| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvmlift3.b |
|- B = U. C |
| 2 |
|
cvmlift3.y |
|- Y = U. K |
| 3 |
|
cvmlift3.f |
|- ( ph -> F e. ( C CovMap J ) ) |
| 4 |
|
cvmlift3.k |
|- ( ph -> K e. SConn ) |
| 5 |
|
cvmlift3.l |
|- ( ph -> K e. N-Locally PConn ) |
| 6 |
|
cvmlift3.o |
|- ( ph -> O e. Y ) |
| 7 |
|
cvmlift3.g |
|- ( ph -> G e. ( K Cn J ) ) |
| 8 |
|
cvmlift3.p |
|- ( ph -> P e. B ) |
| 9 |
|
cvmlift3.e |
|- ( ph -> ( F ` P ) = ( G ` O ) ) |
| 10 |
|
cvmlift3.h |
|- H = ( x e. Y |-> ( iota_ z e. B E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = x /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) ) |
| 11 |
|
cvmlift3lem7.s |
|- S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. c e. s ( A. d e. ( s \ { c } ) ( c i^i d ) = (/) /\ ( F |` c ) e. ( ( C |`t c ) Homeo ( J |`t k ) ) ) ) } ) |
| 12 |
|
cvmlift3lem7.1 |
|- ( ph -> ( G ` X ) e. A ) |
| 13 |
|
cvmlift3lem7.2 |
|- ( ph -> T e. ( S ` A ) ) |
| 14 |
|
cvmlift3lem7.3 |
|- ( ph -> M C_ ( `' G " A ) ) |
| 15 |
|
cvmlift3lem7.w |
|- W = ( iota_ b e. T ( H ` X ) e. b ) |
| 16 |
|
cvmlift3lem6.x |
|- ( ph -> X e. M ) |
| 17 |
|
cvmlift3lem6.z |
|- ( ph -> Z e. M ) |
| 18 |
|
cvmlift3lem6.q |
|- ( ph -> Q e. ( II Cn K ) ) |
| 19 |
|
cvmlift3lem6.r |
|- R = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. Q ) /\ ( g ` 0 ) = P ) ) |
| 20 |
|
cvmlift3lem6.1 |
|- ( ph -> ( ( Q ` 0 ) = O /\ ( Q ` 1 ) = X /\ ( R ` 1 ) = ( H ` X ) ) ) |
| 21 |
|
cvmlift3lem6.n |
|- ( ph -> N e. ( II Cn ( K |`t M ) ) ) |
| 22 |
|
cvmlift3lem6.2 |
|- ( ph -> ( ( N ` 0 ) = X /\ ( N ` 1 ) = Z ) ) |
| 23 |
|
cvmlift3lem6.i |
|- I = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. N ) /\ ( g ` 0 ) = ( H ` X ) ) ) |
| 24 |
|
sconntop |
|- ( K e. SConn -> K e. Top ) |
| 25 |
4 24
|
syl |
|- ( ph -> K e. Top ) |
| 26 |
|
cnrest2r |
|- ( K e. Top -> ( II Cn ( K |`t M ) ) C_ ( II Cn K ) ) |
| 27 |
25 26
|
syl |
|- ( ph -> ( II Cn ( K |`t M ) ) C_ ( II Cn K ) ) |
| 28 |
27 21
|
sseldd |
|- ( ph -> N e. ( II Cn K ) ) |
| 29 |
20
|
simp2d |
|- ( ph -> ( Q ` 1 ) = X ) |
| 30 |
22
|
simpld |
|- ( ph -> ( N ` 0 ) = X ) |
| 31 |
29 30
|
eqtr4d |
|- ( ph -> ( Q ` 1 ) = ( N ` 0 ) ) |
| 32 |
18 28 31
|
pcocn |
|- ( ph -> ( Q ( *p ` K ) N ) e. ( II Cn K ) ) |
| 33 |
18 28
|
pco0 |
|- ( ph -> ( ( Q ( *p ` K ) N ) ` 0 ) = ( Q ` 0 ) ) |
| 34 |
20
|
simp1d |
|- ( ph -> ( Q ` 0 ) = O ) |
| 35 |
33 34
|
eqtrd |
|- ( ph -> ( ( Q ( *p ` K ) N ) ` 0 ) = O ) |
| 36 |
18 28
|
pco1 |
|- ( ph -> ( ( Q ( *p ` K ) N ) ` 1 ) = ( N ` 1 ) ) |
| 37 |
22
|
simprd |
|- ( ph -> ( N ` 1 ) = Z ) |
| 38 |
36 37
|
eqtrd |
|- ( ph -> ( ( Q ( *p ` K ) N ) ` 1 ) = Z ) |
| 39 |
|
cnco |
|- ( ( Q e. ( II Cn K ) /\ G e. ( K Cn J ) ) -> ( G o. Q ) e. ( II Cn J ) ) |
| 40 |
18 7 39
|
syl2anc |
|- ( ph -> ( G o. Q ) e. ( II Cn J ) ) |
| 41 |
34
|
fveq2d |
|- ( ph -> ( G ` ( Q ` 0 ) ) = ( G ` O ) ) |
| 42 |
|
iiuni |
|- ( 0 [,] 1 ) = U. II |
| 43 |
42 2
|
cnf |
|- ( Q e. ( II Cn K ) -> Q : ( 0 [,] 1 ) --> Y ) |
| 44 |
18 43
|
syl |
|- ( ph -> Q : ( 0 [,] 1 ) --> Y ) |
| 45 |
|
0elunit |
|- 0 e. ( 0 [,] 1 ) |
| 46 |
|
fvco3 |
|- ( ( Q : ( 0 [,] 1 ) --> Y /\ 0 e. ( 0 [,] 1 ) ) -> ( ( G o. Q ) ` 0 ) = ( G ` ( Q ` 0 ) ) ) |
| 47 |
44 45 46
|
sylancl |
|- ( ph -> ( ( G o. Q ) ` 0 ) = ( G ` ( Q ` 0 ) ) ) |
| 48 |
41 47 9
|
3eqtr4rd |
|- ( ph -> ( F ` P ) = ( ( G o. Q ) ` 0 ) ) |
| 49 |
1 19 3 40 8 48
|
cvmliftiota |
|- ( ph -> ( R e. ( II Cn C ) /\ ( F o. R ) = ( G o. Q ) /\ ( R ` 0 ) = P ) ) |
| 50 |
49
|
simp2d |
|- ( ph -> ( F o. R ) = ( G o. Q ) ) |
| 51 |
|
cnco |
|- ( ( N e. ( II Cn K ) /\ G e. ( K Cn J ) ) -> ( G o. N ) e. ( II Cn J ) ) |
| 52 |
28 7 51
|
syl2anc |
|- ( ph -> ( G o. N ) e. ( II Cn J ) ) |
| 53 |
1 2 3 4 5 6 7 8 9 10
|
cvmlift3lem3 |
|- ( ph -> H : Y --> B ) |
| 54 |
|
cnvimass |
|- ( `' G " A ) C_ dom G |
| 55 |
|
eqid |
|- U. J = U. J |
| 56 |
2 55
|
cnf |
|- ( G e. ( K Cn J ) -> G : Y --> U. J ) |
| 57 |
7 56
|
syl |
|- ( ph -> G : Y --> U. J ) |
| 58 |
54 57
|
fssdm |
|- ( ph -> ( `' G " A ) C_ Y ) |
| 59 |
14 58
|
sstrd |
|- ( ph -> M C_ Y ) |
| 60 |
59 16
|
sseldd |
|- ( ph -> X e. Y ) |
| 61 |
53 60
|
ffvelcdmd |
|- ( ph -> ( H ` X ) e. B ) |
| 62 |
30
|
fveq2d |
|- ( ph -> ( G ` ( N ` 0 ) ) = ( G ` X ) ) |
| 63 |
42 2
|
cnf |
|- ( N e. ( II Cn K ) -> N : ( 0 [,] 1 ) --> Y ) |
| 64 |
28 63
|
syl |
|- ( ph -> N : ( 0 [,] 1 ) --> Y ) |
| 65 |
|
fvco3 |
|- ( ( N : ( 0 [,] 1 ) --> Y /\ 0 e. ( 0 [,] 1 ) ) -> ( ( G o. N ) ` 0 ) = ( G ` ( N ` 0 ) ) ) |
| 66 |
64 45 65
|
sylancl |
|- ( ph -> ( ( G o. N ) ` 0 ) = ( G ` ( N ` 0 ) ) ) |
| 67 |
|
fvco3 |
|- ( ( H : Y --> B /\ X e. Y ) -> ( ( F o. H ) ` X ) = ( F ` ( H ` X ) ) ) |
| 68 |
53 60 67
|
syl2anc |
|- ( ph -> ( ( F o. H ) ` X ) = ( F ` ( H ` X ) ) ) |
| 69 |
1 2 3 4 5 6 7 8 9 10
|
cvmlift3lem5 |
|- ( ph -> ( F o. H ) = G ) |
| 70 |
69
|
fveq1d |
|- ( ph -> ( ( F o. H ) ` X ) = ( G ` X ) ) |
| 71 |
68 70
|
eqtr3d |
|- ( ph -> ( F ` ( H ` X ) ) = ( G ` X ) ) |
| 72 |
62 66 71
|
3eqtr4rd |
|- ( ph -> ( F ` ( H ` X ) ) = ( ( G o. N ) ` 0 ) ) |
| 73 |
1 23 3 52 61 72
|
cvmliftiota |
|- ( ph -> ( I e. ( II Cn C ) /\ ( F o. I ) = ( G o. N ) /\ ( I ` 0 ) = ( H ` X ) ) ) |
| 74 |
73
|
simp2d |
|- ( ph -> ( F o. I ) = ( G o. N ) ) |
| 75 |
50 74
|
oveq12d |
|- ( ph -> ( ( F o. R ) ( *p ` J ) ( F o. I ) ) = ( ( G o. Q ) ( *p ` J ) ( G o. N ) ) ) |
| 76 |
49
|
simp1d |
|- ( ph -> R e. ( II Cn C ) ) |
| 77 |
73
|
simp1d |
|- ( ph -> I e. ( II Cn C ) ) |
| 78 |
20
|
simp3d |
|- ( ph -> ( R ` 1 ) = ( H ` X ) ) |
| 79 |
73
|
simp3d |
|- ( ph -> ( I ` 0 ) = ( H ` X ) ) |
| 80 |
78 79
|
eqtr4d |
|- ( ph -> ( R ` 1 ) = ( I ` 0 ) ) |
| 81 |
|
cvmcn |
|- ( F e. ( C CovMap J ) -> F e. ( C Cn J ) ) |
| 82 |
3 81
|
syl |
|- ( ph -> F e. ( C Cn J ) ) |
| 83 |
76 77 80 82
|
copco |
|- ( ph -> ( F o. ( R ( *p ` C ) I ) ) = ( ( F o. R ) ( *p ` J ) ( F o. I ) ) ) |
| 84 |
18 28 31 7
|
copco |
|- ( ph -> ( G o. ( Q ( *p ` K ) N ) ) = ( ( G o. Q ) ( *p ` J ) ( G o. N ) ) ) |
| 85 |
75 83 84
|
3eqtr4d |
|- ( ph -> ( F o. ( R ( *p ` C ) I ) ) = ( G o. ( Q ( *p ` K ) N ) ) ) |
| 86 |
76 77
|
pco0 |
|- ( ph -> ( ( R ( *p ` C ) I ) ` 0 ) = ( R ` 0 ) ) |
| 87 |
49
|
simp3d |
|- ( ph -> ( R ` 0 ) = P ) |
| 88 |
86 87
|
eqtrd |
|- ( ph -> ( ( R ( *p ` C ) I ) ` 0 ) = P ) |
| 89 |
76 77 80
|
pcocn |
|- ( ph -> ( R ( *p ` C ) I ) e. ( II Cn C ) ) |
| 90 |
|
cnco |
|- ( ( ( Q ( *p ` K ) N ) e. ( II Cn K ) /\ G e. ( K Cn J ) ) -> ( G o. ( Q ( *p ` K ) N ) ) e. ( II Cn J ) ) |
| 91 |
32 7 90
|
syl2anc |
|- ( ph -> ( G o. ( Q ( *p ` K ) N ) ) e. ( II Cn J ) ) |
| 92 |
35
|
fveq2d |
|- ( ph -> ( G ` ( ( Q ( *p ` K ) N ) ` 0 ) ) = ( G ` O ) ) |
| 93 |
42 2
|
cnf |
|- ( ( Q ( *p ` K ) N ) e. ( II Cn K ) -> ( Q ( *p ` K ) N ) : ( 0 [,] 1 ) --> Y ) |
| 94 |
32 93
|
syl |
|- ( ph -> ( Q ( *p ` K ) N ) : ( 0 [,] 1 ) --> Y ) |
| 95 |
|
fvco3 |
|- ( ( ( Q ( *p ` K ) N ) : ( 0 [,] 1 ) --> Y /\ 0 e. ( 0 [,] 1 ) ) -> ( ( G o. ( Q ( *p ` K ) N ) ) ` 0 ) = ( G ` ( ( Q ( *p ` K ) N ) ` 0 ) ) ) |
| 96 |
94 45 95
|
sylancl |
|- ( ph -> ( ( G o. ( Q ( *p ` K ) N ) ) ` 0 ) = ( G ` ( ( Q ( *p ` K ) N ) ` 0 ) ) ) |
| 97 |
92 96 9
|
3eqtr4rd |
|- ( ph -> ( F ` P ) = ( ( G o. ( Q ( *p ` K ) N ) ) ` 0 ) ) |
| 98 |
1
|
cvmlift |
|- ( ( ( F e. ( C CovMap J ) /\ ( G o. ( Q ( *p ` K ) N ) ) e. ( II Cn J ) ) /\ ( P e. B /\ ( F ` P ) = ( ( G o. ( Q ( *p ` K ) N ) ) ` 0 ) ) ) -> E! g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( Q ( *p ` K ) N ) ) /\ ( g ` 0 ) = P ) ) |
| 99 |
3 91 8 97 98
|
syl22anc |
|- ( ph -> E! g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( Q ( *p ` K ) N ) ) /\ ( g ` 0 ) = P ) ) |
| 100 |
|
coeq2 |
|- ( g = ( R ( *p ` C ) I ) -> ( F o. g ) = ( F o. ( R ( *p ` C ) I ) ) ) |
| 101 |
100
|
eqeq1d |
|- ( g = ( R ( *p ` C ) I ) -> ( ( F o. g ) = ( G o. ( Q ( *p ` K ) N ) ) <-> ( F o. ( R ( *p ` C ) I ) ) = ( G o. ( Q ( *p ` K ) N ) ) ) ) |
| 102 |
|
fveq1 |
|- ( g = ( R ( *p ` C ) I ) -> ( g ` 0 ) = ( ( R ( *p ` C ) I ) ` 0 ) ) |
| 103 |
102
|
eqeq1d |
|- ( g = ( R ( *p ` C ) I ) -> ( ( g ` 0 ) = P <-> ( ( R ( *p ` C ) I ) ` 0 ) = P ) ) |
| 104 |
101 103
|
anbi12d |
|- ( g = ( R ( *p ` C ) I ) -> ( ( ( F o. g ) = ( G o. ( Q ( *p ` K ) N ) ) /\ ( g ` 0 ) = P ) <-> ( ( F o. ( R ( *p ` C ) I ) ) = ( G o. ( Q ( *p ` K ) N ) ) /\ ( ( R ( *p ` C ) I ) ` 0 ) = P ) ) ) |
| 105 |
104
|
riota2 |
|- ( ( ( R ( *p ` C ) I ) e. ( II Cn C ) /\ E! g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( Q ( *p ` K ) N ) ) /\ ( g ` 0 ) = P ) ) -> ( ( ( F o. ( R ( *p ` C ) I ) ) = ( G o. ( Q ( *p ` K ) N ) ) /\ ( ( R ( *p ` C ) I ) ` 0 ) = P ) <-> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( Q ( *p ` K ) N ) ) /\ ( g ` 0 ) = P ) ) = ( R ( *p ` C ) I ) ) ) |
| 106 |
89 99 105
|
syl2anc |
|- ( ph -> ( ( ( F o. ( R ( *p ` C ) I ) ) = ( G o. ( Q ( *p ` K ) N ) ) /\ ( ( R ( *p ` C ) I ) ` 0 ) = P ) <-> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( Q ( *p ` K ) N ) ) /\ ( g ` 0 ) = P ) ) = ( R ( *p ` C ) I ) ) ) |
| 107 |
85 88 106
|
mpbi2and |
|- ( ph -> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( Q ( *p ` K ) N ) ) /\ ( g ` 0 ) = P ) ) = ( R ( *p ` C ) I ) ) |
| 108 |
107
|
fveq1d |
|- ( ph -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( Q ( *p ` K ) N ) ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( ( R ( *p ` C ) I ) ` 1 ) ) |
| 109 |
76 77
|
pco1 |
|- ( ph -> ( ( R ( *p ` C ) I ) ` 1 ) = ( I ` 1 ) ) |
| 110 |
108 109
|
eqtrd |
|- ( ph -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( Q ( *p ` K ) N ) ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( I ` 1 ) ) |
| 111 |
|
fveq1 |
|- ( f = ( Q ( *p ` K ) N ) -> ( f ` 0 ) = ( ( Q ( *p ` K ) N ) ` 0 ) ) |
| 112 |
111
|
eqeq1d |
|- ( f = ( Q ( *p ` K ) N ) -> ( ( f ` 0 ) = O <-> ( ( Q ( *p ` K ) N ) ` 0 ) = O ) ) |
| 113 |
|
fveq1 |
|- ( f = ( Q ( *p ` K ) N ) -> ( f ` 1 ) = ( ( Q ( *p ` K ) N ) ` 1 ) ) |
| 114 |
113
|
eqeq1d |
|- ( f = ( Q ( *p ` K ) N ) -> ( ( f ` 1 ) = Z <-> ( ( Q ( *p ` K ) N ) ` 1 ) = Z ) ) |
| 115 |
|
coeq2 |
|- ( f = ( Q ( *p ` K ) N ) -> ( G o. f ) = ( G o. ( Q ( *p ` K ) N ) ) ) |
| 116 |
115
|
eqeq2d |
|- ( f = ( Q ( *p ` K ) N ) -> ( ( F o. g ) = ( G o. f ) <-> ( F o. g ) = ( G o. ( Q ( *p ` K ) N ) ) ) ) |
| 117 |
116
|
anbi1d |
|- ( f = ( Q ( *p ` K ) N ) -> ( ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) <-> ( ( F o. g ) = ( G o. ( Q ( *p ` K ) N ) ) /\ ( g ` 0 ) = P ) ) ) |
| 118 |
117
|
riotabidv |
|- ( f = ( Q ( *p ` K ) N ) -> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( Q ( *p ` K ) N ) ) /\ ( g ` 0 ) = P ) ) ) |
| 119 |
118
|
fveq1d |
|- ( f = ( Q ( *p ` K ) N ) -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( Q ( *p ` K ) N ) ) /\ ( g ` 0 ) = P ) ) ` 1 ) ) |
| 120 |
119
|
eqeq1d |
|- ( f = ( Q ( *p ` K ) N ) -> ( ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( I ` 1 ) <-> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( Q ( *p ` K ) N ) ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( I ` 1 ) ) ) |
| 121 |
112 114 120
|
3anbi123d |
|- ( f = ( Q ( *p ` K ) N ) -> ( ( ( f ` 0 ) = O /\ ( f ` 1 ) = Z /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( I ` 1 ) ) <-> ( ( ( Q ( *p ` K ) N ) ` 0 ) = O /\ ( ( Q ( *p ` K ) N ) ` 1 ) = Z /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( Q ( *p ` K ) N ) ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( I ` 1 ) ) ) ) |
| 122 |
121
|
rspcev |
|- ( ( ( Q ( *p ` K ) N ) e. ( II Cn K ) /\ ( ( ( Q ( *p ` K ) N ) ` 0 ) = O /\ ( ( Q ( *p ` K ) N ) ` 1 ) = Z /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( Q ( *p ` K ) N ) ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( I ` 1 ) ) ) -> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = Z /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( I ` 1 ) ) ) |
| 123 |
32 35 38 110 122
|
syl13anc |
|- ( ph -> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = Z /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( I ` 1 ) ) ) |
| 124 |
59 17
|
sseldd |
|- ( ph -> Z e. Y ) |
| 125 |
1 2 3 4 5 6 7 8 9 10
|
cvmlift3lem4 |
|- ( ( ph /\ Z e. Y ) -> ( ( H ` Z ) = ( I ` 1 ) <-> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = Z /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( I ` 1 ) ) ) ) |
| 126 |
124 125
|
mpdan |
|- ( ph -> ( ( H ` Z ) = ( I ` 1 ) <-> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = Z /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( I ` 1 ) ) ) ) |
| 127 |
123 126
|
mpbird |
|- ( ph -> ( H ` Z ) = ( I ` 1 ) ) |
| 128 |
|
iiconn |
|- II e. Conn |
| 129 |
128
|
a1i |
|- ( ph -> II e. Conn ) |
| 130 |
|
cvmtop1 |
|- ( F e. ( C CovMap J ) -> C e. Top ) |
| 131 |
3 130
|
syl |
|- ( ph -> C e. Top ) |
| 132 |
1
|
toptopon |
|- ( C e. Top <-> C e. ( TopOn ` B ) ) |
| 133 |
131 132
|
sylib |
|- ( ph -> C e. ( TopOn ` B ) ) |
| 134 |
74
|
rneqd |
|- ( ph -> ran ( F o. I ) = ran ( G o. N ) ) |
| 135 |
|
rnco2 |
|- ran ( F o. I ) = ( F " ran I ) |
| 136 |
|
rnco2 |
|- ran ( G o. N ) = ( G " ran N ) |
| 137 |
134 135 136
|
3eqtr3g |
|- ( ph -> ( F " ran I ) = ( G " ran N ) ) |
| 138 |
|
iitopon |
|- II e. ( TopOn ` ( 0 [,] 1 ) ) |
| 139 |
138
|
a1i |
|- ( ph -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) |
| 140 |
2
|
toptopon |
|- ( K e. Top <-> K e. ( TopOn ` Y ) ) |
| 141 |
25 140
|
sylib |
|- ( ph -> K e. ( TopOn ` Y ) ) |
| 142 |
|
resttopon |
|- ( ( K e. ( TopOn ` Y ) /\ M C_ Y ) -> ( K |`t M ) e. ( TopOn ` M ) ) |
| 143 |
141 59 142
|
syl2anc |
|- ( ph -> ( K |`t M ) e. ( TopOn ` M ) ) |
| 144 |
|
cnf2 |
|- ( ( II e. ( TopOn ` ( 0 [,] 1 ) ) /\ ( K |`t M ) e. ( TopOn ` M ) /\ N e. ( II Cn ( K |`t M ) ) ) -> N : ( 0 [,] 1 ) --> M ) |
| 145 |
139 143 21 144
|
syl3anc |
|- ( ph -> N : ( 0 [,] 1 ) --> M ) |
| 146 |
145
|
frnd |
|- ( ph -> ran N C_ M ) |
| 147 |
146 14
|
sstrd |
|- ( ph -> ran N C_ ( `' G " A ) ) |
| 148 |
57
|
ffund |
|- ( ph -> Fun G ) |
| 149 |
147 54
|
sstrdi |
|- ( ph -> ran N C_ dom G ) |
| 150 |
|
funimass3 |
|- ( ( Fun G /\ ran N C_ dom G ) -> ( ( G " ran N ) C_ A <-> ran N C_ ( `' G " A ) ) ) |
| 151 |
148 149 150
|
syl2anc |
|- ( ph -> ( ( G " ran N ) C_ A <-> ran N C_ ( `' G " A ) ) ) |
| 152 |
147 151
|
mpbird |
|- ( ph -> ( G " ran N ) C_ A ) |
| 153 |
137 152
|
eqsstrd |
|- ( ph -> ( F " ran I ) C_ A ) |
| 154 |
1 55
|
cnf |
|- ( F e. ( C Cn J ) -> F : B --> U. J ) |
| 155 |
82 154
|
syl |
|- ( ph -> F : B --> U. J ) |
| 156 |
155
|
ffund |
|- ( ph -> Fun F ) |
| 157 |
42 1
|
cnf |
|- ( I e. ( II Cn C ) -> I : ( 0 [,] 1 ) --> B ) |
| 158 |
77 157
|
syl |
|- ( ph -> I : ( 0 [,] 1 ) --> B ) |
| 159 |
158
|
frnd |
|- ( ph -> ran I C_ B ) |
| 160 |
155
|
fdmd |
|- ( ph -> dom F = B ) |
| 161 |
159 160
|
sseqtrrd |
|- ( ph -> ran I C_ dom F ) |
| 162 |
|
funimass3 |
|- ( ( Fun F /\ ran I C_ dom F ) -> ( ( F " ran I ) C_ A <-> ran I C_ ( `' F " A ) ) ) |
| 163 |
156 161 162
|
syl2anc |
|- ( ph -> ( ( F " ran I ) C_ A <-> ran I C_ ( `' F " A ) ) ) |
| 164 |
153 163
|
mpbid |
|- ( ph -> ran I C_ ( `' F " A ) ) |
| 165 |
|
cnvimass |
|- ( `' F " A ) C_ dom F |
| 166 |
165 155
|
fssdm |
|- ( ph -> ( `' F " A ) C_ B ) |
| 167 |
|
cnrest2 |
|- ( ( C e. ( TopOn ` B ) /\ ran I C_ ( `' F " A ) /\ ( `' F " A ) C_ B ) -> ( I e. ( II Cn C ) <-> I e. ( II Cn ( C |`t ( `' F " A ) ) ) ) ) |
| 168 |
133 164 166 167
|
syl3anc |
|- ( ph -> ( I e. ( II Cn C ) <-> I e. ( II Cn ( C |`t ( `' F " A ) ) ) ) ) |
| 169 |
77 168
|
mpbid |
|- ( ph -> I e. ( II Cn ( C |`t ( `' F " A ) ) ) ) |
| 170 |
11
|
cvmsss |
|- ( T e. ( S ` A ) -> T C_ C ) |
| 171 |
13 170
|
syl |
|- ( ph -> T C_ C ) |
| 172 |
71 12
|
eqeltrd |
|- ( ph -> ( F ` ( H ` X ) ) e. A ) |
| 173 |
11 1 15
|
cvmsiota |
|- ( ( F e. ( C CovMap J ) /\ ( T e. ( S ` A ) /\ ( H ` X ) e. B /\ ( F ` ( H ` X ) ) e. A ) ) -> ( W e. T /\ ( H ` X ) e. W ) ) |
| 174 |
3 13 61 172 173
|
syl13anc |
|- ( ph -> ( W e. T /\ ( H ` X ) e. W ) ) |
| 175 |
174
|
simpld |
|- ( ph -> W e. T ) |
| 176 |
171 175
|
sseldd |
|- ( ph -> W e. C ) |
| 177 |
|
elssuni |
|- ( W e. T -> W C_ U. T ) |
| 178 |
175 177
|
syl |
|- ( ph -> W C_ U. T ) |
| 179 |
11
|
cvmsuni |
|- ( T e. ( S ` A ) -> U. T = ( `' F " A ) ) |
| 180 |
13 179
|
syl |
|- ( ph -> U. T = ( `' F " A ) ) |
| 181 |
178 180
|
sseqtrd |
|- ( ph -> W C_ ( `' F " A ) ) |
| 182 |
11
|
cvmsrcl |
|- ( T e. ( S ` A ) -> A e. J ) |
| 183 |
13 182
|
syl |
|- ( ph -> A e. J ) |
| 184 |
|
cnima |
|- ( ( F e. ( C Cn J ) /\ A e. J ) -> ( `' F " A ) e. C ) |
| 185 |
82 183 184
|
syl2anc |
|- ( ph -> ( `' F " A ) e. C ) |
| 186 |
|
restopn2 |
|- ( ( C e. Top /\ ( `' F " A ) e. C ) -> ( W e. ( C |`t ( `' F " A ) ) <-> ( W e. C /\ W C_ ( `' F " A ) ) ) ) |
| 187 |
131 185 186
|
syl2anc |
|- ( ph -> ( W e. ( C |`t ( `' F " A ) ) <-> ( W e. C /\ W C_ ( `' F " A ) ) ) ) |
| 188 |
176 181 187
|
mpbir2and |
|- ( ph -> W e. ( C |`t ( `' F " A ) ) ) |
| 189 |
11
|
cvmscld |
|- ( ( F e. ( C CovMap J ) /\ T e. ( S ` A ) /\ W e. T ) -> W e. ( Clsd ` ( C |`t ( `' F " A ) ) ) ) |
| 190 |
3 13 175 189
|
syl3anc |
|- ( ph -> W e. ( Clsd ` ( C |`t ( `' F " A ) ) ) ) |
| 191 |
45
|
a1i |
|- ( ph -> 0 e. ( 0 [,] 1 ) ) |
| 192 |
174
|
simprd |
|- ( ph -> ( H ` X ) e. W ) |
| 193 |
79 192
|
eqeltrd |
|- ( ph -> ( I ` 0 ) e. W ) |
| 194 |
42 129 169 188 190 191 193
|
conncn |
|- ( ph -> I : ( 0 [,] 1 ) --> W ) |
| 195 |
|
1elunit |
|- 1 e. ( 0 [,] 1 ) |
| 196 |
|
ffvelcdm |
|- ( ( I : ( 0 [,] 1 ) --> W /\ 1 e. ( 0 [,] 1 ) ) -> ( I ` 1 ) e. W ) |
| 197 |
194 195 196
|
sylancl |
|- ( ph -> ( I ` 1 ) e. W ) |
| 198 |
127 197
|
eqeltrd |
|- ( ph -> ( H ` Z ) e. W ) |