| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmlift3.b | ⊢ 𝐵  =  ∪  𝐶 | 
						
							| 2 |  | cvmlift3.y | ⊢ 𝑌  =  ∪  𝐾 | 
						
							| 3 |  | cvmlift3.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 4 |  | cvmlift3.k | ⊢ ( 𝜑  →  𝐾  ∈  SConn ) | 
						
							| 5 |  | cvmlift3.l | ⊢ ( 𝜑  →  𝐾  ∈  𝑛-Locally  PConn ) | 
						
							| 6 |  | cvmlift3.o | ⊢ ( 𝜑  →  𝑂  ∈  𝑌 ) | 
						
							| 7 |  | cvmlift3.g | ⊢ ( 𝜑  →  𝐺  ∈  ( 𝐾  Cn  𝐽 ) ) | 
						
							| 8 |  | cvmlift3.p | ⊢ ( 𝜑  →  𝑃  ∈  𝐵 ) | 
						
							| 9 |  | cvmlift3.e | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑂 ) ) | 
						
							| 10 |  | cvmlift3.h | ⊢ 𝐻  =  ( 𝑥  ∈  𝑌  ↦  ( ℩ 𝑧  ∈  𝐵 ∃ 𝑓  ∈  ( II  Cn  𝐾 ) ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑥  ∧  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  𝑧 ) ) ) | 
						
							| 11 |  | cvmlift3lem7.s | ⊢ 𝑆  =  ( 𝑘  ∈  𝐽  ↦  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑐  ∈  𝑠 ( ∀ 𝑑  ∈  ( 𝑠  ∖  { 𝑐 } ) ( 𝑐  ∩  𝑑 )  =  ∅  ∧  ( 𝐹  ↾  𝑐 )  ∈  ( ( 𝐶  ↾t  𝑐 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } ) | 
						
							| 12 |  | cvmlift3lem7.1 | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑋 )  ∈  𝐴 ) | 
						
							| 13 |  | cvmlift3lem7.2 | ⊢ ( 𝜑  →  𝑇  ∈  ( 𝑆 ‘ 𝐴 ) ) | 
						
							| 14 |  | cvmlift3lem7.3 | ⊢ ( 𝜑  →  𝑀  ⊆  ( ◡ 𝐺  “  𝐴 ) ) | 
						
							| 15 |  | cvmlift3lem7.w | ⊢ 𝑊  =  ( ℩ 𝑏  ∈  𝑇 ( 𝐻 ‘ 𝑋 )  ∈  𝑏 ) | 
						
							| 16 |  | cvmlift3lem7.7 | ⊢ ( 𝜑  →  ( 𝐾  ↾t  𝑀 )  ∈  PConn ) | 
						
							| 17 |  | cvmlift3lem7.4 | ⊢ ( 𝜑  →  𝑉  ∈  𝐾 ) | 
						
							| 18 |  | cvmlift3lem7.5 | ⊢ ( 𝜑  →  𝑉  ⊆  𝑀 ) | 
						
							| 19 |  | cvmlift3lem7.6 | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 20 | 1 2 3 4 5 6 7 8 9 10 | cvmlift3lem3 | ⊢ ( 𝜑  →  𝐻 : 𝑌 ⟶ 𝐵 ) | 
						
							| 21 | 1 2 3 4 5 6 7 8 9 10 | cvmlift3lem5 | ⊢ ( 𝜑  →  ( 𝐹  ∘  𝐻 )  =  𝐺 ) | 
						
							| 22 | 21 7 | eqeltrd | ⊢ ( 𝜑  →  ( 𝐹  ∘  𝐻 )  ∈  ( 𝐾  Cn  𝐽 ) ) | 
						
							| 23 |  | sconntop | ⊢ ( 𝐾  ∈  SConn  →  𝐾  ∈  Top ) | 
						
							| 24 | 4 23 | syl | ⊢ ( 𝜑  →  𝐾  ∈  Top ) | 
						
							| 25 |  | cnvimass | ⊢ ( ◡ 𝐺  “  𝐴 )  ⊆  dom  𝐺 | 
						
							| 26 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 27 | 2 26 | cnf | ⊢ ( 𝐺  ∈  ( 𝐾  Cn  𝐽 )  →  𝐺 : 𝑌 ⟶ ∪  𝐽 ) | 
						
							| 28 |  | fdm | ⊢ ( 𝐺 : 𝑌 ⟶ ∪  𝐽  →  dom  𝐺  =  𝑌 ) | 
						
							| 29 | 7 27 28 | 3syl | ⊢ ( 𝜑  →  dom  𝐺  =  𝑌 ) | 
						
							| 30 | 25 29 | sseqtrid | ⊢ ( 𝜑  →  ( ◡ 𝐺  “  𝐴 )  ⊆  𝑌 ) | 
						
							| 31 | 14 30 | sstrd | ⊢ ( 𝜑  →  𝑀  ⊆  𝑌 ) | 
						
							| 32 | 18 19 | sseldd | ⊢ ( 𝜑  →  𝑋  ∈  𝑀 ) | 
						
							| 33 | 31 32 | sseldd | ⊢ ( 𝜑  →  𝑋  ∈  𝑌 ) | 
						
							| 34 | 20 33 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐻 ‘ 𝑋 )  ∈  𝐵 ) | 
						
							| 35 |  | fvco3 | ⊢ ( ( 𝐻 : 𝑌 ⟶ 𝐵  ∧  𝑋  ∈  𝑌 )  →  ( ( 𝐹  ∘  𝐻 ) ‘ 𝑋 )  =  ( 𝐹 ‘ ( 𝐻 ‘ 𝑋 ) ) ) | 
						
							| 36 | 20 33 35 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐹  ∘  𝐻 ) ‘ 𝑋 )  =  ( 𝐹 ‘ ( 𝐻 ‘ 𝑋 ) ) ) | 
						
							| 37 | 21 | fveq1d | ⊢ ( 𝜑  →  ( ( 𝐹  ∘  𝐻 ) ‘ 𝑋 )  =  ( 𝐺 ‘ 𝑋 ) ) | 
						
							| 38 | 36 37 | eqtr3d | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 𝐻 ‘ 𝑋 ) )  =  ( 𝐺 ‘ 𝑋 ) ) | 
						
							| 39 | 38 12 | eqeltrd | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 𝐻 ‘ 𝑋 ) )  ∈  𝐴 ) | 
						
							| 40 | 11 1 15 | cvmsiota | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  ( 𝑇  ∈  ( 𝑆 ‘ 𝐴 )  ∧  ( 𝐻 ‘ 𝑋 )  ∈  𝐵  ∧  ( 𝐹 ‘ ( 𝐻 ‘ 𝑋 ) )  ∈  𝐴 ) )  →  ( 𝑊  ∈  𝑇  ∧  ( 𝐻 ‘ 𝑋 )  ∈  𝑊 ) ) | 
						
							| 41 | 3 13 34 39 40 | syl13anc | ⊢ ( 𝜑  →  ( 𝑊  ∈  𝑇  ∧  ( 𝐻 ‘ 𝑋 )  ∈  𝑊 ) ) | 
						
							| 42 |  | eqid | ⊢ ( 𝐻 ‘ 𝑋 )  =  ( 𝐻 ‘ 𝑋 ) | 
						
							| 43 | 1 2 3 4 5 6 7 8 9 10 | cvmlift3lem4 | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑌 )  →  ( ( 𝐻 ‘ 𝑋 )  =  ( 𝐻 ‘ 𝑋 )  ↔  ∃ 𝑓  ∈  ( II  Cn  𝐾 ) ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑋  ∧  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐻 ‘ 𝑋 ) ) ) ) | 
						
							| 44 | 42 43 | mpbii | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑌 )  →  ∃ 𝑓  ∈  ( II  Cn  𝐾 ) ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑋  ∧  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐻 ‘ 𝑋 ) ) ) | 
						
							| 45 | 33 44 | mpdan | ⊢ ( 𝜑  →  ∃ 𝑓  ∈  ( II  Cn  𝐾 ) ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑋  ∧  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐻 ‘ 𝑋 ) ) ) | 
						
							| 46 | 45 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑀 )  →  ∃ 𝑓  ∈  ( II  Cn  𝐾 ) ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑋  ∧  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐻 ‘ 𝑋 ) ) ) | 
						
							| 47 |  | fveq1 | ⊢ ( 𝑓  =  ℎ  →  ( 𝑓 ‘ 0 )  =  ( ℎ ‘ 0 ) ) | 
						
							| 48 | 47 | eqeq1d | ⊢ ( 𝑓  =  ℎ  →  ( ( 𝑓 ‘ 0 )  =  𝑂  ↔  ( ℎ ‘ 0 )  =  𝑂 ) ) | 
						
							| 49 |  | fveq1 | ⊢ ( 𝑓  =  ℎ  →  ( 𝑓 ‘ 1 )  =  ( ℎ ‘ 1 ) ) | 
						
							| 50 | 49 | eqeq1d | ⊢ ( 𝑓  =  ℎ  →  ( ( 𝑓 ‘ 1 )  =  𝑋  ↔  ( ℎ ‘ 1 )  =  𝑋 ) ) | 
						
							| 51 |  | coeq2 | ⊢ ( 𝑓  =  ℎ  →  ( 𝐺  ∘  𝑓 )  =  ( 𝐺  ∘  ℎ ) ) | 
						
							| 52 | 51 | eqeq2d | ⊢ ( 𝑓  =  ℎ  →  ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ↔  ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  ℎ ) ) ) | 
						
							| 53 | 52 | anbi1d | ⊢ ( 𝑓  =  ℎ  →  ( ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 )  ↔  ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  ℎ )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ) | 
						
							| 54 | 53 | riotabidv | ⊢ ( 𝑓  =  ℎ  →  ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) )  =  ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  ℎ )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ) | 
						
							| 55 |  | coeq2 | ⊢ ( 𝑎  =  𝑔  →  ( 𝐹  ∘  𝑎 )  =  ( 𝐹  ∘  𝑔 ) ) | 
						
							| 56 | 55 | eqeq1d | ⊢ ( 𝑎  =  𝑔  →  ( ( 𝐹  ∘  𝑎 )  =  ( 𝐺  ∘  ℎ )  ↔  ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  ℎ ) ) ) | 
						
							| 57 |  | fveq1 | ⊢ ( 𝑎  =  𝑔  →  ( 𝑎 ‘ 0 )  =  ( 𝑔 ‘ 0 ) ) | 
						
							| 58 | 57 | eqeq1d | ⊢ ( 𝑎  =  𝑔  →  ( ( 𝑎 ‘ 0 )  =  𝑃  ↔  ( 𝑔 ‘ 0 )  =  𝑃 ) ) | 
						
							| 59 | 56 58 | anbi12d | ⊢ ( 𝑎  =  𝑔  →  ( ( ( 𝐹  ∘  𝑎 )  =  ( 𝐺  ∘  ℎ )  ∧  ( 𝑎 ‘ 0 )  =  𝑃 )  ↔  ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  ℎ )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ) | 
						
							| 60 | 59 | cbvriotavw | ⊢ ( ℩ 𝑎  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑎 )  =  ( 𝐺  ∘  ℎ )  ∧  ( 𝑎 ‘ 0 )  =  𝑃 ) )  =  ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  ℎ )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) | 
						
							| 61 | 54 60 | eqtr4di | ⊢ ( 𝑓  =  ℎ  →  ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) )  =  ( ℩ 𝑎  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑎 )  =  ( 𝐺  ∘  ℎ )  ∧  ( 𝑎 ‘ 0 )  =  𝑃 ) ) ) | 
						
							| 62 | 61 | fveq1d | ⊢ ( 𝑓  =  ℎ  →  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( ( ℩ 𝑎  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑎 )  =  ( 𝐺  ∘  ℎ )  ∧  ( 𝑎 ‘ 0 )  =  𝑃 ) ) ‘ 1 ) ) | 
						
							| 63 | 62 | eqeq1d | ⊢ ( 𝑓  =  ℎ  →  ( ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐻 ‘ 𝑋 )  ↔  ( ( ℩ 𝑎  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑎 )  =  ( 𝐺  ∘  ℎ )  ∧  ( 𝑎 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐻 ‘ 𝑋 ) ) ) | 
						
							| 64 | 48 50 63 | 3anbi123d | ⊢ ( 𝑓  =  ℎ  →  ( ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑋  ∧  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐻 ‘ 𝑋 ) )  ↔  ( ( ℎ ‘ 0 )  =  𝑂  ∧  ( ℎ ‘ 1 )  =  𝑋  ∧  ( ( ℩ 𝑎  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑎 )  =  ( 𝐺  ∘  ℎ )  ∧  ( 𝑎 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐻 ‘ 𝑋 ) ) ) ) | 
						
							| 65 | 64 | cbvrexvw | ⊢ ( ∃ 𝑓  ∈  ( II  Cn  𝐾 ) ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑋  ∧  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐻 ‘ 𝑋 ) )  ↔  ∃ ℎ  ∈  ( II  Cn  𝐾 ) ( ( ℎ ‘ 0 )  =  𝑂  ∧  ( ℎ ‘ 1 )  =  𝑋  ∧  ( ( ℩ 𝑎  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑎 )  =  ( 𝐺  ∘  ℎ )  ∧  ( 𝑎 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐻 ‘ 𝑋 ) ) ) | 
						
							| 66 | 46 65 | sylib | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑀 )  →  ∃ ℎ  ∈  ( II  Cn  𝐾 ) ( ( ℎ ‘ 0 )  =  𝑂  ∧  ( ℎ ‘ 1 )  =  𝑋  ∧  ( ( ℩ 𝑎  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑎 )  =  ( 𝐺  ∘  ℎ )  ∧  ( 𝑎 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐻 ‘ 𝑋 ) ) ) | 
						
							| 67 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑀 )  →  ( 𝐾  ↾t  𝑀 )  ∈  PConn ) | 
						
							| 68 | 2 | restuni | ⊢ ( ( 𝐾  ∈  Top  ∧  𝑀  ⊆  𝑌 )  →  𝑀  =  ∪  ( 𝐾  ↾t  𝑀 ) ) | 
						
							| 69 | 24 31 68 | syl2anc | ⊢ ( 𝜑  →  𝑀  =  ∪  ( 𝐾  ↾t  𝑀 ) ) | 
						
							| 70 | 32 69 | eleqtrd | ⊢ ( 𝜑  →  𝑋  ∈  ∪  ( 𝐾  ↾t  𝑀 ) ) | 
						
							| 71 | 70 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑀 )  →  𝑋  ∈  ∪  ( 𝐾  ↾t  𝑀 ) ) | 
						
							| 72 | 69 | eleq2d | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝑀  ↔  𝑦  ∈  ∪  ( 𝐾  ↾t  𝑀 ) ) ) | 
						
							| 73 | 72 | biimpa | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑀 )  →  𝑦  ∈  ∪  ( 𝐾  ↾t  𝑀 ) ) | 
						
							| 74 |  | eqid | ⊢ ∪  ( 𝐾  ↾t  𝑀 )  =  ∪  ( 𝐾  ↾t  𝑀 ) | 
						
							| 75 | 74 | pconncn | ⊢ ( ( ( 𝐾  ↾t  𝑀 )  ∈  PConn  ∧  𝑋  ∈  ∪  ( 𝐾  ↾t  𝑀 )  ∧  𝑦  ∈  ∪  ( 𝐾  ↾t  𝑀 ) )  →  ∃ 𝑛  ∈  ( II  Cn  ( 𝐾  ↾t  𝑀 ) ) ( ( 𝑛 ‘ 0 )  =  𝑋  ∧  ( 𝑛 ‘ 1 )  =  𝑦 ) ) | 
						
							| 76 | 67 71 73 75 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑀 )  →  ∃ 𝑛  ∈  ( II  Cn  ( 𝐾  ↾t  𝑀 ) ) ( ( 𝑛 ‘ 0 )  =  𝑋  ∧  ( 𝑛 ‘ 1 )  =  𝑦 ) ) | 
						
							| 77 |  | reeanv | ⊢ ( ∃ ℎ  ∈  ( II  Cn  𝐾 ) ∃ 𝑛  ∈  ( II  Cn  ( 𝐾  ↾t  𝑀 ) ) ( ( ( ℎ ‘ 0 )  =  𝑂  ∧  ( ℎ ‘ 1 )  =  𝑋  ∧  ( ( ℩ 𝑎  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑎 )  =  ( 𝐺  ∘  ℎ )  ∧  ( 𝑎 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐻 ‘ 𝑋 ) )  ∧  ( ( 𝑛 ‘ 0 )  =  𝑋  ∧  ( 𝑛 ‘ 1 )  =  𝑦 ) )  ↔  ( ∃ ℎ  ∈  ( II  Cn  𝐾 ) ( ( ℎ ‘ 0 )  =  𝑂  ∧  ( ℎ ‘ 1 )  =  𝑋  ∧  ( ( ℩ 𝑎  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑎 )  =  ( 𝐺  ∘  ℎ )  ∧  ( 𝑎 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐻 ‘ 𝑋 ) )  ∧  ∃ 𝑛  ∈  ( II  Cn  ( 𝐾  ↾t  𝑀 ) ) ( ( 𝑛 ‘ 0 )  =  𝑋  ∧  ( 𝑛 ‘ 1 )  =  𝑦 ) ) ) | 
						
							| 78 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑀 )  ∧  ( ℎ  ∈  ( II  Cn  𝐾 )  ∧  𝑛  ∈  ( II  Cn  ( 𝐾  ↾t  𝑀 ) ) ) )  ∧  ( ( ( ℎ ‘ 0 )  =  𝑂  ∧  ( ℎ ‘ 1 )  =  𝑋  ∧  ( ( ℩ 𝑎  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑎 )  =  ( 𝐺  ∘  ℎ )  ∧  ( 𝑎 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐻 ‘ 𝑋 ) )  ∧  ( ( 𝑛 ‘ 0 )  =  𝑋  ∧  ( 𝑛 ‘ 1 )  =  𝑦 ) ) )  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 79 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑀 )  ∧  ( ℎ  ∈  ( II  Cn  𝐾 )  ∧  𝑛  ∈  ( II  Cn  ( 𝐾  ↾t  𝑀 ) ) ) )  ∧  ( ( ( ℎ ‘ 0 )  =  𝑂  ∧  ( ℎ ‘ 1 )  =  𝑋  ∧  ( ( ℩ 𝑎  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑎 )  =  ( 𝐺  ∘  ℎ )  ∧  ( 𝑎 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐻 ‘ 𝑋 ) )  ∧  ( ( 𝑛 ‘ 0 )  =  𝑋  ∧  ( 𝑛 ‘ 1 )  =  𝑦 ) ) )  →  𝐾  ∈  SConn ) | 
						
							| 80 | 5 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑀 )  ∧  ( ℎ  ∈  ( II  Cn  𝐾 )  ∧  𝑛  ∈  ( II  Cn  ( 𝐾  ↾t  𝑀 ) ) ) )  ∧  ( ( ( ℎ ‘ 0 )  =  𝑂  ∧  ( ℎ ‘ 1 )  =  𝑋  ∧  ( ( ℩ 𝑎  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑎 )  =  ( 𝐺  ∘  ℎ )  ∧  ( 𝑎 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐻 ‘ 𝑋 ) )  ∧  ( ( 𝑛 ‘ 0 )  =  𝑋  ∧  ( 𝑛 ‘ 1 )  =  𝑦 ) ) )  →  𝐾  ∈  𝑛-Locally  PConn ) | 
						
							| 81 | 6 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑀 )  ∧  ( ℎ  ∈  ( II  Cn  𝐾 )  ∧  𝑛  ∈  ( II  Cn  ( 𝐾  ↾t  𝑀 ) ) ) )  ∧  ( ( ( ℎ ‘ 0 )  =  𝑂  ∧  ( ℎ ‘ 1 )  =  𝑋  ∧  ( ( ℩ 𝑎  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑎 )  =  ( 𝐺  ∘  ℎ )  ∧  ( 𝑎 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐻 ‘ 𝑋 ) )  ∧  ( ( 𝑛 ‘ 0 )  =  𝑋  ∧  ( 𝑛 ‘ 1 )  =  𝑦 ) ) )  →  𝑂  ∈  𝑌 ) | 
						
							| 82 | 7 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑀 )  ∧  ( ℎ  ∈  ( II  Cn  𝐾 )  ∧  𝑛  ∈  ( II  Cn  ( 𝐾  ↾t  𝑀 ) ) ) )  ∧  ( ( ( ℎ ‘ 0 )  =  𝑂  ∧  ( ℎ ‘ 1 )  =  𝑋  ∧  ( ( ℩ 𝑎  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑎 )  =  ( 𝐺  ∘  ℎ )  ∧  ( 𝑎 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐻 ‘ 𝑋 ) )  ∧  ( ( 𝑛 ‘ 0 )  =  𝑋  ∧  ( 𝑛 ‘ 1 )  =  𝑦 ) ) )  →  𝐺  ∈  ( 𝐾  Cn  𝐽 ) ) | 
						
							| 83 | 8 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑀 )  ∧  ( ℎ  ∈  ( II  Cn  𝐾 )  ∧  𝑛  ∈  ( II  Cn  ( 𝐾  ↾t  𝑀 ) ) ) )  ∧  ( ( ( ℎ ‘ 0 )  =  𝑂  ∧  ( ℎ ‘ 1 )  =  𝑋  ∧  ( ( ℩ 𝑎  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑎 )  =  ( 𝐺  ∘  ℎ )  ∧  ( 𝑎 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐻 ‘ 𝑋 ) )  ∧  ( ( 𝑛 ‘ 0 )  =  𝑋  ∧  ( 𝑛 ‘ 1 )  =  𝑦 ) ) )  →  𝑃  ∈  𝐵 ) | 
						
							| 84 | 9 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑀 )  ∧  ( ℎ  ∈  ( II  Cn  𝐾 )  ∧  𝑛  ∈  ( II  Cn  ( 𝐾  ↾t  𝑀 ) ) ) )  ∧  ( ( ( ℎ ‘ 0 )  =  𝑂  ∧  ( ℎ ‘ 1 )  =  𝑋  ∧  ( ( ℩ 𝑎  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑎 )  =  ( 𝐺  ∘  ℎ )  ∧  ( 𝑎 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐻 ‘ 𝑋 ) )  ∧  ( ( 𝑛 ‘ 0 )  =  𝑋  ∧  ( 𝑛 ‘ 1 )  =  𝑦 ) ) )  →  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑂 ) ) | 
						
							| 85 | 12 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑀 )  ∧  ( ℎ  ∈  ( II  Cn  𝐾 )  ∧  𝑛  ∈  ( II  Cn  ( 𝐾  ↾t  𝑀 ) ) ) )  ∧  ( ( ( ℎ ‘ 0 )  =  𝑂  ∧  ( ℎ ‘ 1 )  =  𝑋  ∧  ( ( ℩ 𝑎  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑎 )  =  ( 𝐺  ∘  ℎ )  ∧  ( 𝑎 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐻 ‘ 𝑋 ) )  ∧  ( ( 𝑛 ‘ 0 )  =  𝑋  ∧  ( 𝑛 ‘ 1 )  =  𝑦 ) ) )  →  ( 𝐺 ‘ 𝑋 )  ∈  𝐴 ) | 
						
							| 86 | 13 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑀 )  ∧  ( ℎ  ∈  ( II  Cn  𝐾 )  ∧  𝑛  ∈  ( II  Cn  ( 𝐾  ↾t  𝑀 ) ) ) )  ∧  ( ( ( ℎ ‘ 0 )  =  𝑂  ∧  ( ℎ ‘ 1 )  =  𝑋  ∧  ( ( ℩ 𝑎  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑎 )  =  ( 𝐺  ∘  ℎ )  ∧  ( 𝑎 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐻 ‘ 𝑋 ) )  ∧  ( ( 𝑛 ‘ 0 )  =  𝑋  ∧  ( 𝑛 ‘ 1 )  =  𝑦 ) ) )  →  𝑇  ∈  ( 𝑆 ‘ 𝐴 ) ) | 
						
							| 87 | 14 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑀 )  ∧  ( ℎ  ∈  ( II  Cn  𝐾 )  ∧  𝑛  ∈  ( II  Cn  ( 𝐾  ↾t  𝑀 ) ) ) )  ∧  ( ( ( ℎ ‘ 0 )  =  𝑂  ∧  ( ℎ ‘ 1 )  =  𝑋  ∧  ( ( ℩ 𝑎  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑎 )  =  ( 𝐺  ∘  ℎ )  ∧  ( 𝑎 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐻 ‘ 𝑋 ) )  ∧  ( ( 𝑛 ‘ 0 )  =  𝑋  ∧  ( 𝑛 ‘ 1 )  =  𝑦 ) ) )  →  𝑀  ⊆  ( ◡ 𝐺  “  𝐴 ) ) | 
						
							| 88 | 32 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑀 )  ∧  ( ℎ  ∈  ( II  Cn  𝐾 )  ∧  𝑛  ∈  ( II  Cn  ( 𝐾  ↾t  𝑀 ) ) ) )  ∧  ( ( ( ℎ ‘ 0 )  =  𝑂  ∧  ( ℎ ‘ 1 )  =  𝑋  ∧  ( ( ℩ 𝑎  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑎 )  =  ( 𝐺  ∘  ℎ )  ∧  ( 𝑎 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐻 ‘ 𝑋 ) )  ∧  ( ( 𝑛 ‘ 0 )  =  𝑋  ∧  ( 𝑛 ‘ 1 )  =  𝑦 ) ) )  →  𝑋  ∈  𝑀 ) | 
						
							| 89 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑀 )  ∧  ( ℎ  ∈  ( II  Cn  𝐾 )  ∧  𝑛  ∈  ( II  Cn  ( 𝐾  ↾t  𝑀 ) ) ) )  ∧  ( ( ( ℎ ‘ 0 )  =  𝑂  ∧  ( ℎ ‘ 1 )  =  𝑋  ∧  ( ( ℩ 𝑎  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑎 )  =  ( 𝐺  ∘  ℎ )  ∧  ( 𝑎 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐻 ‘ 𝑋 ) )  ∧  ( ( 𝑛 ‘ 0 )  =  𝑋  ∧  ( 𝑛 ‘ 1 )  =  𝑦 ) ) )  →  𝑦  ∈  𝑀 ) | 
						
							| 90 |  | simplrl | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑀 )  ∧  ( ℎ  ∈  ( II  Cn  𝐾 )  ∧  𝑛  ∈  ( II  Cn  ( 𝐾  ↾t  𝑀 ) ) ) )  ∧  ( ( ( ℎ ‘ 0 )  =  𝑂  ∧  ( ℎ ‘ 1 )  =  𝑋  ∧  ( ( ℩ 𝑎  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑎 )  =  ( 𝐺  ∘  ℎ )  ∧  ( 𝑎 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐻 ‘ 𝑋 ) )  ∧  ( ( 𝑛 ‘ 0 )  =  𝑋  ∧  ( 𝑛 ‘ 1 )  =  𝑦 ) ) )  →  ℎ  ∈  ( II  Cn  𝐾 ) ) | 
						
							| 91 |  | simprl | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑀 )  ∧  ( ℎ  ∈  ( II  Cn  𝐾 )  ∧  𝑛  ∈  ( II  Cn  ( 𝐾  ↾t  𝑀 ) ) ) )  ∧  ( ( ( ℎ ‘ 0 )  =  𝑂  ∧  ( ℎ ‘ 1 )  =  𝑋  ∧  ( ( ℩ 𝑎  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑎 )  =  ( 𝐺  ∘  ℎ )  ∧  ( 𝑎 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐻 ‘ 𝑋 ) )  ∧  ( ( 𝑛 ‘ 0 )  =  𝑋  ∧  ( 𝑛 ‘ 1 )  =  𝑦 ) ) )  →  ( ( ℎ ‘ 0 )  =  𝑂  ∧  ( ℎ ‘ 1 )  =  𝑋  ∧  ( ( ℩ 𝑎  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑎 )  =  ( 𝐺  ∘  ℎ )  ∧  ( 𝑎 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐻 ‘ 𝑋 ) ) ) | 
						
							| 92 |  | simplrr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑀 )  ∧  ( ℎ  ∈  ( II  Cn  𝐾 )  ∧  𝑛  ∈  ( II  Cn  ( 𝐾  ↾t  𝑀 ) ) ) )  ∧  ( ( ( ℎ ‘ 0 )  =  𝑂  ∧  ( ℎ ‘ 1 )  =  𝑋  ∧  ( ( ℩ 𝑎  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑎 )  =  ( 𝐺  ∘  ℎ )  ∧  ( 𝑎 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐻 ‘ 𝑋 ) )  ∧  ( ( 𝑛 ‘ 0 )  =  𝑋  ∧  ( 𝑛 ‘ 1 )  =  𝑦 ) ) )  →  𝑛  ∈  ( II  Cn  ( 𝐾  ↾t  𝑀 ) ) ) | 
						
							| 93 |  | simprr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑀 )  ∧  ( ℎ  ∈  ( II  Cn  𝐾 )  ∧  𝑛  ∈  ( II  Cn  ( 𝐾  ↾t  𝑀 ) ) ) )  ∧  ( ( ( ℎ ‘ 0 )  =  𝑂  ∧  ( ℎ ‘ 1 )  =  𝑋  ∧  ( ( ℩ 𝑎  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑎 )  =  ( 𝐺  ∘  ℎ )  ∧  ( 𝑎 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐻 ‘ 𝑋 ) )  ∧  ( ( 𝑛 ‘ 0 )  =  𝑋  ∧  ( 𝑛 ‘ 1 )  =  𝑦 ) ) )  →  ( ( 𝑛 ‘ 0 )  =  𝑋  ∧  ( 𝑛 ‘ 1 )  =  𝑦 ) ) | 
						
							| 94 | 55 | eqeq1d | ⊢ ( 𝑎  =  𝑔  →  ( ( 𝐹  ∘  𝑎 )  =  ( 𝐺  ∘  𝑛 )  ↔  ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑛 ) ) ) | 
						
							| 95 | 57 | eqeq1d | ⊢ ( 𝑎  =  𝑔  →  ( ( 𝑎 ‘ 0 )  =  ( 𝐻 ‘ 𝑋 )  ↔  ( 𝑔 ‘ 0 )  =  ( 𝐻 ‘ 𝑋 ) ) ) | 
						
							| 96 | 94 95 | anbi12d | ⊢ ( 𝑎  =  𝑔  →  ( ( ( 𝐹  ∘  𝑎 )  =  ( 𝐺  ∘  𝑛 )  ∧  ( 𝑎 ‘ 0 )  =  ( 𝐻 ‘ 𝑋 ) )  ↔  ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑛 )  ∧  ( 𝑔 ‘ 0 )  =  ( 𝐻 ‘ 𝑋 ) ) ) ) | 
						
							| 97 | 96 | cbvriotavw | ⊢ ( ℩ 𝑎  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑎 )  =  ( 𝐺  ∘  𝑛 )  ∧  ( 𝑎 ‘ 0 )  =  ( 𝐻 ‘ 𝑋 ) ) )  =  ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑛 )  ∧  ( 𝑔 ‘ 0 )  =  ( 𝐻 ‘ 𝑋 ) ) ) | 
						
							| 98 | 1 2 78 79 80 81 82 83 84 10 11 85 86 87 15 88 89 90 60 91 92 93 97 | cvmlift3lem6 | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑀 )  ∧  ( ℎ  ∈  ( II  Cn  𝐾 )  ∧  𝑛  ∈  ( II  Cn  ( 𝐾  ↾t  𝑀 ) ) ) )  ∧  ( ( ( ℎ ‘ 0 )  =  𝑂  ∧  ( ℎ ‘ 1 )  =  𝑋  ∧  ( ( ℩ 𝑎  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑎 )  =  ( 𝐺  ∘  ℎ )  ∧  ( 𝑎 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐻 ‘ 𝑋 ) )  ∧  ( ( 𝑛 ‘ 0 )  =  𝑋  ∧  ( 𝑛 ‘ 1 )  =  𝑦 ) ) )  →  ( 𝐻 ‘ 𝑦 )  ∈  𝑊 ) | 
						
							| 99 | 98 | ex | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑀 )  ∧  ( ℎ  ∈  ( II  Cn  𝐾 )  ∧  𝑛  ∈  ( II  Cn  ( 𝐾  ↾t  𝑀 ) ) ) )  →  ( ( ( ( ℎ ‘ 0 )  =  𝑂  ∧  ( ℎ ‘ 1 )  =  𝑋  ∧  ( ( ℩ 𝑎  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑎 )  =  ( 𝐺  ∘  ℎ )  ∧  ( 𝑎 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐻 ‘ 𝑋 ) )  ∧  ( ( 𝑛 ‘ 0 )  =  𝑋  ∧  ( 𝑛 ‘ 1 )  =  𝑦 ) )  →  ( 𝐻 ‘ 𝑦 )  ∈  𝑊 ) ) | 
						
							| 100 | 99 | rexlimdvva | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑀 )  →  ( ∃ ℎ  ∈  ( II  Cn  𝐾 ) ∃ 𝑛  ∈  ( II  Cn  ( 𝐾  ↾t  𝑀 ) ) ( ( ( ℎ ‘ 0 )  =  𝑂  ∧  ( ℎ ‘ 1 )  =  𝑋  ∧  ( ( ℩ 𝑎  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑎 )  =  ( 𝐺  ∘  ℎ )  ∧  ( 𝑎 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐻 ‘ 𝑋 ) )  ∧  ( ( 𝑛 ‘ 0 )  =  𝑋  ∧  ( 𝑛 ‘ 1 )  =  𝑦 ) )  →  ( 𝐻 ‘ 𝑦 )  ∈  𝑊 ) ) | 
						
							| 101 | 77 100 | biimtrrid | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑀 )  →  ( ( ∃ ℎ  ∈  ( II  Cn  𝐾 ) ( ( ℎ ‘ 0 )  =  𝑂  ∧  ( ℎ ‘ 1 )  =  𝑋  ∧  ( ( ℩ 𝑎  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑎 )  =  ( 𝐺  ∘  ℎ )  ∧  ( 𝑎 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐻 ‘ 𝑋 ) )  ∧  ∃ 𝑛  ∈  ( II  Cn  ( 𝐾  ↾t  𝑀 ) ) ( ( 𝑛 ‘ 0 )  =  𝑋  ∧  ( 𝑛 ‘ 1 )  =  𝑦 ) )  →  ( 𝐻 ‘ 𝑦 )  ∈  𝑊 ) ) | 
						
							| 102 | 66 76 101 | mp2and | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑀 )  →  ( 𝐻 ‘ 𝑦 )  ∈  𝑊 ) | 
						
							| 103 | 102 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝑀 ( 𝐻 ‘ 𝑦 )  ∈  𝑊 ) | 
						
							| 104 | 20 | ffund | ⊢ ( 𝜑  →  Fun  𝐻 ) | 
						
							| 105 | 20 | fdmd | ⊢ ( 𝜑  →  dom  𝐻  =  𝑌 ) | 
						
							| 106 | 31 105 | sseqtrrd | ⊢ ( 𝜑  →  𝑀  ⊆  dom  𝐻 ) | 
						
							| 107 |  | funimass4 | ⊢ ( ( Fun  𝐻  ∧  𝑀  ⊆  dom  𝐻 )  →  ( ( 𝐻  “  𝑀 )  ⊆  𝑊  ↔  ∀ 𝑦  ∈  𝑀 ( 𝐻 ‘ 𝑦 )  ∈  𝑊 ) ) | 
						
							| 108 | 104 106 107 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐻  “  𝑀 )  ⊆  𝑊  ↔  ∀ 𝑦  ∈  𝑀 ( 𝐻 ‘ 𝑦 )  ∈  𝑊 ) ) | 
						
							| 109 | 103 108 | mpbird | ⊢ ( 𝜑  →  ( 𝐻  “  𝑀 )  ⊆  𝑊 ) | 
						
							| 110 | 1 2 11 3 20 22 24 33 13 41 31 109 | cvmlift2lem9a | ⊢ ( 𝜑  →  ( 𝐻  ↾  𝑀 )  ∈  ( ( 𝐾  ↾t  𝑀 )  Cn  𝐶 ) ) | 
						
							| 111 | 74 | cncnpi | ⊢ ( ( ( 𝐻  ↾  𝑀 )  ∈  ( ( 𝐾  ↾t  𝑀 )  Cn  𝐶 )  ∧  𝑋  ∈  ∪  ( 𝐾  ↾t  𝑀 ) )  →  ( 𝐻  ↾  𝑀 )  ∈  ( ( ( 𝐾  ↾t  𝑀 )  CnP  𝐶 ) ‘ 𝑋 ) ) | 
						
							| 112 | 110 70 111 | syl2anc | ⊢ ( 𝜑  →  ( 𝐻  ↾  𝑀 )  ∈  ( ( ( 𝐾  ↾t  𝑀 )  CnP  𝐶 ) ‘ 𝑋 ) ) | 
						
							| 113 | 2 | ssntr | ⊢ ( ( ( 𝐾  ∈  Top  ∧  𝑀  ⊆  𝑌 )  ∧  ( 𝑉  ∈  𝐾  ∧  𝑉  ⊆  𝑀 ) )  →  𝑉  ⊆  ( ( int ‘ 𝐾 ) ‘ 𝑀 ) ) | 
						
							| 114 | 24 31 17 18 113 | syl22anc | ⊢ ( 𝜑  →  𝑉  ⊆  ( ( int ‘ 𝐾 ) ‘ 𝑀 ) ) | 
						
							| 115 | 114 19 | sseldd | ⊢ ( 𝜑  →  𝑋  ∈  ( ( int ‘ 𝐾 ) ‘ 𝑀 ) ) | 
						
							| 116 | 2 1 | cnprest | ⊢ ( ( ( 𝐾  ∈  Top  ∧  𝑀  ⊆  𝑌 )  ∧  ( 𝑋  ∈  ( ( int ‘ 𝐾 ) ‘ 𝑀 )  ∧  𝐻 : 𝑌 ⟶ 𝐵 ) )  →  ( 𝐻  ∈  ( ( 𝐾  CnP  𝐶 ) ‘ 𝑋 )  ↔  ( 𝐻  ↾  𝑀 )  ∈  ( ( ( 𝐾  ↾t  𝑀 )  CnP  𝐶 ) ‘ 𝑋 ) ) ) | 
						
							| 117 | 24 31 115 20 116 | syl22anc | ⊢ ( 𝜑  →  ( 𝐻  ∈  ( ( 𝐾  CnP  𝐶 ) ‘ 𝑋 )  ↔  ( 𝐻  ↾  𝑀 )  ∈  ( ( ( 𝐾  ↾t  𝑀 )  CnP  𝐶 ) ‘ 𝑋 ) ) ) | 
						
							| 118 | 112 117 | mpbird | ⊢ ( 𝜑  →  𝐻  ∈  ( ( 𝐾  CnP  𝐶 ) ‘ 𝑋 ) ) |