Metamath Proof Explorer


Theorem cvmlift3lem7

Description: Lemma for cvmlift3 . (Contributed by Mario Carneiro, 9-Jul-2015)

Ref Expression
Hypotheses cvmlift3.b 𝐵 = 𝐶
cvmlift3.y 𝑌 = 𝐾
cvmlift3.f ( 𝜑𝐹 ∈ ( 𝐶 CovMap 𝐽 ) )
cvmlift3.k ( 𝜑𝐾 ∈ SConn )
cvmlift3.l ( 𝜑𝐾 ∈ 𝑛-Locally PConn )
cvmlift3.o ( 𝜑𝑂𝑌 )
cvmlift3.g ( 𝜑𝐺 ∈ ( 𝐾 Cn 𝐽 ) )
cvmlift3.p ( 𝜑𝑃𝐵 )
cvmlift3.e ( 𝜑 → ( 𝐹𝑃 ) = ( 𝐺𝑂 ) )
cvmlift3.h 𝐻 = ( 𝑥𝑌 ↦ ( 𝑧𝐵𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑂 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( ( 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑔 ) = ( 𝐺𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = 𝑧 ) ) )
cvmlift3lem7.s 𝑆 = ( 𝑘𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑐𝑠 ( ∀ 𝑑 ∈ ( 𝑠 ∖ { 𝑐 } ) ( 𝑐𝑑 ) = ∅ ∧ ( 𝐹𝑐 ) ∈ ( ( 𝐶t 𝑐 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } )
cvmlift3lem7.1 ( 𝜑 → ( 𝐺𝑋 ) ∈ 𝐴 )
cvmlift3lem7.2 ( 𝜑𝑇 ∈ ( 𝑆𝐴 ) )
cvmlift3lem7.3 ( 𝜑𝑀 ⊆ ( 𝐺𝐴 ) )
cvmlift3lem7.w 𝑊 = ( 𝑏𝑇 ( 𝐻𝑋 ) ∈ 𝑏 )
cvmlift3lem7.7 ( 𝜑 → ( 𝐾t 𝑀 ) ∈ PConn )
cvmlift3lem7.4 ( 𝜑𝑉𝐾 )
cvmlift3lem7.5 ( 𝜑𝑉𝑀 )
cvmlift3lem7.6 ( 𝜑𝑋𝑉 )
Assertion cvmlift3lem7 ( 𝜑𝐻 ∈ ( ( 𝐾 CnP 𝐶 ) ‘ 𝑋 ) )

Proof

Step Hyp Ref Expression
1 cvmlift3.b 𝐵 = 𝐶
2 cvmlift3.y 𝑌 = 𝐾
3 cvmlift3.f ( 𝜑𝐹 ∈ ( 𝐶 CovMap 𝐽 ) )
4 cvmlift3.k ( 𝜑𝐾 ∈ SConn )
5 cvmlift3.l ( 𝜑𝐾 ∈ 𝑛-Locally PConn )
6 cvmlift3.o ( 𝜑𝑂𝑌 )
7 cvmlift3.g ( 𝜑𝐺 ∈ ( 𝐾 Cn 𝐽 ) )
8 cvmlift3.p ( 𝜑𝑃𝐵 )
9 cvmlift3.e ( 𝜑 → ( 𝐹𝑃 ) = ( 𝐺𝑂 ) )
10 cvmlift3.h 𝐻 = ( 𝑥𝑌 ↦ ( 𝑧𝐵𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑂 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( ( 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑔 ) = ( 𝐺𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = 𝑧 ) ) )
11 cvmlift3lem7.s 𝑆 = ( 𝑘𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑐𝑠 ( ∀ 𝑑 ∈ ( 𝑠 ∖ { 𝑐 } ) ( 𝑐𝑑 ) = ∅ ∧ ( 𝐹𝑐 ) ∈ ( ( 𝐶t 𝑐 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } )
12 cvmlift3lem7.1 ( 𝜑 → ( 𝐺𝑋 ) ∈ 𝐴 )
13 cvmlift3lem7.2 ( 𝜑𝑇 ∈ ( 𝑆𝐴 ) )
14 cvmlift3lem7.3 ( 𝜑𝑀 ⊆ ( 𝐺𝐴 ) )
15 cvmlift3lem7.w 𝑊 = ( 𝑏𝑇 ( 𝐻𝑋 ) ∈ 𝑏 )
16 cvmlift3lem7.7 ( 𝜑 → ( 𝐾t 𝑀 ) ∈ PConn )
17 cvmlift3lem7.4 ( 𝜑𝑉𝐾 )
18 cvmlift3lem7.5 ( 𝜑𝑉𝑀 )
19 cvmlift3lem7.6 ( 𝜑𝑋𝑉 )
20 1 2 3 4 5 6 7 8 9 10 cvmlift3lem3 ( 𝜑𝐻 : 𝑌𝐵 )
21 1 2 3 4 5 6 7 8 9 10 cvmlift3lem5 ( 𝜑 → ( 𝐹𝐻 ) = 𝐺 )
22 21 7 eqeltrd ( 𝜑 → ( 𝐹𝐻 ) ∈ ( 𝐾 Cn 𝐽 ) )
23 sconntop ( 𝐾 ∈ SConn → 𝐾 ∈ Top )
24 4 23 syl ( 𝜑𝐾 ∈ Top )
25 cnvimass ( 𝐺𝐴 ) ⊆ dom 𝐺
26 eqid 𝐽 = 𝐽
27 2 26 cnf ( 𝐺 ∈ ( 𝐾 Cn 𝐽 ) → 𝐺 : 𝑌 𝐽 )
28 fdm ( 𝐺 : 𝑌 𝐽 → dom 𝐺 = 𝑌 )
29 7 27 28 3syl ( 𝜑 → dom 𝐺 = 𝑌 )
30 25 29 sseqtrid ( 𝜑 → ( 𝐺𝐴 ) ⊆ 𝑌 )
31 14 30 sstrd ( 𝜑𝑀𝑌 )
32 18 19 sseldd ( 𝜑𝑋𝑀 )
33 31 32 sseldd ( 𝜑𝑋𝑌 )
34 20 33 ffvelrnd ( 𝜑 → ( 𝐻𝑋 ) ∈ 𝐵 )
35 fvco3 ( ( 𝐻 : 𝑌𝐵𝑋𝑌 ) → ( ( 𝐹𝐻 ) ‘ 𝑋 ) = ( 𝐹 ‘ ( 𝐻𝑋 ) ) )
36 20 33 35 syl2anc ( 𝜑 → ( ( 𝐹𝐻 ) ‘ 𝑋 ) = ( 𝐹 ‘ ( 𝐻𝑋 ) ) )
37 21 fveq1d ( 𝜑 → ( ( 𝐹𝐻 ) ‘ 𝑋 ) = ( 𝐺𝑋 ) )
38 36 37 eqtr3d ( 𝜑 → ( 𝐹 ‘ ( 𝐻𝑋 ) ) = ( 𝐺𝑋 ) )
39 38 12 eqeltrd ( 𝜑 → ( 𝐹 ‘ ( 𝐻𝑋 ) ) ∈ 𝐴 )
40 11 1 15 cvmsiota ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑇 ∈ ( 𝑆𝐴 ) ∧ ( 𝐻𝑋 ) ∈ 𝐵 ∧ ( 𝐹 ‘ ( 𝐻𝑋 ) ) ∈ 𝐴 ) ) → ( 𝑊𝑇 ∧ ( 𝐻𝑋 ) ∈ 𝑊 ) )
41 3 13 34 39 40 syl13anc ( 𝜑 → ( 𝑊𝑇 ∧ ( 𝐻𝑋 ) ∈ 𝑊 ) )
42 eqid ( 𝐻𝑋 ) = ( 𝐻𝑋 )
43 1 2 3 4 5 6 7 8 9 10 cvmlift3lem4 ( ( 𝜑𝑋𝑌 ) → ( ( 𝐻𝑋 ) = ( 𝐻𝑋 ) ↔ ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑂 ∧ ( 𝑓 ‘ 1 ) = 𝑋 ∧ ( ( 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑔 ) = ( 𝐺𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻𝑋 ) ) ) )
44 42 43 mpbii ( ( 𝜑𝑋𝑌 ) → ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑂 ∧ ( 𝑓 ‘ 1 ) = 𝑋 ∧ ( ( 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑔 ) = ( 𝐺𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻𝑋 ) ) )
45 33 44 mpdan ( 𝜑 → ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑂 ∧ ( 𝑓 ‘ 1 ) = 𝑋 ∧ ( ( 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑔 ) = ( 𝐺𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻𝑋 ) ) )
46 45 adantr ( ( 𝜑𝑦𝑀 ) → ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑂 ∧ ( 𝑓 ‘ 1 ) = 𝑋 ∧ ( ( 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑔 ) = ( 𝐺𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻𝑋 ) ) )
47 fveq1 ( 𝑓 = → ( 𝑓 ‘ 0 ) = ( ‘ 0 ) )
48 47 eqeq1d ( 𝑓 = → ( ( 𝑓 ‘ 0 ) = 𝑂 ↔ ( ‘ 0 ) = 𝑂 ) )
49 fveq1 ( 𝑓 = → ( 𝑓 ‘ 1 ) = ( ‘ 1 ) )
50 49 eqeq1d ( 𝑓 = → ( ( 𝑓 ‘ 1 ) = 𝑋 ↔ ( ‘ 1 ) = 𝑋 ) )
51 coeq2 ( 𝑓 = → ( 𝐺𝑓 ) = ( 𝐺 ) )
52 51 eqeq2d ( 𝑓 = → ( ( 𝐹𝑔 ) = ( 𝐺𝑓 ) ↔ ( 𝐹𝑔 ) = ( 𝐺 ) ) )
53 52 anbi1d ( 𝑓 = → ( ( ( 𝐹𝑔 ) = ( 𝐺𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ↔ ( ( 𝐹𝑔 ) = ( 𝐺 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) )
54 53 riotabidv ( 𝑓 = → ( 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑔 ) = ( 𝐺𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) = ( 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑔 ) = ( 𝐺 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) )
55 coeq2 ( 𝑎 = 𝑔 → ( 𝐹𝑎 ) = ( 𝐹𝑔 ) )
56 55 eqeq1d ( 𝑎 = 𝑔 → ( ( 𝐹𝑎 ) = ( 𝐺 ) ↔ ( 𝐹𝑔 ) = ( 𝐺 ) ) )
57 fveq1 ( 𝑎 = 𝑔 → ( 𝑎 ‘ 0 ) = ( 𝑔 ‘ 0 ) )
58 57 eqeq1d ( 𝑎 = 𝑔 → ( ( 𝑎 ‘ 0 ) = 𝑃 ↔ ( 𝑔 ‘ 0 ) = 𝑃 ) )
59 56 58 anbi12d ( 𝑎 = 𝑔 → ( ( ( 𝐹𝑎 ) = ( 𝐺 ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ↔ ( ( 𝐹𝑔 ) = ( 𝐺 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) )
60 59 cbvriotavw ( 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑎 ) = ( 𝐺 ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) = ( 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑔 ) = ( 𝐺 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) )
61 54 60 eqtr4di ( 𝑓 = → ( 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑔 ) = ( 𝐺𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) = ( 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑎 ) = ( 𝐺 ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) )
62 61 fveq1d ( 𝑓 = → ( ( 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑔 ) = ( 𝐺𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( ( 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑎 ) = ( 𝐺 ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) )
63 62 eqeq1d ( 𝑓 = → ( ( ( 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑔 ) = ( 𝐺𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻𝑋 ) ↔ ( ( 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑎 ) = ( 𝐺 ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻𝑋 ) ) )
64 48 50 63 3anbi123d ( 𝑓 = → ( ( ( 𝑓 ‘ 0 ) = 𝑂 ∧ ( 𝑓 ‘ 1 ) = 𝑋 ∧ ( ( 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑔 ) = ( 𝐺𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻𝑋 ) ) ↔ ( ( ‘ 0 ) = 𝑂 ∧ ( ‘ 1 ) = 𝑋 ∧ ( ( 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑎 ) = ( 𝐺 ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻𝑋 ) ) ) )
65 64 cbvrexvw ( ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑂 ∧ ( 𝑓 ‘ 1 ) = 𝑋 ∧ ( ( 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑔 ) = ( 𝐺𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻𝑋 ) ) ↔ ∃ ∈ ( II Cn 𝐾 ) ( ( ‘ 0 ) = 𝑂 ∧ ( ‘ 1 ) = 𝑋 ∧ ( ( 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑎 ) = ( 𝐺 ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻𝑋 ) ) )
66 46 65 sylib ( ( 𝜑𝑦𝑀 ) → ∃ ∈ ( II Cn 𝐾 ) ( ( ‘ 0 ) = 𝑂 ∧ ( ‘ 1 ) = 𝑋 ∧ ( ( 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑎 ) = ( 𝐺 ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻𝑋 ) ) )
67 16 adantr ( ( 𝜑𝑦𝑀 ) → ( 𝐾t 𝑀 ) ∈ PConn )
68 2 restuni ( ( 𝐾 ∈ Top ∧ 𝑀𝑌 ) → 𝑀 = ( 𝐾t 𝑀 ) )
69 24 31 68 syl2anc ( 𝜑𝑀 = ( 𝐾t 𝑀 ) )
70 32 69 eleqtrd ( 𝜑𝑋 ( 𝐾t 𝑀 ) )
71 70 adantr ( ( 𝜑𝑦𝑀 ) → 𝑋 ( 𝐾t 𝑀 ) )
72 69 eleq2d ( 𝜑 → ( 𝑦𝑀𝑦 ( 𝐾t 𝑀 ) ) )
73 72 biimpa ( ( 𝜑𝑦𝑀 ) → 𝑦 ( 𝐾t 𝑀 ) )
74 eqid ( 𝐾t 𝑀 ) = ( 𝐾t 𝑀 )
75 74 pconncn ( ( ( 𝐾t 𝑀 ) ∈ PConn ∧ 𝑋 ( 𝐾t 𝑀 ) ∧ 𝑦 ( 𝐾t 𝑀 ) ) → ∃ 𝑛 ∈ ( II Cn ( 𝐾t 𝑀 ) ) ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) )
76 67 71 73 75 syl3anc ( ( 𝜑𝑦𝑀 ) → ∃ 𝑛 ∈ ( II Cn ( 𝐾t 𝑀 ) ) ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) )
77 reeanv ( ∃ ∈ ( II Cn 𝐾 ) ∃ 𝑛 ∈ ( II Cn ( 𝐾t 𝑀 ) ) ( ( ( ‘ 0 ) = 𝑂 ∧ ( ‘ 1 ) = 𝑋 ∧ ( ( 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑎 ) = ( 𝐺 ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻𝑋 ) ) ∧ ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) ↔ ( ∃ ∈ ( II Cn 𝐾 ) ( ( ‘ 0 ) = 𝑂 ∧ ( ‘ 1 ) = 𝑋 ∧ ( ( 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑎 ) = ( 𝐺 ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻𝑋 ) ) ∧ ∃ 𝑛 ∈ ( II Cn ( 𝐾t 𝑀 ) ) ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) )
78 3 ad3antrrr ( ( ( ( 𝜑𝑦𝑀 ) ∧ ( ∈ ( II Cn 𝐾 ) ∧ 𝑛 ∈ ( II Cn ( 𝐾t 𝑀 ) ) ) ) ∧ ( ( ( ‘ 0 ) = 𝑂 ∧ ( ‘ 1 ) = 𝑋 ∧ ( ( 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑎 ) = ( 𝐺 ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻𝑋 ) ) ∧ ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) ) → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) )
79 4 ad3antrrr ( ( ( ( 𝜑𝑦𝑀 ) ∧ ( ∈ ( II Cn 𝐾 ) ∧ 𝑛 ∈ ( II Cn ( 𝐾t 𝑀 ) ) ) ) ∧ ( ( ( ‘ 0 ) = 𝑂 ∧ ( ‘ 1 ) = 𝑋 ∧ ( ( 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑎 ) = ( 𝐺 ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻𝑋 ) ) ∧ ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) ) → 𝐾 ∈ SConn )
80 5 ad3antrrr ( ( ( ( 𝜑𝑦𝑀 ) ∧ ( ∈ ( II Cn 𝐾 ) ∧ 𝑛 ∈ ( II Cn ( 𝐾t 𝑀 ) ) ) ) ∧ ( ( ( ‘ 0 ) = 𝑂 ∧ ( ‘ 1 ) = 𝑋 ∧ ( ( 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑎 ) = ( 𝐺 ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻𝑋 ) ) ∧ ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) ) → 𝐾 ∈ 𝑛-Locally PConn )
81 6 ad3antrrr ( ( ( ( 𝜑𝑦𝑀 ) ∧ ( ∈ ( II Cn 𝐾 ) ∧ 𝑛 ∈ ( II Cn ( 𝐾t 𝑀 ) ) ) ) ∧ ( ( ( ‘ 0 ) = 𝑂 ∧ ( ‘ 1 ) = 𝑋 ∧ ( ( 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑎 ) = ( 𝐺 ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻𝑋 ) ) ∧ ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) ) → 𝑂𝑌 )
82 7 ad3antrrr ( ( ( ( 𝜑𝑦𝑀 ) ∧ ( ∈ ( II Cn 𝐾 ) ∧ 𝑛 ∈ ( II Cn ( 𝐾t 𝑀 ) ) ) ) ∧ ( ( ( ‘ 0 ) = 𝑂 ∧ ( ‘ 1 ) = 𝑋 ∧ ( ( 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑎 ) = ( 𝐺 ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻𝑋 ) ) ∧ ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) ) → 𝐺 ∈ ( 𝐾 Cn 𝐽 ) )
83 8 ad3antrrr ( ( ( ( 𝜑𝑦𝑀 ) ∧ ( ∈ ( II Cn 𝐾 ) ∧ 𝑛 ∈ ( II Cn ( 𝐾t 𝑀 ) ) ) ) ∧ ( ( ( ‘ 0 ) = 𝑂 ∧ ( ‘ 1 ) = 𝑋 ∧ ( ( 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑎 ) = ( 𝐺 ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻𝑋 ) ) ∧ ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) ) → 𝑃𝐵 )
84 9 ad3antrrr ( ( ( ( 𝜑𝑦𝑀 ) ∧ ( ∈ ( II Cn 𝐾 ) ∧ 𝑛 ∈ ( II Cn ( 𝐾t 𝑀 ) ) ) ) ∧ ( ( ( ‘ 0 ) = 𝑂 ∧ ( ‘ 1 ) = 𝑋 ∧ ( ( 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑎 ) = ( 𝐺 ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻𝑋 ) ) ∧ ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) ) → ( 𝐹𝑃 ) = ( 𝐺𝑂 ) )
85 12 ad3antrrr ( ( ( ( 𝜑𝑦𝑀 ) ∧ ( ∈ ( II Cn 𝐾 ) ∧ 𝑛 ∈ ( II Cn ( 𝐾t 𝑀 ) ) ) ) ∧ ( ( ( ‘ 0 ) = 𝑂 ∧ ( ‘ 1 ) = 𝑋 ∧ ( ( 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑎 ) = ( 𝐺 ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻𝑋 ) ) ∧ ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) ) → ( 𝐺𝑋 ) ∈ 𝐴 )
86 13 ad3antrrr ( ( ( ( 𝜑𝑦𝑀 ) ∧ ( ∈ ( II Cn 𝐾 ) ∧ 𝑛 ∈ ( II Cn ( 𝐾t 𝑀 ) ) ) ) ∧ ( ( ( ‘ 0 ) = 𝑂 ∧ ( ‘ 1 ) = 𝑋 ∧ ( ( 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑎 ) = ( 𝐺 ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻𝑋 ) ) ∧ ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) ) → 𝑇 ∈ ( 𝑆𝐴 ) )
87 14 ad3antrrr ( ( ( ( 𝜑𝑦𝑀 ) ∧ ( ∈ ( II Cn 𝐾 ) ∧ 𝑛 ∈ ( II Cn ( 𝐾t 𝑀 ) ) ) ) ∧ ( ( ( ‘ 0 ) = 𝑂 ∧ ( ‘ 1 ) = 𝑋 ∧ ( ( 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑎 ) = ( 𝐺 ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻𝑋 ) ) ∧ ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) ) → 𝑀 ⊆ ( 𝐺𝐴 ) )
88 32 ad3antrrr ( ( ( ( 𝜑𝑦𝑀 ) ∧ ( ∈ ( II Cn 𝐾 ) ∧ 𝑛 ∈ ( II Cn ( 𝐾t 𝑀 ) ) ) ) ∧ ( ( ( ‘ 0 ) = 𝑂 ∧ ( ‘ 1 ) = 𝑋 ∧ ( ( 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑎 ) = ( 𝐺 ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻𝑋 ) ) ∧ ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) ) → 𝑋𝑀 )
89 simpllr ( ( ( ( 𝜑𝑦𝑀 ) ∧ ( ∈ ( II Cn 𝐾 ) ∧ 𝑛 ∈ ( II Cn ( 𝐾t 𝑀 ) ) ) ) ∧ ( ( ( ‘ 0 ) = 𝑂 ∧ ( ‘ 1 ) = 𝑋 ∧ ( ( 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑎 ) = ( 𝐺 ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻𝑋 ) ) ∧ ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) ) → 𝑦𝑀 )
90 simplrl ( ( ( ( 𝜑𝑦𝑀 ) ∧ ( ∈ ( II Cn 𝐾 ) ∧ 𝑛 ∈ ( II Cn ( 𝐾t 𝑀 ) ) ) ) ∧ ( ( ( ‘ 0 ) = 𝑂 ∧ ( ‘ 1 ) = 𝑋 ∧ ( ( 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑎 ) = ( 𝐺 ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻𝑋 ) ) ∧ ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) ) → ∈ ( II Cn 𝐾 ) )
91 simprl ( ( ( ( 𝜑𝑦𝑀 ) ∧ ( ∈ ( II Cn 𝐾 ) ∧ 𝑛 ∈ ( II Cn ( 𝐾t 𝑀 ) ) ) ) ∧ ( ( ( ‘ 0 ) = 𝑂 ∧ ( ‘ 1 ) = 𝑋 ∧ ( ( 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑎 ) = ( 𝐺 ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻𝑋 ) ) ∧ ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) ) → ( ( ‘ 0 ) = 𝑂 ∧ ( ‘ 1 ) = 𝑋 ∧ ( ( 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑎 ) = ( 𝐺 ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻𝑋 ) ) )
92 simplrr ( ( ( ( 𝜑𝑦𝑀 ) ∧ ( ∈ ( II Cn 𝐾 ) ∧ 𝑛 ∈ ( II Cn ( 𝐾t 𝑀 ) ) ) ) ∧ ( ( ( ‘ 0 ) = 𝑂 ∧ ( ‘ 1 ) = 𝑋 ∧ ( ( 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑎 ) = ( 𝐺 ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻𝑋 ) ) ∧ ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) ) → 𝑛 ∈ ( II Cn ( 𝐾t 𝑀 ) ) )
93 simprr ( ( ( ( 𝜑𝑦𝑀 ) ∧ ( ∈ ( II Cn 𝐾 ) ∧ 𝑛 ∈ ( II Cn ( 𝐾t 𝑀 ) ) ) ) ∧ ( ( ( ‘ 0 ) = 𝑂 ∧ ( ‘ 1 ) = 𝑋 ∧ ( ( 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑎 ) = ( 𝐺 ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻𝑋 ) ) ∧ ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) ) → ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) )
94 55 eqeq1d ( 𝑎 = 𝑔 → ( ( 𝐹𝑎 ) = ( 𝐺𝑛 ) ↔ ( 𝐹𝑔 ) = ( 𝐺𝑛 ) ) )
95 57 eqeq1d ( 𝑎 = 𝑔 → ( ( 𝑎 ‘ 0 ) = ( 𝐻𝑋 ) ↔ ( 𝑔 ‘ 0 ) = ( 𝐻𝑋 ) ) )
96 94 95 anbi12d ( 𝑎 = 𝑔 → ( ( ( 𝐹𝑎 ) = ( 𝐺𝑛 ) ∧ ( 𝑎 ‘ 0 ) = ( 𝐻𝑋 ) ) ↔ ( ( 𝐹𝑔 ) = ( 𝐺𝑛 ) ∧ ( 𝑔 ‘ 0 ) = ( 𝐻𝑋 ) ) ) )
97 96 cbvriotavw ( 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑎 ) = ( 𝐺𝑛 ) ∧ ( 𝑎 ‘ 0 ) = ( 𝐻𝑋 ) ) ) = ( 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑔 ) = ( 𝐺𝑛 ) ∧ ( 𝑔 ‘ 0 ) = ( 𝐻𝑋 ) ) )
98 1 2 78 79 80 81 82 83 84 10 11 85 86 87 15 88 89 90 60 91 92 93 97 cvmlift3lem6 ( ( ( ( 𝜑𝑦𝑀 ) ∧ ( ∈ ( II Cn 𝐾 ) ∧ 𝑛 ∈ ( II Cn ( 𝐾t 𝑀 ) ) ) ) ∧ ( ( ( ‘ 0 ) = 𝑂 ∧ ( ‘ 1 ) = 𝑋 ∧ ( ( 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑎 ) = ( 𝐺 ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻𝑋 ) ) ∧ ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) ) → ( 𝐻𝑦 ) ∈ 𝑊 )
99 98 ex ( ( ( 𝜑𝑦𝑀 ) ∧ ( ∈ ( II Cn 𝐾 ) ∧ 𝑛 ∈ ( II Cn ( 𝐾t 𝑀 ) ) ) ) → ( ( ( ( ‘ 0 ) = 𝑂 ∧ ( ‘ 1 ) = 𝑋 ∧ ( ( 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑎 ) = ( 𝐺 ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻𝑋 ) ) ∧ ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) → ( 𝐻𝑦 ) ∈ 𝑊 ) )
100 99 rexlimdvva ( ( 𝜑𝑦𝑀 ) → ( ∃ ∈ ( II Cn 𝐾 ) ∃ 𝑛 ∈ ( II Cn ( 𝐾t 𝑀 ) ) ( ( ( ‘ 0 ) = 𝑂 ∧ ( ‘ 1 ) = 𝑋 ∧ ( ( 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑎 ) = ( 𝐺 ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻𝑋 ) ) ∧ ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) → ( 𝐻𝑦 ) ∈ 𝑊 ) )
101 77 100 syl5bir ( ( 𝜑𝑦𝑀 ) → ( ( ∃ ∈ ( II Cn 𝐾 ) ( ( ‘ 0 ) = 𝑂 ∧ ( ‘ 1 ) = 𝑋 ∧ ( ( 𝑎 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑎 ) = ( 𝐺 ) ∧ ( 𝑎 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( 𝐻𝑋 ) ) ∧ ∃ 𝑛 ∈ ( II Cn ( 𝐾t 𝑀 ) ) ( ( 𝑛 ‘ 0 ) = 𝑋 ∧ ( 𝑛 ‘ 1 ) = 𝑦 ) ) → ( 𝐻𝑦 ) ∈ 𝑊 ) )
102 66 76 101 mp2and ( ( 𝜑𝑦𝑀 ) → ( 𝐻𝑦 ) ∈ 𝑊 )
103 102 ralrimiva ( 𝜑 → ∀ 𝑦𝑀 ( 𝐻𝑦 ) ∈ 𝑊 )
104 20 ffund ( 𝜑 → Fun 𝐻 )
105 20 fdmd ( 𝜑 → dom 𝐻 = 𝑌 )
106 31 105 sseqtrrd ( 𝜑𝑀 ⊆ dom 𝐻 )
107 funimass4 ( ( Fun 𝐻𝑀 ⊆ dom 𝐻 ) → ( ( 𝐻𝑀 ) ⊆ 𝑊 ↔ ∀ 𝑦𝑀 ( 𝐻𝑦 ) ∈ 𝑊 ) )
108 104 106 107 syl2anc ( 𝜑 → ( ( 𝐻𝑀 ) ⊆ 𝑊 ↔ ∀ 𝑦𝑀 ( 𝐻𝑦 ) ∈ 𝑊 ) )
109 103 108 mpbird ( 𝜑 → ( 𝐻𝑀 ) ⊆ 𝑊 )
110 1 2 11 3 20 22 24 33 13 41 31 109 cvmlift2lem9a ( 𝜑 → ( 𝐻𝑀 ) ∈ ( ( 𝐾t 𝑀 ) Cn 𝐶 ) )
111 74 cncnpi ( ( ( 𝐻𝑀 ) ∈ ( ( 𝐾t 𝑀 ) Cn 𝐶 ) ∧ 𝑋 ( 𝐾t 𝑀 ) ) → ( 𝐻𝑀 ) ∈ ( ( ( 𝐾t 𝑀 ) CnP 𝐶 ) ‘ 𝑋 ) )
112 110 70 111 syl2anc ( 𝜑 → ( 𝐻𝑀 ) ∈ ( ( ( 𝐾t 𝑀 ) CnP 𝐶 ) ‘ 𝑋 ) )
113 2 ssntr ( ( ( 𝐾 ∈ Top ∧ 𝑀𝑌 ) ∧ ( 𝑉𝐾𝑉𝑀 ) ) → 𝑉 ⊆ ( ( int ‘ 𝐾 ) ‘ 𝑀 ) )
114 24 31 17 18 113 syl22anc ( 𝜑𝑉 ⊆ ( ( int ‘ 𝐾 ) ‘ 𝑀 ) )
115 114 19 sseldd ( 𝜑𝑋 ∈ ( ( int ‘ 𝐾 ) ‘ 𝑀 ) )
116 2 1 cnprest ( ( ( 𝐾 ∈ Top ∧ 𝑀𝑌 ) ∧ ( 𝑋 ∈ ( ( int ‘ 𝐾 ) ‘ 𝑀 ) ∧ 𝐻 : 𝑌𝐵 ) ) → ( 𝐻 ∈ ( ( 𝐾 CnP 𝐶 ) ‘ 𝑋 ) ↔ ( 𝐻𝑀 ) ∈ ( ( ( 𝐾t 𝑀 ) CnP 𝐶 ) ‘ 𝑋 ) ) )
117 24 31 115 20 116 syl22anc ( 𝜑 → ( 𝐻 ∈ ( ( 𝐾 CnP 𝐶 ) ‘ 𝑋 ) ↔ ( 𝐻𝑀 ) ∈ ( ( ( 𝐾t 𝑀 ) CnP 𝐶 ) ‘ 𝑋 ) ) )
118 112 117 mpbird ( 𝜑𝐻 ∈ ( ( 𝐾 CnP 𝐶 ) ‘ 𝑋 ) )