = ( G ` X ) ) | 
						
							| 71 | 68 70 | eqtr3d |  |-  ( ph -> ( F ` ( H ` X ) ) = ( G ` X ) ) | 
						
							| 72 | 62 66 71 | 3eqtr4rd |  |-  ( ph -> ( F ` ( H ` X ) ) = ( ( G o. N ) ` 0 ) ) | 
						
							| 73 | 1 23 3 52 61 72 | cvmliftiota |  |-  ( ph -> ( I e. ( II Cn C ) /\ ( F o. I ) = ( G o. N ) /\ ( I ` 0 ) = ( H ` X ) ) ) | 
						
							| 74 | 73 | simp2d |  |-  ( ph -> ( F o. I ) = ( G o. N ) ) | 
						
							| 75 | 50 74 | oveq12d |  |-  ( ph -> ( ( F o. R ) ( *p ` J ) ( F o. I ) ) = ( ( G o. Q ) ( *p ` J ) ( G o. N ) ) ) | 
						
							| 76 | 49 | simp1d |  |-  ( ph -> R e. ( II Cn C ) ) | 
						
							| 77 | 73 | simp1d |  |-  ( ph -> I e. ( II Cn C ) ) | 
						
							| 78 | 20 | simp3d |  |-  ( ph -> ( R ` 1 ) = ( H ` X ) ) | 
						
							| 79 | 73 | simp3d |  |-  ( ph -> ( I ` 0 ) = ( H ` X ) ) | 
						
							| 80 | 78 79 | eqtr4d |  |-  ( ph -> ( R ` 1 ) = ( I ` 0 ) ) | 
						
							| 81 |  | cvmcn |  |-  ( F e. ( C CovMap J ) -> F e. ( C Cn J ) ) | 
						
							| 82 | 3 81 | syl |  |-  ( ph -> F e. ( C Cn J ) ) | 
						
							| 83 | 76 77 80 82 | copco |  |-  ( ph -> ( F o. ( R ( *p ` C ) I ) ) = ( ( F o. R ) ( *p ` J ) ( F o. I ) ) ) | 
						
							| 84 | 18 28 31 7 | copco |  |-  ( ph -> ( G o. ( Q ( *p ` K ) N ) ) = ( ( G o. Q ) ( *p ` J ) ( G o. N ) ) ) | 
						
							| 85 | 75 83 84 | 3eqtr4d |  |-  ( ph -> ( F o. ( R ( *p ` C ) I ) ) = ( G o. ( Q ( *p ` K ) N ) ) ) | 
						
							| 86 | 76 77 | pco0 |  |-  ( ph -> ( ( R ( *p ` C ) I ) ` 0 ) = ( R ` 0 ) ) | 
						
							| 87 | 49 | simp3d |  |-  ( ph -> ( R ` 0 ) = P ) | 
						
							| 88 | 86 87 | eqtrd |  |-  ( ph -> ( ( R ( *p ` C ) I ) ` 0 ) = P ) | 
						
							| 89 | 76 77 80 | pcocn |  |-  ( ph -> ( R ( *p ` C ) I ) e. ( II Cn C ) ) | 
						
							| 90 |  | cnco |  |-  ( ( ( Q ( *p ` K ) N ) e. ( II Cn K ) /\ G e. ( K Cn J ) ) -> ( G o. ( Q ( *p ` K ) N ) ) e. ( II Cn J ) ) | 
						
							| 91 | 32 7 90 | syl2anc |  |-  ( ph -> ( G o. ( Q ( *p ` K ) N ) ) e. ( II Cn J ) ) | 
						
							| 92 | 35 | fveq2d |  |-  ( ph -> ( G ` ( ( Q ( *p ` K ) N ) ` 0 ) ) = ( G ` O ) ) | 
						
							| 93 | 42 2 | cnf |  |-  ( ( Q ( *p ` K ) N ) e. ( II Cn K ) -> ( Q ( *p ` K ) N ) : ( 0 [,] 1 ) --> Y ) | 
						
							| 94 | 32 93 | syl |  |-  ( ph -> ( Q ( *p ` K ) N ) : ( 0 [,] 1 ) --> Y ) | 
						
							| 95 |  | fvco3 |  |-  ( ( ( Q ( *p ` K ) N ) : ( 0 [,] 1 ) --> Y /\ 0 e. ( 0 [,] 1 ) ) -> ( ( G o. ( Q ( *p ` K ) N ) ) ` 0 ) = ( G ` ( ( Q ( *p ` K ) N ) ` 0 ) ) ) | 
						
							| 96 | 94 45 95 | sylancl |  |-  ( ph -> ( ( G o. ( Q ( *p ` K ) N ) ) ` 0 ) = ( G ` ( ( Q ( *p ` K ) N ) ` 0 ) ) ) | 
						
							| 97 | 92 96 9 | 3eqtr4rd |  |-  ( ph -> ( F ` P ) = ( ( G o. ( Q ( *p ` K ) N ) ) ` 0 ) ) | 
						
							| 98 | 1 | cvmlift |  |-  ( ( ( F e. ( C CovMap J ) /\ ( G o. ( Q ( *p ` K ) N ) ) e. ( II Cn J ) ) /\ ( P e. B /\ ( F ` P ) = ( ( G o. ( Q ( *p ` K ) N ) ) ` 0 ) ) ) -> E! g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( Q ( *p ` K ) N ) ) /\ ( g ` 0 ) = P ) ) | 
						
							| 99 | 3 91 8 97 98 | syl22anc |  |-  ( ph -> E! g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( Q ( *p ` K ) N ) ) /\ ( g ` 0 ) = P ) ) | 
						
							| 100 |  | coeq2 |  |-  ( g = ( R ( *p ` C ) I ) -> ( F o. g ) = ( F o. ( R ( *p ` C ) I ) ) ) | 
						
							| 101 | 100 | eqeq1d |  |-  ( g = ( R ( *p ` C ) I ) -> ( ( F o. g ) = ( G o. ( Q ( *p ` K ) N ) ) <-> ( F o. ( R ( *p ` C ) I ) ) = ( G o. ( Q ( *p ` K ) N ) ) ) ) | 
						
							| 102 |  | fveq1 |  |-  ( g = ( R ( *p ` C ) I ) -> ( g ` 0 ) = ( ( R ( *p ` C ) I ) ` 0 ) ) | 
						
							| 103 | 102 | eqeq1d |  |-  ( g = ( R ( *p ` C ) I ) -> ( ( g ` 0 ) = P <-> ( ( R ( *p ` C ) I ) ` 0 ) = P ) ) | 
						
							| 104 | 101 103 | anbi12d |  |-  ( g = ( R ( *p ` C ) I ) -> ( ( ( F o. g ) = ( G o. ( Q ( *p ` K ) N ) ) /\ ( g ` 0 ) = P ) <-> ( ( F o. ( R ( *p ` C ) I ) ) = ( G o. ( Q ( *p ` K ) N ) ) /\ ( ( R ( *p ` C ) I ) ` 0 ) = P ) ) ) | 
						
							| 105 | 104 | riota2 |  |-  ( ( ( R ( *p ` C ) I ) e. ( II Cn C ) /\ E! g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( Q ( *p ` K ) N ) ) /\ ( g ` 0 ) = P ) ) -> ( ( ( F o. ( R ( *p ` C ) I ) ) = ( G o. ( Q ( *p ` K ) N ) ) /\ ( ( R ( *p ` C ) I ) ` 0 ) = P ) <-> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( Q ( *p ` K ) N ) ) /\ ( g ` 0 ) = P ) ) = ( R ( *p ` C ) I ) ) ) | 
						
							| 106 | 89 99 105 | syl2anc |  |-  ( ph -> ( ( ( F o. ( R ( *p ` C ) I ) ) = ( G o. ( Q ( *p ` K ) N ) ) /\ ( ( R ( *p ` C ) I ) ` 0 ) = P ) <-> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( Q ( *p ` K ) N ) ) /\ ( g ` 0 ) = P ) ) = ( R ( *p ` C ) I ) ) ) | 
						
							| 107 | 85 88 106 | mpbi2and |  |-  ( ph -> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( Q ( *p ` K ) N ) ) /\ ( g ` 0 ) = P ) ) = ( R ( *p ` C ) I ) ) | 
						
							| 108 | 107 | fveq1d |  |-  ( ph -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( Q ( *p ` K ) N ) ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( ( R ( *p ` C ) I ) ` 1 ) ) | 
						
							| 109 | 76 77 | pco1 |  |-  ( ph -> ( ( R ( *p ` C ) I ) ` 1 ) = ( I ` 1 ) ) | 
						
							| 110 | 108 109 | eqtrd |  |-  ( ph -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( Q ( *p ` K ) N ) ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( I ` 1 ) ) | 
						
							| 111 |  | fveq1 |  |-  ( f = ( Q ( *p ` K ) N ) -> ( f ` 0 ) = ( ( Q ( *p ` K ) N ) ` 0 ) ) | 
						
							| 112 | 111 | eqeq1d |  |-  ( f = ( Q ( *p ` K ) N ) -> ( ( f ` 0 ) = O <-> ( ( Q ( *p ` K ) N ) ` 0 ) = O ) ) | 
						
							| 113 |  | fveq1 |  |-  ( f = ( Q ( *p ` K ) N ) -> ( f ` 1 ) = ( ( Q ( *p ` K ) N ) ` 1 ) ) | 
						
							| 114 | 113 | eqeq1d |  |-  ( f = ( Q ( *p ` K ) N ) -> ( ( f ` 1 ) = Z <-> ( ( Q ( *p ` K ) N ) ` 1 ) = Z ) ) | 
						
							| 115 |  | coeq2 |  |-  ( f = ( Q ( *p ` K ) N ) -> ( G o. f ) = ( G o. ( Q ( *p ` K ) N ) ) ) | 
						
							| 116 | 115 | eqeq2d |  |-  ( f = ( Q ( *p ` K ) N ) -> ( ( F o. g ) = ( G o. f ) <-> ( F o. g ) = ( G o. ( Q ( *p ` K ) N ) ) ) ) | 
						
							| 117 | 116 | anbi1d |  |-  ( f = ( Q ( *p ` K ) N ) -> ( ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) <-> ( ( F o. g ) = ( G o. ( Q ( *p ` K ) N ) ) /\ ( g ` 0 ) = P ) ) ) | 
						
							| 118 | 117 | riotabidv |  |-  ( f = ( Q ( *p ` K ) N ) -> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( Q ( *p ` K ) N ) ) /\ ( g ` 0 ) = P ) ) ) | 
						
							| 119 | 118 | fveq1d |  |-  ( f = ( Q ( *p ` K ) N ) -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( Q ( *p ` K ) N ) ) /\ ( g ` 0 ) = P ) ) ` 1 ) ) | 
						
							| 120 | 119 | eqeq1d |  |-  ( f = ( Q ( *p ` K ) N ) -> ( ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( I ` 1 ) <-> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( Q ( *p ` K ) N ) ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( I ` 1 ) ) ) | 
						
							| 121 | 112 114 120 | 3anbi123d |  |-  ( f = ( Q ( *p ` K ) N ) -> ( ( ( f ` 0 ) = O /\ ( f ` 1 ) = Z /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( I ` 1 ) ) <-> ( ( ( Q ( *p ` K ) N ) ` 0 ) = O /\ ( ( Q ( *p ` K ) N ) ` 1 ) = Z /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( Q ( *p ` K ) N ) ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( I ` 1 ) ) ) ) | 
						
							| 122 | 121 | rspcev |  |-  ( ( ( Q ( *p ` K ) N ) e. ( II Cn K ) /\ ( ( ( Q ( *p ` K ) N ) ` 0 ) = O /\ ( ( Q ( *p ` K ) N ) ` 1 ) = Z /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( Q ( *p ` K ) N ) ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( I ` 1 ) ) ) -> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = Z /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( I ` 1 ) ) ) | 
						
							| 123 | 32 35 38 110 122 | syl13anc |  |-  ( ph -> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = Z /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( I ` 1 ) ) ) | 
						
							| 124 | 59 17 | sseldd |  |-  ( ph -> Z e. Y ) | 
						
							| 125 | 1 2 3 4 5 6 7 8 9 10 | cvmlift3lem4 |  |-  ( ( ph /\ Z e. Y ) -> ( ( H ` Z ) = ( I ` 1 ) <-> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = Z /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( I ` 1 ) ) ) ) | 
						
							| 126 | 124 125 | mpdan |  |-  ( ph -> ( ( H ` Z ) = ( I ` 1 ) <-> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = Z /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( I ` 1 ) ) ) ) | 
						
							| 127 | 123 126 | mpbird |  |-  ( ph -> ( H ` Z ) = ( I ` 1 ) ) | 
						
							| 128 |  | iiconn |  |-  II e. Conn | 
						
							| 129 | 128 | a1i |  |-  ( ph -> II e. Conn ) | 
						
							| 130 |  | cvmtop1 |  |-  ( F e. ( C CovMap J ) -> C e. Top ) | 
						
							| 131 | 3 130 | syl |  |-  ( ph -> C e. Top ) | 
						
							| 132 | 1 | toptopon |  |-  ( C e. Top <-> C e. ( TopOn ` B ) ) | 
						
							| 133 | 131 132 | sylib |  |-  ( ph -> C e. ( TopOn ` B ) ) | 
						
							| 134 | 74 | rneqd |  |-  ( ph -> ran ( F o. I ) = ran ( G o. N ) ) | 
						
							| 135 |  | rnco2 |  |-  ran ( F o. I ) = ( F " ran I ) | 
						
							| 136 |  | rnco2 |  |-  ran ( G o. N ) = ( G " ran N ) | 
						
							| 137 | 134 135 136 | 3eqtr3g |  |-  ( ph -> ( F " ran I ) = ( G " ran N ) ) | 
						
							| 138 |  | iitopon |  |-  II e. ( TopOn ` ( 0 [,] 1 ) ) | 
						
							| 139 | 138 | a1i |  |-  ( ph -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) | 
						
							| 140 | 2 | toptopon |  |-  ( K e. Top <-> K e. ( TopOn ` Y ) ) | 
						
							| 141 | 25 140 | sylib |  |-  ( ph -> K e. ( TopOn ` Y ) ) | 
						
							| 142 |  | resttopon |  |-  ( ( K e. ( TopOn ` Y ) /\ M C_ Y ) -> ( K |`t M ) e. ( TopOn ` M ) ) | 
						
							| 143 | 141 59 142 | syl2anc |  |-  ( ph -> ( K |`t M ) e. ( TopOn ` M ) ) | 
						
							| 144 |  | cnf2 |  |-  ( ( II e. ( TopOn ` ( 0 [,] 1 ) ) /\ ( K |`t M ) e. ( TopOn ` M ) /\ N e. ( II Cn ( K |`t M ) ) ) -> N : ( 0 [,] 1 ) --> M ) | 
						
							| 145 | 139 143 21 144 | syl3anc |  |-  ( ph -> N : ( 0 [,] 1 ) --> M ) | 
						
							| 146 | 145 | frnd |  |-  ( ph -> ran N C_ M ) | 
						
							| 147 | 146 14 | sstrd |  |-  ( ph -> ran N C_ ( `' G " A ) ) | 
						
							| 148 | 57 | ffund |  |-  ( ph -> Fun G ) | 
						
							| 149 | 147 54 | sstrdi |  |-  ( ph -> ran N C_ dom G ) | 
						
							| 150 |  | funimass3 |  |-  ( ( Fun G /\ ran N C_ dom G ) -> ( ( G " ran N ) C_ A <-> ran N C_ ( `' G " A ) ) ) | 
						
							| 151 | 148 149 150 | syl2anc |  |-  ( ph -> ( ( G " ran N ) C_ A <-> ran N C_ ( `' G " A ) ) ) | 
						
							| 152 | 147 151 | mpbird |  |-  ( ph -> ( G " ran N ) C_ A ) | 
						
							| 153 | 137 152 | eqsstrd |  |-  ( ph -> ( F " ran I ) C_ A ) | 
						
							| 154 | 1 55 | cnf |  |-  ( F e. ( C Cn J ) -> F : B --> U. J ) | 
						
							| 155 | 82 154 | syl |  |-  ( ph -> F : B --> U. J ) | 
						
							| 156 | 155 | ffund |  |-  ( ph -> Fun F ) | 
						
							| 157 | 42 1 | cnf |  |-  ( I e. ( II Cn C ) -> I : ( 0 [,] 1 ) --> B ) | 
						
							| 158 | 77 157 | syl |  |-  ( ph -> I : ( 0 [,] 1 ) --> B ) | 
						
							| 159 | 158 | frnd |  |-  ( ph -> ran I C_ B ) | 
						
							| 160 | 155 | fdmd |  |-  ( ph -> dom F = B ) | 
						
							| 161 | 159 160 | sseqtrrd |  |-  ( ph -> ran I C_ dom F ) | 
						
							| 162 |  | funimass3 |  |-  ( ( Fun F /\ ran I C_ dom F ) -> ( ( F " ran I ) C_ A <-> ran I C_ ( `' F " A ) ) ) | 
						
							| 163 | 156 161 162 | syl2anc |  |-  ( ph -> ( ( F " ran I ) C_ A <-> ran I C_ ( `' F " A ) ) ) | 
						
							| 164 | 153 163 | mpbid |  |-  ( ph -> ran I C_ ( `' F " A ) ) | 
						
							| 165 |  | cnvimass |  |-  ( `' F " A ) C_ dom F | 
						
							| 166 | 165 155 | fssdm |  |-  ( ph -> ( `' F " A ) C_ B ) | 
						
							| 167 |  | cnrest2 |  |-  ( ( C e. ( TopOn ` B ) /\ ran I C_ ( `' F " A ) /\ ( `' F " A ) C_ B ) -> ( I e. ( II Cn C ) <-> I e. ( II Cn ( C |`t ( `' F " A ) ) ) ) ) | 
						
							| 168 | 133 164 166 167 | syl3anc |  |-  ( ph -> ( I e. ( II Cn C ) <-> I e. ( II Cn ( C |`t ( `' F " A ) ) ) ) ) | 
						
							| 169 | 77 168 | mpbid |  |-  ( ph -> I e. ( II Cn ( C |`t ( `' F " A ) ) ) ) | 
						
							| 170 | 11 | cvmsss |  |-  ( T e. ( S ` A ) -> T C_ C ) | 
						
							| 171 | 13 170 | syl |  |-  ( ph -> T C_ C ) | 
						
							| 172 | 71 12 | eqeltrd |  |-  ( ph -> ( F ` ( H ` X ) ) e. A ) | 
						
							| 173 | 11 1 15 | cvmsiota |  |-  ( ( F e. ( C CovMap J ) /\ ( T e. ( S ` A ) /\ ( H ` X ) e. B /\ ( F ` ( H ` X ) ) e. A ) ) -> ( W e. T /\ ( H ` X ) e. W ) ) | 
						
							| 174 | 3 13 61 172 173 | syl13anc |  |-  ( ph -> ( W e. T /\ ( H ` X ) e. W ) ) | 
						
							| 175 | 174 | simpld |  |-  ( ph -> W e. T ) | 
						
							| 176 | 171 175 | sseldd |  |-  ( ph -> W e. C ) | 
						
							| 177 |  | elssuni |  |-  ( W e. T -> W C_ U. T ) | 
						
							| 178 | 175 177 | syl |  |-  ( ph -> W C_ U. T ) | 
						
							| 179 | 11 | cvmsuni |  |-  ( T e. ( S ` A ) -> U. T = ( `' F " A ) ) | 
						
							| 180 | 13 179 | syl |  |-  ( ph -> U. T = ( `' F " A ) ) | 
						
							| 181 | 178 180 | sseqtrd |  |-  ( ph -> W C_ ( `' F " A ) ) | 
						
							| 182 | 11 | cvmsrcl |  |-  ( T e. ( S ` A ) -> A e. J ) | 
						
							| 183 | 13 182 | syl |  |-  ( ph -> A e. J ) | 
						
							| 184 |  | cnima |  |-  ( ( F e. ( C Cn J ) /\ A e. J ) -> ( `' F " A ) e. C ) | 
						
							| 185 | 82 183 184 | syl2anc |  |-  ( ph -> ( `' F " A ) e. C ) | 
						
							| 186 |  | restopn2 |  |-  ( ( C e. Top /\ ( `' F " A ) e. C ) -> ( W e. ( C |`t ( `' F " A ) ) <-> ( W e. C /\ W C_ ( `' F " A ) ) ) ) | 
						
							| 187 | 131 185 186 | syl2anc |  |-  ( ph -> ( W e. ( C |`t ( `' F " A ) ) <-> ( W e. C /\ W C_ ( `' F " A ) ) ) ) | 
						
							| 188 | 176 181 187 | mpbir2and |  |-  ( ph -> W e. ( C |`t ( `' F " A ) ) ) | 
						
							| 189 | 11 | cvmscld |  |-  ( ( F e. ( C CovMap J ) /\ T e. ( S ` A ) /\ W e. T ) -> W e. ( Clsd ` ( C |`t ( `' F " A ) ) ) ) | 
						
							| 190 | 3 13 175 189 | syl3anc |  |-  ( ph -> W e. ( Clsd ` ( C |`t ( `' F " A ) ) ) ) | 
						
							| 191 | 45 | a1i |  |-  ( ph -> 0 e. ( 0 [,] 1 ) ) | 
						
							| 192 | 174 | simprd |  |-  ( ph -> ( H ` X ) e. W ) | 
						
							| 193 | 79 192 | eqeltrd |  |-  ( ph -> ( I ` 0 ) e. W ) | 
						
							| 194 | 42 129 169 188 190 191 193 | conncn |  |-  ( ph -> I : ( 0 [,] 1 ) --> W ) | 
						
							| 195 |  | 1elunit |  |-  1 e. ( 0 [,] 1 ) | 
						
							| 196 |  | ffvelcdm |  |-  ( ( I : ( 0 [,] 1 ) --> W /\ 1 e. ( 0 [,] 1 ) ) -> ( I ` 1 ) e. W ) | 
						
							| 197 | 194 195 196 | sylancl |  |-  ( ph -> ( I ` 1 ) e. W ) | 
						
							| 198 | 127 197 | eqeltrd |  |-  ( ph -> ( H ` Z ) e. W ) |