| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmlift3.b |  |-  B = U. C | 
						
							| 2 |  | cvmlift3.y |  |-  Y = U. K | 
						
							| 3 |  | cvmlift3.f |  |-  ( ph -> F e. ( C CovMap J ) ) | 
						
							| 4 |  | cvmlift3.k |  |-  ( ph -> K e. SConn ) | 
						
							| 5 |  | cvmlift3.l |  |-  ( ph -> K e. N-Locally PConn ) | 
						
							| 6 |  | cvmlift3.o |  |-  ( ph -> O e. Y ) | 
						
							| 7 |  | cvmlift3.g |  |-  ( ph -> G e. ( K Cn J ) ) | 
						
							| 8 |  | cvmlift3.p |  |-  ( ph -> P e. B ) | 
						
							| 9 |  | cvmlift3.e |  |-  ( ph -> ( F ` P ) = ( G ` O ) ) | 
						
							| 10 |  | cvmlift3.h |  |-  H = ( x e. Y |-> ( iota_ z e. B E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = x /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) ) | 
						
							| 11 |  | cvmlift3lem7.s |  |-  S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. c e. s ( A. d e. ( s \ { c } ) ( c i^i d ) = (/) /\ ( F |` c ) e. ( ( C |`t c ) Homeo ( J |`t k ) ) ) ) } ) | 
						
							| 12 |  | cvmlift3lem7.1 |  |-  ( ph -> ( G ` X ) e. A ) | 
						
							| 13 |  | cvmlift3lem7.2 |  |-  ( ph -> T e. ( S ` A ) ) | 
						
							| 14 |  | cvmlift3lem7.3 |  |-  ( ph -> M C_ ( `' G " A ) ) | 
						
							| 15 |  | cvmlift3lem7.w |  |-  W = ( iota_ b e. T ( H ` X ) e. b ) | 
						
							| 16 |  | cvmlift3lem7.7 |  |-  ( ph -> ( K |`t M ) e. PConn ) | 
						
							| 17 |  | cvmlift3lem7.4 |  |-  ( ph -> V e. K ) | 
						
							| 18 |  | cvmlift3lem7.5 |  |-  ( ph -> V C_ M ) | 
						
							| 19 |  | cvmlift3lem7.6 |  |-  ( ph -> X e. V ) | 
						
							| 20 | 1 2 3 4 5 6 7 8 9 10 | cvmlift3lem3 |  |-  ( ph -> H : Y --> B ) | 
						
							| 21 | 1 2 3 4 5 6 7 8 9 10 | cvmlift3lem5 |  |-  ( ph -> ( F o. H ) = G ) | 
						
							| 22 | 21 7 | eqeltrd |  |-  ( ph -> ( F o. H ) e. ( K Cn J ) ) | 
						
							| 23 |  | sconntop |  |-  ( K e. SConn -> K e. Top ) | 
						
							| 24 | 4 23 | syl |  |-  ( ph -> K e. Top ) | 
						
							| 25 |  | cnvimass |  |-  ( `' G " A ) C_ dom G | 
						
							| 26 |  | eqid |  |-  U. J = U. J | 
						
							| 27 | 2 26 | cnf |  |-  ( G e. ( K Cn J ) -> G : Y --> U. J ) | 
						
							| 28 |  | fdm |  |-  ( G : Y --> U. J -> dom G = Y ) | 
						
							| 29 | 7 27 28 | 3syl |  |-  ( ph -> dom G = Y ) | 
						
							| 30 | 25 29 | sseqtrid |  |-  ( ph -> ( `' G " A ) C_ Y ) | 
						
							| 31 | 14 30 | sstrd |  |-  ( ph -> M C_ Y ) | 
						
							| 32 | 18 19 | sseldd |  |-  ( ph -> X e. M ) | 
						
							| 33 | 31 32 | sseldd |  |-  ( ph -> X e. Y ) | 
						
							| 34 | 20 33 | ffvelcdmd |  |-  ( ph -> ( H ` X ) e. B ) | 
						
							| 35 |  | fvco3 |  |-  ( ( H : Y --> B /\ X e. Y ) -> ( ( F o. H ) ` X ) = ( F ` ( H ` X ) ) ) | 
						
							| 36 | 20 33 35 | syl2anc |  |-  ( ph -> ( ( F o. H ) ` X ) = ( F ` ( H ` X ) ) ) | 
						
							| 37 | 21 | fveq1d |  |-  ( ph -> ( ( F o. H ) ` X ) = ( G ` X ) ) | 
						
							| 38 | 36 37 | eqtr3d |  |-  ( ph -> ( F ` ( H ` X ) ) = ( G ` X ) ) | 
						
							| 39 | 38 12 | eqeltrd |  |-  ( ph -> ( F ` ( H ` X ) ) e. A ) | 
						
							| 40 | 11 1 15 | cvmsiota |  |-  ( ( F e. ( C CovMap J ) /\ ( T e. ( S ` A ) /\ ( H ` X ) e. B /\ ( F ` ( H ` X ) ) e. A ) ) -> ( W e. T /\ ( H ` X ) e. W ) ) | 
						
							| 41 | 3 13 34 39 40 | syl13anc |  |-  ( ph -> ( W e. T /\ ( H ` X ) e. W ) ) | 
						
							| 42 |  | eqid |  |-  ( H ` X ) = ( H ` X ) | 
						
							| 43 | 1 2 3 4 5 6 7 8 9 10 | cvmlift3lem4 |  |-  ( ( ph /\ X e. Y ) -> ( ( H ` X ) = ( H ` X ) <-> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) ) ) | 
						
							| 44 | 42 43 | mpbii |  |-  ( ( ph /\ X e. Y ) -> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) ) | 
						
							| 45 | 33 44 | mpdan |  |-  ( ph -> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) ) | 
						
							| 46 | 45 | adantr |  |-  ( ( ph /\ y e. M ) -> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) ) | 
						
							| 47 |  | fveq1 |  |-  ( f = h -> ( f ` 0 ) = ( h ` 0 ) ) | 
						
							| 48 | 47 | eqeq1d |  |-  ( f = h -> ( ( f ` 0 ) = O <-> ( h ` 0 ) = O ) ) | 
						
							| 49 |  | fveq1 |  |-  ( f = h -> ( f ` 1 ) = ( h ` 1 ) ) | 
						
							| 50 | 49 | eqeq1d |  |-  ( f = h -> ( ( f ` 1 ) = X <-> ( h ` 1 ) = X ) ) | 
						
							| 51 |  | coeq2 |  |-  ( f = h -> ( G o. f ) = ( G o. h ) ) | 
						
							| 52 | 51 | eqeq2d |  |-  ( f = h -> ( ( F o. g ) = ( G o. f ) <-> ( F o. g ) = ( G o. h ) ) ) | 
						
							| 53 | 52 | anbi1d |  |-  ( f = h -> ( ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) <-> ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ) | 
						
							| 54 | 53 | riotabidv |  |-  ( f = h -> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ) | 
						
							| 55 |  | coeq2 |  |-  ( a = g -> ( F o. a ) = ( F o. g ) ) | 
						
							| 56 | 55 | eqeq1d |  |-  ( a = g -> ( ( F o. a ) = ( G o. h ) <-> ( F o. g ) = ( G o. h ) ) ) | 
						
							| 57 |  | fveq1 |  |-  ( a = g -> ( a ` 0 ) = ( g ` 0 ) ) | 
						
							| 58 | 57 | eqeq1d |  |-  ( a = g -> ( ( a ` 0 ) = P <-> ( g ` 0 ) = P ) ) | 
						
							| 59 | 56 58 | anbi12d |  |-  ( a = g -> ( ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) <-> ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ) | 
						
							| 60 | 59 | cbvriotavw |  |-  ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) | 
						
							| 61 | 54 60 | eqtr4di |  |-  ( f = h -> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) = ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ) | 
						
							| 62 | 61 | fveq1d |  |-  ( f = h -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) ) | 
						
							| 63 | 62 | eqeq1d |  |-  ( f = h -> ( ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( H ` X ) <-> ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) ) | 
						
							| 64 | 48 50 63 | 3anbi123d |  |-  ( f = h -> ( ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) <-> ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) ) ) | 
						
							| 65 | 64 | cbvrexvw |  |-  ( E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) <-> E. h e. ( II Cn K ) ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) ) | 
						
							| 66 | 46 65 | sylib |  |-  ( ( ph /\ y e. M ) -> E. h e. ( II Cn K ) ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) ) | 
						
							| 67 | 16 | adantr |  |-  ( ( ph /\ y e. M ) -> ( K |`t M ) e. PConn ) | 
						
							| 68 | 2 | restuni |  |-  ( ( K e. Top /\ M C_ Y ) -> M = U. ( K |`t M ) ) | 
						
							| 69 | 24 31 68 | syl2anc |  |-  ( ph -> M = U. ( K |`t M ) ) | 
						
							| 70 | 32 69 | eleqtrd |  |-  ( ph -> X e. U. ( K |`t M ) ) | 
						
							| 71 | 70 | adantr |  |-  ( ( ph /\ y e. M ) -> X e. U. ( K |`t M ) ) | 
						
							| 72 | 69 | eleq2d |  |-  ( ph -> ( y e. M <-> y e. U. ( K |`t M ) ) ) | 
						
							| 73 | 72 | biimpa |  |-  ( ( ph /\ y e. M ) -> y e. U. ( K |`t M ) ) | 
						
							| 74 |  | eqid |  |-  U. ( K |`t M ) = U. ( K |`t M ) | 
						
							| 75 | 74 | pconncn |  |-  ( ( ( K |`t M ) e. PConn /\ X e. U. ( K |`t M ) /\ y e. U. ( K |`t M ) ) -> E. n e. ( II Cn ( K |`t M ) ) ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) | 
						
							| 76 | 67 71 73 75 | syl3anc |  |-  ( ( ph /\ y e. M ) -> E. n e. ( II Cn ( K |`t M ) ) ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) | 
						
							| 77 |  | reeanv |  |-  ( E. h e. ( II Cn K ) E. n e. ( II Cn ( K |`t M ) ) ( ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) /\ ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) <-> ( E. h e. ( II Cn K ) ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) /\ E. n e. ( II Cn ( K |`t M ) ) ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) ) | 
						
							| 78 | 3 | ad3antrrr |  |-  ( ( ( ( ph /\ y e. M ) /\ ( h e. ( II Cn K ) /\ n e. ( II Cn ( K |`t M ) ) ) ) /\ ( ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) /\ ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) ) -> F e. ( C CovMap J ) ) | 
						
							| 79 | 4 | ad3antrrr |  |-  ( ( ( ( ph /\ y e. M ) /\ ( h e. ( II Cn K ) /\ n e. ( II Cn ( K |`t M ) ) ) ) /\ ( ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) /\ ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) ) -> K e. SConn ) | 
						
							| 80 | 5 | ad3antrrr |  |-  ( ( ( ( ph /\ y e. M ) /\ ( h e. ( II Cn K ) /\ n e. ( II Cn ( K |`t M ) ) ) ) /\ ( ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) /\ ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) ) -> K e. N-Locally PConn ) | 
						
							| 81 | 6 | ad3antrrr |  |-  ( ( ( ( ph /\ y e. M ) /\ ( h e. ( II Cn K ) /\ n e. ( II Cn ( K |`t M ) ) ) ) /\ ( ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) /\ ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) ) -> O e. Y ) | 
						
							| 82 | 7 | ad3antrrr |  |-  ( ( ( ( ph /\ y e. M ) /\ ( h e. ( II Cn K ) /\ n e. ( II Cn ( K |`t M ) ) ) ) /\ ( ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) /\ ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) ) -> G e. ( K Cn J ) ) | 
						
							| 83 | 8 | ad3antrrr |  |-  ( ( ( ( ph /\ y e. M ) /\ ( h e. ( II Cn K ) /\ n e. ( II Cn ( K |`t M ) ) ) ) /\ ( ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) /\ ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) ) -> P e. B ) | 
						
							| 84 | 9 | ad3antrrr |  |-  ( ( ( ( ph /\ y e. M ) /\ ( h e. ( II Cn K ) /\ n e. ( II Cn ( K |`t M ) ) ) ) /\ ( ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) /\ ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) ) -> ( F ` P ) = ( G ` O ) ) | 
						
							| 85 | 12 | ad3antrrr |  |-  ( ( ( ( ph /\ y e. M ) /\ ( h e. ( II Cn K ) /\ n e. ( II Cn ( K |`t M ) ) ) ) /\ ( ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) /\ ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) ) -> ( G ` X ) e. A ) | 
						
							| 86 | 13 | ad3antrrr |  |-  ( ( ( ( ph /\ y e. M ) /\ ( h e. ( II Cn K ) /\ n e. ( II Cn ( K |`t M ) ) ) ) /\ ( ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) /\ ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) ) -> T e. ( S ` A ) ) | 
						
							| 87 | 14 | ad3antrrr |  |-  ( ( ( ( ph /\ y e. M ) /\ ( h e. ( II Cn K ) /\ n e. ( II Cn ( K |`t M ) ) ) ) /\ ( ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) /\ ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) ) -> M C_ ( `' G " A ) ) | 
						
							| 88 | 32 | ad3antrrr |  |-  ( ( ( ( ph /\ y e. M ) /\ ( h e. ( II Cn K ) /\ n e. ( II Cn ( K |`t M ) ) ) ) /\ ( ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) /\ ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) ) -> X e. M ) | 
						
							| 89 |  | simpllr |  |-  ( ( ( ( ph /\ y e. M ) /\ ( h e. ( II Cn K ) /\ n e. ( II Cn ( K |`t M ) ) ) ) /\ ( ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) /\ ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) ) -> y e. M ) | 
						
							| 90 |  | simplrl |  |-  ( ( ( ( ph /\ y e. M ) /\ ( h e. ( II Cn K ) /\ n e. ( II Cn ( K |`t M ) ) ) ) /\ ( ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) /\ ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) ) -> h e. ( II Cn K ) ) | 
						
							| 91 |  | simprl |  |-  ( ( ( ( ph /\ y e. M ) /\ ( h e. ( II Cn K ) /\ n e. ( II Cn ( K |`t M ) ) ) ) /\ ( ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) /\ ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) ) -> ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) ) | 
						
							| 92 |  | simplrr |  |-  ( ( ( ( ph /\ y e. M ) /\ ( h e. ( II Cn K ) /\ n e. ( II Cn ( K |`t M ) ) ) ) /\ ( ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) /\ ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) ) -> n e. ( II Cn ( K |`t M ) ) ) | 
						
							| 93 |  | simprr |  |-  ( ( ( ( ph /\ y e. M ) /\ ( h e. ( II Cn K ) /\ n e. ( II Cn ( K |`t M ) ) ) ) /\ ( ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) /\ ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) ) -> ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) | 
						
							| 94 | 55 | eqeq1d |  |-  ( a = g -> ( ( F o. a ) = ( G o. n ) <-> ( F o. g ) = ( G o. n ) ) ) | 
						
							| 95 | 57 | eqeq1d |  |-  ( a = g -> ( ( a ` 0 ) = ( H ` X ) <-> ( g ` 0 ) = ( H ` X ) ) ) | 
						
							| 96 | 94 95 | anbi12d |  |-  ( a = g -> ( ( ( F o. a ) = ( G o. n ) /\ ( a ` 0 ) = ( H ` X ) ) <-> ( ( F o. g ) = ( G o. n ) /\ ( g ` 0 ) = ( H ` X ) ) ) ) | 
						
							| 97 | 96 | cbvriotavw |  |-  ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. n ) /\ ( a ` 0 ) = ( H ` X ) ) ) = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. n ) /\ ( g ` 0 ) = ( H ` X ) ) ) | 
						
							| 98 | 1 2 78 79 80 81 82 83 84 10 11 85 86 87 15 88 89 90 60 91 92 93 97 | cvmlift3lem6 |  |-  ( ( ( ( ph /\ y e. M ) /\ ( h e. ( II Cn K ) /\ n e. ( II Cn ( K |`t M ) ) ) ) /\ ( ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) /\ ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) ) -> ( H ` y ) e. W ) | 
						
							| 99 | 98 | ex |  |-  ( ( ( ph /\ y e. M ) /\ ( h e. ( II Cn K ) /\ n e. ( II Cn ( K |`t M ) ) ) ) -> ( ( ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) /\ ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) -> ( H ` y ) e. W ) ) | 
						
							| 100 | 99 | rexlimdvva |  |-  ( ( ph /\ y e. M ) -> ( E. h e. ( II Cn K ) E. n e. ( II Cn ( K |`t M ) ) ( ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) /\ ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) -> ( H ` y ) e. W ) ) | 
						
							| 101 | 77 100 | biimtrrid |  |-  ( ( ph /\ y e. M ) -> ( ( E. h e. ( II Cn K ) ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) /\ E. n e. ( II Cn ( K |`t M ) ) ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) -> ( H ` y ) e. W ) ) | 
						
							| 102 | 66 76 101 | mp2and |  |-  ( ( ph /\ y e. M ) -> ( H ` y ) e. W ) | 
						
							| 103 | 102 | ralrimiva |  |-  ( ph -> A. y e. M ( H ` y ) e. W ) | 
						
							| 104 | 20 | ffund |  |-  ( ph -> Fun H ) | 
						
							| 105 | 20 | fdmd |  |-  ( ph -> dom H = Y ) | 
						
							| 106 | 31 105 | sseqtrrd |  |-  ( ph -> M C_ dom H ) | 
						
							| 107 |  | funimass4 |  |-  ( ( Fun H /\ M C_ dom H ) -> ( ( H " M ) C_ W <-> A. y e. M ( H ` y ) e. W ) ) | 
						
							| 108 | 104 106 107 | syl2anc |  |-  ( ph -> ( ( H " M ) C_ W <-> A. y e. M ( H ` y ) e. W ) ) | 
						
							| 109 | 103 108 | mpbird |  |-  ( ph -> ( H " M ) C_ W ) | 
						
							| 110 | 1 2 11 3 20 22 24 33 13 41 31 109 | cvmlift2lem9a |  |-  ( ph -> ( H |` M ) e. ( ( K |`t M ) Cn C ) ) | 
						
							| 111 | 74 | cncnpi |  |-  ( ( ( H |` M ) e. ( ( K |`t M ) Cn C ) /\ X e. U. ( K |`t M ) ) -> ( H |` M ) e. ( ( ( K |`t M ) CnP C ) ` X ) ) | 
						
							| 112 | 110 70 111 | syl2anc |  |-  ( ph -> ( H |` M ) e. ( ( ( K |`t M ) CnP C ) ` X ) ) | 
						
							| 113 | 2 | ssntr |  |-  ( ( ( K e. Top /\ M C_ Y ) /\ ( V e. K /\ V C_ M ) ) -> V C_ ( ( int ` K ) ` M ) ) | 
						
							| 114 | 24 31 17 18 113 | syl22anc |  |-  ( ph -> V C_ ( ( int ` K ) ` M ) ) | 
						
							| 115 | 114 19 | sseldd |  |-  ( ph -> X e. ( ( int ` K ) ` M ) ) | 
						
							| 116 | 2 1 | cnprest |  |-  ( ( ( K e. Top /\ M C_ Y ) /\ ( X e. ( ( int ` K ) ` M ) /\ H : Y --> B ) ) -> ( H e. ( ( K CnP C ) ` X ) <-> ( H |` M ) e. ( ( ( K |`t M ) CnP C ) ` X ) ) ) | 
						
							| 117 | 24 31 115 20 116 | syl22anc |  |-  ( ph -> ( H e. ( ( K CnP C ) ` X ) <-> ( H |` M ) e. ( ( ( K |`t M ) CnP C ) ` X ) ) ) | 
						
							| 118 | 112 117 | mpbird |  |-  ( ph -> H e. ( ( K CnP C ) ` X ) ) |