Step |
Hyp |
Ref |
Expression |
1 |
|
cvmlift3.b |
⊢ 𝐵 = ∪ 𝐶 |
2 |
|
cvmlift3.y |
⊢ 𝑌 = ∪ 𝐾 |
3 |
|
cvmlift3.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
4 |
|
cvmlift3.k |
⊢ ( 𝜑 → 𝐾 ∈ SConn ) |
5 |
|
cvmlift3.l |
⊢ ( 𝜑 → 𝐾 ∈ 𝑛-Locally PConn ) |
6 |
|
cvmlift3.o |
⊢ ( 𝜑 → 𝑂 ∈ 𝑌 ) |
7 |
|
cvmlift3.g |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐾 Cn 𝐽 ) ) |
8 |
|
cvmlift3.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝐵 ) |
9 |
|
cvmlift3.e |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑂 ) ) |
10 |
|
cvmlift3.h |
⊢ 𝐻 = ( 𝑥 ∈ 𝑌 ↦ ( ℩ 𝑧 ∈ 𝐵 ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑂 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = 𝑧 ) ) ) |
11 |
|
cvmlift3lem7.s |
⊢ 𝑆 = ( 𝑘 ∈ 𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑐 ∈ 𝑠 ( ∀ 𝑑 ∈ ( 𝑠 ∖ { 𝑐 } ) ( 𝑐 ∩ 𝑑 ) = ∅ ∧ ( 𝐹 ↾ 𝑐 ) ∈ ( ( 𝐶 ↾t 𝑐 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } ) |
12 |
|
cvmlift3lem7.1 |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) ∈ 𝐴 ) |
13 |
|
cvmlift3lem7.2 |
⊢ ( 𝜑 → 𝑇 ∈ ( 𝑆 ‘ 𝐴 ) ) |
14 |
|
cvmlift3lem7.3 |
⊢ ( 𝜑 → 𝑀 ⊆ ( ◡ 𝐺 “ 𝐴 ) ) |
15 |
|
cvmlift3lem7.w |
⊢ 𝑊 = ( ℩ 𝑏 ∈ 𝑇 ( 𝐻 ‘ 𝑋 ) ∈ 𝑏 ) |
16 |
|
cvmlift3lem7.7 |
⊢ ( 𝜑 → ( 𝐾 ↾t 𝑀 ) ∈ PConn ) |
17 |
|
cvmlift3lem7.4 |
⊢ ( 𝜑 → 𝑉 ∈ 𝐾 ) |
18 |
|
cvmlift3lem7.5 |
⊢ ( 𝜑 → 𝑉 ⊆ 𝑀 ) |
19 |
|
cvmlift3lem7.6 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
20 |
1 2 3 4 5 6 7 8 9 10
|
cvmlift3lem3 |
⊢ ( 𝜑 → 𝐻 : 𝑌 ⟶ 𝐵 ) |
21 |
1 2 3 4 5 6 7 8 9 10
|
cvmlift3lem5 |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐻 ) = 𝐺 ) |
22 |
21 7
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐻 ) ∈ ( 𝐾 Cn 𝐽 ) ) |
23 |
|
sconntop |
⊢ ( 𝐾 ∈ SConn → 𝐾 ∈ Top ) |
24 |
4 23
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Top ) |
25 |
|
cnvimass |
⊢ ( ◡ 𝐺 “ 𝐴 ) ⊆ dom 𝐺 |
26 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
27 |
2 26
|
cnf |
⊢ ( 𝐺 ∈ ( 𝐾 Cn 𝐽 ) → 𝐺 : 𝑌 ⟶ ∪ 𝐽 ) |
28 |
|
fdm |
⊢ ( 𝐺 : 𝑌 ⟶ ∪ 𝐽 → dom 𝐺 = 𝑌 ) |
29 |
7 27 28
|
3syl |
⊢ ( 𝜑 → dom 𝐺 = 𝑌 ) |
30 |
25 29
|
sseqtrid |
⊢ ( 𝜑 → ( ◡ 𝐺 “ 𝐴 ) ⊆ 𝑌 ) |
31 |
14 30
|
sstrd |
⊢ ( 𝜑 → 𝑀 ⊆ 𝑌 ) |
32 |
18 19
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ 𝑀 ) |
33 |
31 32
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ 𝑌 ) |
34 |
20 33
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑋 ) ∈ 𝐵 ) |
35 |
|
fvco3 |
⊢ ( ( 𝐻 : 𝑌 ⟶ 𝐵 ∧ 𝑋 ∈ 𝑌 ) → ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑋 ) = ( 𝐹 ‘ ( 𝐻 ‘ 𝑋 ) ) ) |
36 |
20 33 35
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑋 ) = ( 𝐹 ‘ ( 𝐻 ‘ 𝑋 ) ) ) |
37 |
21
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑋 ) = ( 𝐺 ‘ 𝑋 ) ) |
38 |
36 37
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐻 ‘ 𝑋 ) ) = ( 𝐺 ‘ 𝑋 ) ) |
39 |
38 12
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐻 ‘ 𝑋 ) ) ∈ 𝐴 ) |
40 |
11 1 15
|
cvmsiota |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑇 ∈ ( 𝑆 ‘ 𝐴 ) ∧ ( 𝐻 ‘ 𝑋 ) ∈ 𝐵 ∧ ( 𝐹 ‘ ( 𝐻 ‘ 𝑋 ) ) ∈ 𝐴 ) ) → ( 𝑊 ∈ 𝑇 ∧ ( 𝐻 ‘ 𝑋 ) ∈ 𝑊 ) ) |
41 |
3 13 34 39 40
|
syl13anc |
⊢ ( 𝜑 → ( 𝑊 ∈ 𝑇 ∧ ( 𝐻 ‘ 𝑋 ) ∈ 𝑊 ) ) |
42 |
|
eqid |
⊢ ( 𝐻 ‘ 𝑋 ) = ( 𝐻 ‘ 𝑋 ) |
43 |
1 2 3 4 5 6 7 8 9 10
|
cvmlift3lem4 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑌 ) → ( ( 𝐻 ‘ 𝑋 ) = ( 𝐻 ‘ 𝑋 ) ↔ ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑂 ∧ ( 𝑓 ‘ 1 ) = 𝑋 ∧ ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻 ‘ 𝑋 ) ) ) ) |
44 |
42 43
|
mpbii |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑌 ) → ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑂 ∧ ( 𝑓 ‘ 1 ) = 𝑋 ∧ ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻 ‘ 𝑋 ) ) ) |
45 |
33 44
|
mpdan |
⊢ ( 𝜑 → ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑂 ∧ ( 𝑓 ‘ 1 ) = 𝑋 ∧ ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻 ‘ 𝑋 ) ) ) |
46 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑂 ∧ ( 𝑓 ‘ 1 ) = 𝑋 ∧ ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻 ‘ 𝑋 ) ) ) |
47 |
|
fveq1 |
⊢ ( 𝑓 = ℎ → ( 𝑓 ‘ 0 ) = ( ℎ ‘ 0 ) ) |
48 |
47
|
eqeq1d |
⊢ ( 𝑓 = ℎ → ( ( 𝑓 ‘ 0 ) = 𝑂 ↔ ( ℎ ‘ 0 ) = 𝑂 ) ) |
49 |
|
fveq1 |
⊢ ( 𝑓 = ℎ → ( 𝑓 ‘ 1 ) = ( ℎ ‘ 1 ) ) |
50 |
49
|
eqeq1d |
⊢ ( 𝑓 = ℎ → ( ( 𝑓 ‘ 1 ) = 𝑋 ↔ ( ℎ ‘ 1 ) = 𝑋 ) ) |
51 |
|
coeq2 |
⊢ ( 𝑓 = ℎ → ( 𝐺 ∘ 𝑓 ) = ( 𝐺 ∘ ℎ ) ) |
52 |
51
|
eqeq2d |
⊢ ( 𝑓 = ℎ → ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑓 ) ↔ ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ ℎ ) ) ) |
53 |
52
|
anbi1d |
⊢ ( 𝑓 = ℎ → ( ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ↔ ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ ℎ ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ) |
54 |
53
|
riotabidv |
⊢ ( 𝑓 = ℎ → ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) = ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ ℎ ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ) |
55 |
|
coeq2 |
⊢ ( 𝑎 = 𝑔 → ( 𝐹 ∘ 𝑎 ) = ( 𝐹 ∘ 𝑔 ) ) |
56 |
55
|
eqeq1d |
⊢ ( 𝑎 = 𝑔 → ( ( 𝐹 ∘ 𝑎 ) = ( 𝐺 ∘ ℎ ) ↔ ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ ℎ ) ) ) |
57 |
|
fveq1 |
⊢ ( 𝑎 = 𝑔 → ( 𝑎 ‘ 0 ) = ( 𝑔 ‘ 0 ) ) |
58 |
57
|
eqeq1d |
⊢ ( 𝑎 = 𝑔 → ( ( 𝑎 ‘ 0 ) = 𝑃 ↔ ( 𝑔 ‘ 0 ) = 𝑃 ) ) |
59 |
56 58
|
anbi12d |
⊢ ( 𝑎 = 𝑔 → ( ( ( 𝐹 ∘ 𝑎 ) = ( 𝐺 ∘ ℎ ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ↔ ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ ℎ ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ) |
60 |
59
|
cbvriotavw |
⊢ ( ℩ 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑎 ) = ( 𝐺 ∘ ℎ ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) = ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ ℎ ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) |
61 |
54 60
|
eqtr4di |
⊢ ( 𝑓 = ℎ → ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) = ( ℩ 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑎 ) = ( 𝐺 ∘ ℎ ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ) |
62 |
61
|
fveq1d |
⊢ ( 𝑓 = ℎ → ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( ( ℩ 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑎 ) = ( 𝐺 ∘ ℎ ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) ) |
63 |
62
|
eqeq1d |
⊢ ( 𝑓 = ℎ → ( ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻 ‘ 𝑋 ) ↔ ( ( ℩ 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑎 ) = ( 𝐺 ∘ ℎ ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻 ‘ 𝑋 ) ) ) |
64 |
48 50 63
|
3anbi123d |
⊢ ( 𝑓 = ℎ → ( ( ( 𝑓 ‘ 0 ) = 𝑂 ∧ ( 𝑓 ‘ 1 ) = 𝑋 ∧ ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻 ‘ 𝑋 ) ) ↔ ( ( ℎ ‘ 0 ) = 𝑂 ∧ ( ℎ ‘ 1 ) = 𝑋 ∧ ( ( ℩ 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑎 ) = ( 𝐺 ∘ ℎ ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻 ‘ 𝑋 ) ) ) ) |
65 |
64
|
cbvrexvw |
⊢ ( ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑂 ∧ ( 𝑓 ‘ 1 ) = 𝑋 ∧ ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻 ‘ 𝑋 ) ) ↔ ∃ ℎ ∈ ( II Cn 𝐾 ) ( ( ℎ ‘ 0 ) = 𝑂 ∧ ( ℎ ‘ 1 ) = 𝑋 ∧ ( ( ℩ 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑎 ) = ( 𝐺 ∘ ℎ ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻 ‘ 𝑋 ) ) ) |
66 |
46 65
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ∃ ℎ ∈ ( II Cn 𝐾 ) ( ( ℎ ‘ 0 ) = 𝑂 ∧ ( ℎ ‘ 1 ) = 𝑋 ∧ ( ( ℩ 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑎 ) = ( 𝐺 ∘ ℎ ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻 ‘ 𝑋 ) ) ) |
67 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( 𝐾 ↾t 𝑀 ) ∈ PConn ) |
68 |
2
|
restuni |
⊢ ( ( 𝐾 ∈ Top ∧ 𝑀 ⊆ 𝑌 ) → 𝑀 = ∪ ( 𝐾 ↾t 𝑀 ) ) |
69 |
24 31 68
|
syl2anc |
⊢ ( 𝜑 → 𝑀 = ∪ ( 𝐾 ↾t 𝑀 ) ) |
70 |
32 69
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ∪ ( 𝐾 ↾t 𝑀 ) ) |
71 |
70
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → 𝑋 ∈ ∪ ( 𝐾 ↾t 𝑀 ) ) |
72 |
69
|
eleq2d |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑀 ↔ 𝑦 ∈ ∪ ( 𝐾 ↾t 𝑀 ) ) ) |
73 |
72
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → 𝑦 ∈ ∪ ( 𝐾 ↾t 𝑀 ) ) |
74 |
|
eqid |
⊢ ∪ ( 𝐾 ↾t 𝑀 ) = ∪ ( 𝐾 ↾t 𝑀 ) |
75 |
74
|
pconncn |
⊢ ( ( ( 𝐾 ↾t 𝑀 ) ∈ PConn ∧ 𝑋 ∈ ∪ ( 𝐾 ↾t 𝑀 ) ∧ 𝑦 ∈ ∪ ( 𝐾 ↾t 𝑀 ) ) → ∃ 𝑛 ∈ ( II Cn ( 𝐾 ↾t 𝑀 ) ) ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) |
76 |
67 71 73 75
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ∃ 𝑛 ∈ ( II Cn ( 𝐾 ↾t 𝑀 ) ) ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) |
77 |
|
reeanv |
⊢ ( ∃ ℎ ∈ ( II Cn 𝐾 ) ∃ 𝑛 ∈ ( II Cn ( 𝐾 ↾t 𝑀 ) ) ( ( ( ℎ ‘ 0 ) = 𝑂 ∧ ( ℎ ‘ 1 ) = 𝑋 ∧ ( ( ℩ 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑎 ) = ( 𝐺 ∘ ℎ ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻 ‘ 𝑋 ) ) ∧ ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) ↔ ( ∃ ℎ ∈ ( II Cn 𝐾 ) ( ( ℎ ‘ 0 ) = 𝑂 ∧ ( ℎ ‘ 1 ) = 𝑋 ∧ ( ( ℩ 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑎 ) = ( 𝐺 ∘ ℎ ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻 ‘ 𝑋 ) ) ∧ ∃ 𝑛 ∈ ( II Cn ( 𝐾 ↾t 𝑀 ) ) ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) ) |
78 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) ∧ ( ℎ ∈ ( II Cn 𝐾 ) ∧ 𝑛 ∈ ( II Cn ( 𝐾 ↾t 𝑀 ) ) ) ) ∧ ( ( ( ℎ ‘ 0 ) = 𝑂 ∧ ( ℎ ‘ 1 ) = 𝑋 ∧ ( ( ℩ 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑎 ) = ( 𝐺 ∘ ℎ ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻 ‘ 𝑋 ) ) ∧ ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) ) → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
79 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) ∧ ( ℎ ∈ ( II Cn 𝐾 ) ∧ 𝑛 ∈ ( II Cn ( 𝐾 ↾t 𝑀 ) ) ) ) ∧ ( ( ( ℎ ‘ 0 ) = 𝑂 ∧ ( ℎ ‘ 1 ) = 𝑋 ∧ ( ( ℩ 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑎 ) = ( 𝐺 ∘ ℎ ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻 ‘ 𝑋 ) ) ∧ ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) ) → 𝐾 ∈ SConn ) |
80 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) ∧ ( ℎ ∈ ( II Cn 𝐾 ) ∧ 𝑛 ∈ ( II Cn ( 𝐾 ↾t 𝑀 ) ) ) ) ∧ ( ( ( ℎ ‘ 0 ) = 𝑂 ∧ ( ℎ ‘ 1 ) = 𝑋 ∧ ( ( ℩ 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑎 ) = ( 𝐺 ∘ ℎ ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻 ‘ 𝑋 ) ) ∧ ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) ) → 𝐾 ∈ 𝑛-Locally PConn ) |
81 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) ∧ ( ℎ ∈ ( II Cn 𝐾 ) ∧ 𝑛 ∈ ( II Cn ( 𝐾 ↾t 𝑀 ) ) ) ) ∧ ( ( ( ℎ ‘ 0 ) = 𝑂 ∧ ( ℎ ‘ 1 ) = 𝑋 ∧ ( ( ℩ 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑎 ) = ( 𝐺 ∘ ℎ ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻 ‘ 𝑋 ) ) ∧ ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) ) → 𝑂 ∈ 𝑌 ) |
82 |
7
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) ∧ ( ℎ ∈ ( II Cn 𝐾 ) ∧ 𝑛 ∈ ( II Cn ( 𝐾 ↾t 𝑀 ) ) ) ) ∧ ( ( ( ℎ ‘ 0 ) = 𝑂 ∧ ( ℎ ‘ 1 ) = 𝑋 ∧ ( ( ℩ 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑎 ) = ( 𝐺 ∘ ℎ ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻 ‘ 𝑋 ) ) ∧ ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) ) → 𝐺 ∈ ( 𝐾 Cn 𝐽 ) ) |
83 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) ∧ ( ℎ ∈ ( II Cn 𝐾 ) ∧ 𝑛 ∈ ( II Cn ( 𝐾 ↾t 𝑀 ) ) ) ) ∧ ( ( ( ℎ ‘ 0 ) = 𝑂 ∧ ( ℎ ‘ 1 ) = 𝑋 ∧ ( ( ℩ 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑎 ) = ( 𝐺 ∘ ℎ ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻 ‘ 𝑋 ) ) ∧ ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) ) → 𝑃 ∈ 𝐵 ) |
84 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) ∧ ( ℎ ∈ ( II Cn 𝐾 ) ∧ 𝑛 ∈ ( II Cn ( 𝐾 ↾t 𝑀 ) ) ) ) ∧ ( ( ( ℎ ‘ 0 ) = 𝑂 ∧ ( ℎ ‘ 1 ) = 𝑋 ∧ ( ( ℩ 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑎 ) = ( 𝐺 ∘ ℎ ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻 ‘ 𝑋 ) ) ∧ ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) ) → ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑂 ) ) |
85 |
12
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) ∧ ( ℎ ∈ ( II Cn 𝐾 ) ∧ 𝑛 ∈ ( II Cn ( 𝐾 ↾t 𝑀 ) ) ) ) ∧ ( ( ( ℎ ‘ 0 ) = 𝑂 ∧ ( ℎ ‘ 1 ) = 𝑋 ∧ ( ( ℩ 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑎 ) = ( 𝐺 ∘ ℎ ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻 ‘ 𝑋 ) ) ∧ ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) ) → ( 𝐺 ‘ 𝑋 ) ∈ 𝐴 ) |
86 |
13
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) ∧ ( ℎ ∈ ( II Cn 𝐾 ) ∧ 𝑛 ∈ ( II Cn ( 𝐾 ↾t 𝑀 ) ) ) ) ∧ ( ( ( ℎ ‘ 0 ) = 𝑂 ∧ ( ℎ ‘ 1 ) = 𝑋 ∧ ( ( ℩ 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑎 ) = ( 𝐺 ∘ ℎ ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻 ‘ 𝑋 ) ) ∧ ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) ) → 𝑇 ∈ ( 𝑆 ‘ 𝐴 ) ) |
87 |
14
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) ∧ ( ℎ ∈ ( II Cn 𝐾 ) ∧ 𝑛 ∈ ( II Cn ( 𝐾 ↾t 𝑀 ) ) ) ) ∧ ( ( ( ℎ ‘ 0 ) = 𝑂 ∧ ( ℎ ‘ 1 ) = 𝑋 ∧ ( ( ℩ 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑎 ) = ( 𝐺 ∘ ℎ ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻 ‘ 𝑋 ) ) ∧ ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) ) → 𝑀 ⊆ ( ◡ 𝐺 “ 𝐴 ) ) |
88 |
32
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) ∧ ( ℎ ∈ ( II Cn 𝐾 ) ∧ 𝑛 ∈ ( II Cn ( 𝐾 ↾t 𝑀 ) ) ) ) ∧ ( ( ( ℎ ‘ 0 ) = 𝑂 ∧ ( ℎ ‘ 1 ) = 𝑋 ∧ ( ( ℩ 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑎 ) = ( 𝐺 ∘ ℎ ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻 ‘ 𝑋 ) ) ∧ ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) ) → 𝑋 ∈ 𝑀 ) |
89 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) ∧ ( ℎ ∈ ( II Cn 𝐾 ) ∧ 𝑛 ∈ ( II Cn ( 𝐾 ↾t 𝑀 ) ) ) ) ∧ ( ( ( ℎ ‘ 0 ) = 𝑂 ∧ ( ℎ ‘ 1 ) = 𝑋 ∧ ( ( ℩ 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑎 ) = ( 𝐺 ∘ ℎ ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻 ‘ 𝑋 ) ) ∧ ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) ) → 𝑦 ∈ 𝑀 ) |
90 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) ∧ ( ℎ ∈ ( II Cn 𝐾 ) ∧ 𝑛 ∈ ( II Cn ( 𝐾 ↾t 𝑀 ) ) ) ) ∧ ( ( ( ℎ ‘ 0 ) = 𝑂 ∧ ( ℎ ‘ 1 ) = 𝑋 ∧ ( ( ℩ 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑎 ) = ( 𝐺 ∘ ℎ ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻 ‘ 𝑋 ) ) ∧ ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) ) → ℎ ∈ ( II Cn 𝐾 ) ) |
91 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) ∧ ( ℎ ∈ ( II Cn 𝐾 ) ∧ 𝑛 ∈ ( II Cn ( 𝐾 ↾t 𝑀 ) ) ) ) ∧ ( ( ( ℎ ‘ 0 ) = 𝑂 ∧ ( ℎ ‘ 1 ) = 𝑋 ∧ ( ( ℩ 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑎 ) = ( 𝐺 ∘ ℎ ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻 ‘ 𝑋 ) ) ∧ ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) ) → ( ( ℎ ‘ 0 ) = 𝑂 ∧ ( ℎ ‘ 1 ) = 𝑋 ∧ ( ( ℩ 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑎 ) = ( 𝐺 ∘ ℎ ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻 ‘ 𝑋 ) ) ) |
92 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) ∧ ( ℎ ∈ ( II Cn 𝐾 ) ∧ 𝑛 ∈ ( II Cn ( 𝐾 ↾t 𝑀 ) ) ) ) ∧ ( ( ( ℎ ‘ 0 ) = 𝑂 ∧ ( ℎ ‘ 1 ) = 𝑋 ∧ ( ( ℩ 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑎 ) = ( 𝐺 ∘ ℎ ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻 ‘ 𝑋 ) ) ∧ ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) ) → 𝑛 ∈ ( II Cn ( 𝐾 ↾t 𝑀 ) ) ) |
93 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) ∧ ( ℎ ∈ ( II Cn 𝐾 ) ∧ 𝑛 ∈ ( II Cn ( 𝐾 ↾t 𝑀 ) ) ) ) ∧ ( ( ( ℎ ‘ 0 ) = 𝑂 ∧ ( ℎ ‘ 1 ) = 𝑋 ∧ ( ( ℩ 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑎 ) = ( 𝐺 ∘ ℎ ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻 ‘ 𝑋 ) ) ∧ ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) ) → ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) |
94 |
55
|
eqeq1d |
⊢ ( 𝑎 = 𝑔 → ( ( 𝐹 ∘ 𝑎 ) = ( 𝐺 ∘ 𝑛 ) ↔ ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑛 ) ) ) |
95 |
57
|
eqeq1d |
⊢ ( 𝑎 = 𝑔 → ( ( 𝑎 ‘ 0 ) = ( 𝐻 ‘ 𝑋 ) ↔ ( 𝑔 ‘ 0 ) = ( 𝐻 ‘ 𝑋 ) ) ) |
96 |
94 95
|
anbi12d |
⊢ ( 𝑎 = 𝑔 → ( ( ( 𝐹 ∘ 𝑎 ) = ( 𝐺 ∘ 𝑛 ) ∧ ( 𝑎 ‘ 0 ) = ( 𝐻 ‘ 𝑋 ) ) ↔ ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑛 ) ∧ ( 𝑔 ‘ 0 ) = ( 𝐻 ‘ 𝑋 ) ) ) ) |
97 |
96
|
cbvriotavw |
⊢ ( ℩ 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑎 ) = ( 𝐺 ∘ 𝑛 ) ∧ ( 𝑎 ‘ 0 ) = ( 𝐻 ‘ 𝑋 ) ) ) = ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑛 ) ∧ ( 𝑔 ‘ 0 ) = ( 𝐻 ‘ 𝑋 ) ) ) |
98 |
1 2 78 79 80 81 82 83 84 10 11 85 86 87 15 88 89 90 60 91 92 93 97
|
cvmlift3lem6 |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) ∧ ( ℎ ∈ ( II Cn 𝐾 ) ∧ 𝑛 ∈ ( II Cn ( 𝐾 ↾t 𝑀 ) ) ) ) ∧ ( ( ( ℎ ‘ 0 ) = 𝑂 ∧ ( ℎ ‘ 1 ) = 𝑋 ∧ ( ( ℩ 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑎 ) = ( 𝐺 ∘ ℎ ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻 ‘ 𝑋 ) ) ∧ ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) ) → ( 𝐻 ‘ 𝑦 ) ∈ 𝑊 ) |
99 |
98
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) ∧ ( ℎ ∈ ( II Cn 𝐾 ) ∧ 𝑛 ∈ ( II Cn ( 𝐾 ↾t 𝑀 ) ) ) ) → ( ( ( ( ℎ ‘ 0 ) = 𝑂 ∧ ( ℎ ‘ 1 ) = 𝑋 ∧ ( ( ℩ 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑎 ) = ( 𝐺 ∘ ℎ ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻 ‘ 𝑋 ) ) ∧ ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) → ( 𝐻 ‘ 𝑦 ) ∈ 𝑊 ) ) |
100 |
99
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ∃ ℎ ∈ ( II Cn 𝐾 ) ∃ 𝑛 ∈ ( II Cn ( 𝐾 ↾t 𝑀 ) ) ( ( ( ℎ ‘ 0 ) = 𝑂 ∧ ( ℎ ‘ 1 ) = 𝑋 ∧ ( ( ℩ 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑎 ) = ( 𝐺 ∘ ℎ ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻 ‘ 𝑋 ) ) ∧ ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) → ( 𝐻 ‘ 𝑦 ) ∈ 𝑊 ) ) |
101 |
77 100
|
syl5bir |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ( ∃ ℎ ∈ ( II Cn 𝐾 ) ( ( ℎ ‘ 0 ) = 𝑂 ∧ ( ℎ ‘ 1 ) = 𝑋 ∧ ( ( ℩ 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑎 ) = ( 𝐺 ∘ ℎ ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻 ‘ 𝑋 ) ) ∧ ∃ 𝑛 ∈ ( II Cn ( 𝐾 ↾t 𝑀 ) ) ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) → ( 𝐻 ‘ 𝑦 ) ∈ 𝑊 ) ) |
102 |
66 76 101
|
mp2and |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( 𝐻 ‘ 𝑦 ) ∈ 𝑊 ) |
103 |
102
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑀 ( 𝐻 ‘ 𝑦 ) ∈ 𝑊 ) |
104 |
20
|
ffund |
⊢ ( 𝜑 → Fun 𝐻 ) |
105 |
20
|
fdmd |
⊢ ( 𝜑 → dom 𝐻 = 𝑌 ) |
106 |
31 105
|
sseqtrrd |
⊢ ( 𝜑 → 𝑀 ⊆ dom 𝐻 ) |
107 |
|
funimass4 |
⊢ ( ( Fun 𝐻 ∧ 𝑀 ⊆ dom 𝐻 ) → ( ( 𝐻 “ 𝑀 ) ⊆ 𝑊 ↔ ∀ 𝑦 ∈ 𝑀 ( 𝐻 ‘ 𝑦 ) ∈ 𝑊 ) ) |
108 |
104 106 107
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐻 “ 𝑀 ) ⊆ 𝑊 ↔ ∀ 𝑦 ∈ 𝑀 ( 𝐻 ‘ 𝑦 ) ∈ 𝑊 ) ) |
109 |
103 108
|
mpbird |
⊢ ( 𝜑 → ( 𝐻 “ 𝑀 ) ⊆ 𝑊 ) |
110 |
1 2 11 3 20 22 24 33 13 41 31 109
|
cvmlift2lem9a |
⊢ ( 𝜑 → ( 𝐻 ↾ 𝑀 ) ∈ ( ( 𝐾 ↾t 𝑀 ) Cn 𝐶 ) ) |
111 |
74
|
cncnpi |
⊢ ( ( ( 𝐻 ↾ 𝑀 ) ∈ ( ( 𝐾 ↾t 𝑀 ) Cn 𝐶 ) ∧ 𝑋 ∈ ∪ ( 𝐾 ↾t 𝑀 ) ) → ( 𝐻 ↾ 𝑀 ) ∈ ( ( ( 𝐾 ↾t 𝑀 ) CnP 𝐶 ) ‘ 𝑋 ) ) |
112 |
110 70 111
|
syl2anc |
⊢ ( 𝜑 → ( 𝐻 ↾ 𝑀 ) ∈ ( ( ( 𝐾 ↾t 𝑀 ) CnP 𝐶 ) ‘ 𝑋 ) ) |
113 |
2
|
ssntr |
⊢ ( ( ( 𝐾 ∈ Top ∧ 𝑀 ⊆ 𝑌 ) ∧ ( 𝑉 ∈ 𝐾 ∧ 𝑉 ⊆ 𝑀 ) ) → 𝑉 ⊆ ( ( int ‘ 𝐾 ) ‘ 𝑀 ) ) |
114 |
24 31 17 18 113
|
syl22anc |
⊢ ( 𝜑 → 𝑉 ⊆ ( ( int ‘ 𝐾 ) ‘ 𝑀 ) ) |
115 |
114 19
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ ( ( int ‘ 𝐾 ) ‘ 𝑀 ) ) |
116 |
2 1
|
cnprest |
⊢ ( ( ( 𝐾 ∈ Top ∧ 𝑀 ⊆ 𝑌 ) ∧ ( 𝑋 ∈ ( ( int ‘ 𝐾 ) ‘ 𝑀 ) ∧ 𝐻 : 𝑌 ⟶ 𝐵 ) ) → ( 𝐻 ∈ ( ( 𝐾 CnP 𝐶 ) ‘ 𝑋 ) ↔ ( 𝐻 ↾ 𝑀 ) ∈ ( ( ( 𝐾 ↾t 𝑀 ) CnP 𝐶 ) ‘ 𝑋 ) ) ) |
117 |
24 31 115 20 116
|
syl22anc |
⊢ ( 𝜑 → ( 𝐻 ∈ ( ( 𝐾 CnP 𝐶 ) ‘ 𝑋 ) ↔ ( 𝐻 ↾ 𝑀 ) ∈ ( ( ( 𝐾 ↾t 𝑀 ) CnP 𝐶 ) ‘ 𝑋 ) ) ) |
118 |
112 117
|
mpbird |
⊢ ( 𝜑 → 𝐻 ∈ ( ( 𝐾 CnP 𝐶 ) ‘ 𝑋 ) ) |