Step |
Hyp |
Ref |
Expression |
1 |
|
cvmlift3.b |
|- B = U. C |
2 |
|
cvmlift3.y |
|- Y = U. K |
3 |
|
cvmlift3.f |
|- ( ph -> F e. ( C CovMap J ) ) |
4 |
|
cvmlift3.k |
|- ( ph -> K e. SConn ) |
5 |
|
cvmlift3.l |
|- ( ph -> K e. N-Locally PConn ) |
6 |
|
cvmlift3.o |
|- ( ph -> O e. Y ) |
7 |
|
cvmlift3.g |
|- ( ph -> G e. ( K Cn J ) ) |
8 |
|
cvmlift3.p |
|- ( ph -> P e. B ) |
9 |
|
cvmlift3.e |
|- ( ph -> ( F ` P ) = ( G ` O ) ) |
10 |
|
cvmlift3.h |
|- H = ( x e. Y |-> ( iota_ z e. B E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = x /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) ) |
11 |
|
cvmlift3lem7.s |
|- S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. c e. s ( A. d e. ( s \ { c } ) ( c i^i d ) = (/) /\ ( F |` c ) e. ( ( C |`t c ) Homeo ( J |`t k ) ) ) ) } ) |
12 |
|
cvmlift3lem7.1 |
|- ( ph -> ( G ` X ) e. A ) |
13 |
|
cvmlift3lem7.2 |
|- ( ph -> T e. ( S ` A ) ) |
14 |
|
cvmlift3lem7.3 |
|- ( ph -> M C_ ( `' G " A ) ) |
15 |
|
cvmlift3lem7.w |
|- W = ( iota_ b e. T ( H ` X ) e. b ) |
16 |
|
cvmlift3lem7.7 |
|- ( ph -> ( K |`t M ) e. PConn ) |
17 |
|
cvmlift3lem7.4 |
|- ( ph -> V e. K ) |
18 |
|
cvmlift3lem7.5 |
|- ( ph -> V C_ M ) |
19 |
|
cvmlift3lem7.6 |
|- ( ph -> X e. V ) |
20 |
1 2 3 4 5 6 7 8 9 10
|
cvmlift3lem3 |
|- ( ph -> H : Y --> B ) |
21 |
1 2 3 4 5 6 7 8 9 10
|
cvmlift3lem5 |
|- ( ph -> ( F o. H ) = G ) |
22 |
21 7
|
eqeltrd |
|- ( ph -> ( F o. H ) e. ( K Cn J ) ) |
23 |
|
sconntop |
|- ( K e. SConn -> K e. Top ) |
24 |
4 23
|
syl |
|- ( ph -> K e. Top ) |
25 |
|
cnvimass |
|- ( `' G " A ) C_ dom G |
26 |
|
eqid |
|- U. J = U. J |
27 |
2 26
|
cnf |
|- ( G e. ( K Cn J ) -> G : Y --> U. J ) |
28 |
|
fdm |
|- ( G : Y --> U. J -> dom G = Y ) |
29 |
7 27 28
|
3syl |
|- ( ph -> dom G = Y ) |
30 |
25 29
|
sseqtrid |
|- ( ph -> ( `' G " A ) C_ Y ) |
31 |
14 30
|
sstrd |
|- ( ph -> M C_ Y ) |
32 |
18 19
|
sseldd |
|- ( ph -> X e. M ) |
33 |
31 32
|
sseldd |
|- ( ph -> X e. Y ) |
34 |
20 33
|
ffvelrnd |
|- ( ph -> ( H ` X ) e. B ) |
35 |
|
fvco3 |
|- ( ( H : Y --> B /\ X e. Y ) -> ( ( F o. H ) ` X ) = ( F ` ( H ` X ) ) ) |
36 |
20 33 35
|
syl2anc |
|- ( ph -> ( ( F o. H ) ` X ) = ( F ` ( H ` X ) ) ) |
37 |
21
|
fveq1d |
|- ( ph -> ( ( F o. H ) ` X ) = ( G ` X ) ) |
38 |
36 37
|
eqtr3d |
|- ( ph -> ( F ` ( H ` X ) ) = ( G ` X ) ) |
39 |
38 12
|
eqeltrd |
|- ( ph -> ( F ` ( H ` X ) ) e. A ) |
40 |
11 1 15
|
cvmsiota |
|- ( ( F e. ( C CovMap J ) /\ ( T e. ( S ` A ) /\ ( H ` X ) e. B /\ ( F ` ( H ` X ) ) e. A ) ) -> ( W e. T /\ ( H ` X ) e. W ) ) |
41 |
3 13 34 39 40
|
syl13anc |
|- ( ph -> ( W e. T /\ ( H ` X ) e. W ) ) |
42 |
|
eqid |
|- ( H ` X ) = ( H ` X ) |
43 |
1 2 3 4 5 6 7 8 9 10
|
cvmlift3lem4 |
|- ( ( ph /\ X e. Y ) -> ( ( H ` X ) = ( H ` X ) <-> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) ) ) |
44 |
42 43
|
mpbii |
|- ( ( ph /\ X e. Y ) -> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) ) |
45 |
33 44
|
mpdan |
|- ( ph -> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) ) |
46 |
45
|
adantr |
|- ( ( ph /\ y e. M ) -> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) ) |
47 |
|
fveq1 |
|- ( f = h -> ( f ` 0 ) = ( h ` 0 ) ) |
48 |
47
|
eqeq1d |
|- ( f = h -> ( ( f ` 0 ) = O <-> ( h ` 0 ) = O ) ) |
49 |
|
fveq1 |
|- ( f = h -> ( f ` 1 ) = ( h ` 1 ) ) |
50 |
49
|
eqeq1d |
|- ( f = h -> ( ( f ` 1 ) = X <-> ( h ` 1 ) = X ) ) |
51 |
|
coeq2 |
|- ( f = h -> ( G o. f ) = ( G o. h ) ) |
52 |
51
|
eqeq2d |
|- ( f = h -> ( ( F o. g ) = ( G o. f ) <-> ( F o. g ) = ( G o. h ) ) ) |
53 |
52
|
anbi1d |
|- ( f = h -> ( ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) <-> ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ) |
54 |
53
|
riotabidv |
|- ( f = h -> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ) |
55 |
|
coeq2 |
|- ( a = g -> ( F o. a ) = ( F o. g ) ) |
56 |
55
|
eqeq1d |
|- ( a = g -> ( ( F o. a ) = ( G o. h ) <-> ( F o. g ) = ( G o. h ) ) ) |
57 |
|
fveq1 |
|- ( a = g -> ( a ` 0 ) = ( g ` 0 ) ) |
58 |
57
|
eqeq1d |
|- ( a = g -> ( ( a ` 0 ) = P <-> ( g ` 0 ) = P ) ) |
59 |
56 58
|
anbi12d |
|- ( a = g -> ( ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) <-> ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ) |
60 |
59
|
cbvriotavw |
|- ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) |
61 |
54 60
|
eqtr4di |
|- ( f = h -> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) = ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ) |
62 |
61
|
fveq1d |
|- ( f = h -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) ) |
63 |
62
|
eqeq1d |
|- ( f = h -> ( ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( H ` X ) <-> ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) ) |
64 |
48 50 63
|
3anbi123d |
|- ( f = h -> ( ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) <-> ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) ) ) |
65 |
64
|
cbvrexvw |
|- ( E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) <-> E. h e. ( II Cn K ) ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) ) |
66 |
46 65
|
sylib |
|- ( ( ph /\ y e. M ) -> E. h e. ( II Cn K ) ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) ) |
67 |
16
|
adantr |
|- ( ( ph /\ y e. M ) -> ( K |`t M ) e. PConn ) |
68 |
2
|
restuni |
|- ( ( K e. Top /\ M C_ Y ) -> M = U. ( K |`t M ) ) |
69 |
24 31 68
|
syl2anc |
|- ( ph -> M = U. ( K |`t M ) ) |
70 |
32 69
|
eleqtrd |
|- ( ph -> X e. U. ( K |`t M ) ) |
71 |
70
|
adantr |
|- ( ( ph /\ y e. M ) -> X e. U. ( K |`t M ) ) |
72 |
69
|
eleq2d |
|- ( ph -> ( y e. M <-> y e. U. ( K |`t M ) ) ) |
73 |
72
|
biimpa |
|- ( ( ph /\ y e. M ) -> y e. U. ( K |`t M ) ) |
74 |
|
eqid |
|- U. ( K |`t M ) = U. ( K |`t M ) |
75 |
74
|
pconncn |
|- ( ( ( K |`t M ) e. PConn /\ X e. U. ( K |`t M ) /\ y e. U. ( K |`t M ) ) -> E. n e. ( II Cn ( K |`t M ) ) ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) |
76 |
67 71 73 75
|
syl3anc |
|- ( ( ph /\ y e. M ) -> E. n e. ( II Cn ( K |`t M ) ) ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) |
77 |
|
reeanv |
|- ( E. h e. ( II Cn K ) E. n e. ( II Cn ( K |`t M ) ) ( ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) /\ ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) <-> ( E. h e. ( II Cn K ) ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) /\ E. n e. ( II Cn ( K |`t M ) ) ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) ) |
78 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ y e. M ) /\ ( h e. ( II Cn K ) /\ n e. ( II Cn ( K |`t M ) ) ) ) /\ ( ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) /\ ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) ) -> F e. ( C CovMap J ) ) |
79 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ y e. M ) /\ ( h e. ( II Cn K ) /\ n e. ( II Cn ( K |`t M ) ) ) ) /\ ( ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) /\ ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) ) -> K e. SConn ) |
80 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ y e. M ) /\ ( h e. ( II Cn K ) /\ n e. ( II Cn ( K |`t M ) ) ) ) /\ ( ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) /\ ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) ) -> K e. N-Locally PConn ) |
81 |
6
|
ad3antrrr |
|- ( ( ( ( ph /\ y e. M ) /\ ( h e. ( II Cn K ) /\ n e. ( II Cn ( K |`t M ) ) ) ) /\ ( ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) /\ ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) ) -> O e. Y ) |
82 |
7
|
ad3antrrr |
|- ( ( ( ( ph /\ y e. M ) /\ ( h e. ( II Cn K ) /\ n e. ( II Cn ( K |`t M ) ) ) ) /\ ( ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) /\ ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) ) -> G e. ( K Cn J ) ) |
83 |
8
|
ad3antrrr |
|- ( ( ( ( ph /\ y e. M ) /\ ( h e. ( II Cn K ) /\ n e. ( II Cn ( K |`t M ) ) ) ) /\ ( ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) /\ ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) ) -> P e. B ) |
84 |
9
|
ad3antrrr |
|- ( ( ( ( ph /\ y e. M ) /\ ( h e. ( II Cn K ) /\ n e. ( II Cn ( K |`t M ) ) ) ) /\ ( ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) /\ ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) ) -> ( F ` P ) = ( G ` O ) ) |
85 |
12
|
ad3antrrr |
|- ( ( ( ( ph /\ y e. M ) /\ ( h e. ( II Cn K ) /\ n e. ( II Cn ( K |`t M ) ) ) ) /\ ( ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) /\ ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) ) -> ( G ` X ) e. A ) |
86 |
13
|
ad3antrrr |
|- ( ( ( ( ph /\ y e. M ) /\ ( h e. ( II Cn K ) /\ n e. ( II Cn ( K |`t M ) ) ) ) /\ ( ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) /\ ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) ) -> T e. ( S ` A ) ) |
87 |
14
|
ad3antrrr |
|- ( ( ( ( ph /\ y e. M ) /\ ( h e. ( II Cn K ) /\ n e. ( II Cn ( K |`t M ) ) ) ) /\ ( ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) /\ ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) ) -> M C_ ( `' G " A ) ) |
88 |
32
|
ad3antrrr |
|- ( ( ( ( ph /\ y e. M ) /\ ( h e. ( II Cn K ) /\ n e. ( II Cn ( K |`t M ) ) ) ) /\ ( ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) /\ ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) ) -> X e. M ) |
89 |
|
simpllr |
|- ( ( ( ( ph /\ y e. M ) /\ ( h e. ( II Cn K ) /\ n e. ( II Cn ( K |`t M ) ) ) ) /\ ( ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) /\ ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) ) -> y e. M ) |
90 |
|
simplrl |
|- ( ( ( ( ph /\ y e. M ) /\ ( h e. ( II Cn K ) /\ n e. ( II Cn ( K |`t M ) ) ) ) /\ ( ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) /\ ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) ) -> h e. ( II Cn K ) ) |
91 |
|
simprl |
|- ( ( ( ( ph /\ y e. M ) /\ ( h e. ( II Cn K ) /\ n e. ( II Cn ( K |`t M ) ) ) ) /\ ( ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) /\ ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) ) -> ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) ) |
92 |
|
simplrr |
|- ( ( ( ( ph /\ y e. M ) /\ ( h e. ( II Cn K ) /\ n e. ( II Cn ( K |`t M ) ) ) ) /\ ( ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) /\ ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) ) -> n e. ( II Cn ( K |`t M ) ) ) |
93 |
|
simprr |
|- ( ( ( ( ph /\ y e. M ) /\ ( h e. ( II Cn K ) /\ n e. ( II Cn ( K |`t M ) ) ) ) /\ ( ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) /\ ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) ) -> ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) |
94 |
55
|
eqeq1d |
|- ( a = g -> ( ( F o. a ) = ( G o. n ) <-> ( F o. g ) = ( G o. n ) ) ) |
95 |
57
|
eqeq1d |
|- ( a = g -> ( ( a ` 0 ) = ( H ` X ) <-> ( g ` 0 ) = ( H ` X ) ) ) |
96 |
94 95
|
anbi12d |
|- ( a = g -> ( ( ( F o. a ) = ( G o. n ) /\ ( a ` 0 ) = ( H ` X ) ) <-> ( ( F o. g ) = ( G o. n ) /\ ( g ` 0 ) = ( H ` X ) ) ) ) |
97 |
96
|
cbvriotavw |
|- ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. n ) /\ ( a ` 0 ) = ( H ` X ) ) ) = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. n ) /\ ( g ` 0 ) = ( H ` X ) ) ) |
98 |
1 2 78 79 80 81 82 83 84 10 11 85 86 87 15 88 89 90 60 91 92 93 97
|
cvmlift3lem6 |
|- ( ( ( ( ph /\ y e. M ) /\ ( h e. ( II Cn K ) /\ n e. ( II Cn ( K |`t M ) ) ) ) /\ ( ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) /\ ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) ) -> ( H ` y ) e. W ) |
99 |
98
|
ex |
|- ( ( ( ph /\ y e. M ) /\ ( h e. ( II Cn K ) /\ n e. ( II Cn ( K |`t M ) ) ) ) -> ( ( ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) /\ ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) -> ( H ` y ) e. W ) ) |
100 |
99
|
rexlimdvva |
|- ( ( ph /\ y e. M ) -> ( E. h e. ( II Cn K ) E. n e. ( II Cn ( K |`t M ) ) ( ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) /\ ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) -> ( H ` y ) e. W ) ) |
101 |
77 100
|
syl5bir |
|- ( ( ph /\ y e. M ) -> ( ( E. h e. ( II Cn K ) ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ a e. ( II Cn C ) ( ( F o. a ) = ( G o. h ) /\ ( a ` 0 ) = P ) ) ` 1 ) = ( H ` X ) ) /\ E. n e. ( II Cn ( K |`t M ) ) ( ( n ` 0 ) = X /\ ( n ` 1 ) = y ) ) -> ( H ` y ) e. W ) ) |
102 |
66 76 101
|
mp2and |
|- ( ( ph /\ y e. M ) -> ( H ` y ) e. W ) |
103 |
102
|
ralrimiva |
|- ( ph -> A. y e. M ( H ` y ) e. W ) |
104 |
20
|
ffund |
|- ( ph -> Fun H ) |
105 |
20
|
fdmd |
|- ( ph -> dom H = Y ) |
106 |
31 105
|
sseqtrrd |
|- ( ph -> M C_ dom H ) |
107 |
|
funimass4 |
|- ( ( Fun H /\ M C_ dom H ) -> ( ( H " M ) C_ W <-> A. y e. M ( H ` y ) e. W ) ) |
108 |
104 106 107
|
syl2anc |
|- ( ph -> ( ( H " M ) C_ W <-> A. y e. M ( H ` y ) e. W ) ) |
109 |
103 108
|
mpbird |
|- ( ph -> ( H " M ) C_ W ) |
110 |
1 2 11 3 20 22 24 33 13 41 31 109
|
cvmlift2lem9a |
|- ( ph -> ( H |` M ) e. ( ( K |`t M ) Cn C ) ) |
111 |
74
|
cncnpi |
|- ( ( ( H |` M ) e. ( ( K |`t M ) Cn C ) /\ X e. U. ( K |`t M ) ) -> ( H |` M ) e. ( ( ( K |`t M ) CnP C ) ` X ) ) |
112 |
110 70 111
|
syl2anc |
|- ( ph -> ( H |` M ) e. ( ( ( K |`t M ) CnP C ) ` X ) ) |
113 |
2
|
ssntr |
|- ( ( ( K e. Top /\ M C_ Y ) /\ ( V e. K /\ V C_ M ) ) -> V C_ ( ( int ` K ) ` M ) ) |
114 |
24 31 17 18 113
|
syl22anc |
|- ( ph -> V C_ ( ( int ` K ) ` M ) ) |
115 |
114 19
|
sseldd |
|- ( ph -> X e. ( ( int ` K ) ` M ) ) |
116 |
2 1
|
cnprest |
|- ( ( ( K e. Top /\ M C_ Y ) /\ ( X e. ( ( int ` K ) ` M ) /\ H : Y --> B ) ) -> ( H e. ( ( K CnP C ) ` X ) <-> ( H |` M ) e. ( ( ( K |`t M ) CnP C ) ` X ) ) ) |
117 |
24 31 115 20 116
|
syl22anc |
|- ( ph -> ( H e. ( ( K CnP C ) ` X ) <-> ( H |` M ) e. ( ( ( K |`t M ) CnP C ) ` X ) ) ) |
118 |
112 117
|
mpbird |
|- ( ph -> H e. ( ( K CnP C ) ` X ) ) |