| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmlift3.b | ⊢ 𝐵  =  ∪  𝐶 | 
						
							| 2 |  | cvmlift3.y | ⊢ 𝑌  =  ∪  𝐾 | 
						
							| 3 |  | cvmlift3.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 4 |  | cvmlift3.k | ⊢ ( 𝜑  →  𝐾  ∈  SConn ) | 
						
							| 5 |  | cvmlift3.l | ⊢ ( 𝜑  →  𝐾  ∈  𝑛-Locally  PConn ) | 
						
							| 6 |  | cvmlift3.o | ⊢ ( 𝜑  →  𝑂  ∈  𝑌 ) | 
						
							| 7 |  | cvmlift3.g | ⊢ ( 𝜑  →  𝐺  ∈  ( 𝐾  Cn  𝐽 ) ) | 
						
							| 8 |  | cvmlift3.p | ⊢ ( 𝜑  →  𝑃  ∈  𝐵 ) | 
						
							| 9 |  | cvmlift3.e | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑂 ) ) | 
						
							| 10 |  | cvmlift3.h | ⊢ 𝐻  =  ( 𝑥  ∈  𝑌  ↦  ( ℩ 𝑧  ∈  𝐵 ∃ 𝑓  ∈  ( II  Cn  𝐾 ) ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑥  ∧  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  𝑧 ) ) ) | 
						
							| 11 |  | cvmlift3lem7.s | ⊢ 𝑆  =  ( 𝑘  ∈  𝐽  ↦  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑐  ∈  𝑠 ( ∀ 𝑑  ∈  ( 𝑠  ∖  { 𝑐 } ) ( 𝑐  ∩  𝑑 )  =  ∅  ∧  ( 𝐹  ↾  𝑐 )  ∈  ( ( 𝐶  ↾t  𝑐 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } ) | 
						
							| 12 | 1 2 3 4 5 6 7 8 9 10 | cvmlift3lem3 | ⊢ ( 𝜑  →  𝐻 : 𝑌 ⟶ 𝐵 ) | 
						
							| 13 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 14 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 15 | 2 14 | cnf | ⊢ ( 𝐺  ∈  ( 𝐾  Cn  𝐽 )  →  𝐺 : 𝑌 ⟶ ∪  𝐽 ) | 
						
							| 16 | 7 15 | syl | ⊢ ( 𝜑  →  𝐺 : 𝑌 ⟶ ∪  𝐽 ) | 
						
							| 17 | 16 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  ( 𝐺 ‘ 𝑦 )  ∈  ∪  𝐽 ) | 
						
							| 18 | 11 14 | cvmcov | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  ( 𝐺 ‘ 𝑦 )  ∈  ∪  𝐽 )  →  ∃ 𝑎  ∈  𝐽 ( ( 𝐺 ‘ 𝑦 )  ∈  𝑎  ∧  ( 𝑆 ‘ 𝑎 )  ≠  ∅ ) ) | 
						
							| 19 | 13 17 18 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  ∃ 𝑎  ∈  𝐽 ( ( 𝐺 ‘ 𝑦 )  ∈  𝑎  ∧  ( 𝑆 ‘ 𝑎 )  ≠  ∅ ) ) | 
						
							| 20 |  | n0 | ⊢ ( ( 𝑆 ‘ 𝑎 )  ≠  ∅  ↔  ∃ 𝑡 𝑡  ∈  ( 𝑆 ‘ 𝑎 ) ) | 
						
							| 21 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  ( ( 𝐺 ‘ 𝑦 )  ∈  𝑎  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑎 ) ) )  →  𝐾  ∈  𝑛-Locally  PConn ) | 
						
							| 22 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  ( ( 𝐺 ‘ 𝑦 )  ∈  𝑎  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑎 ) ) )  →  𝐺  ∈  ( 𝐾  Cn  𝐽 ) ) | 
						
							| 23 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  ( ( 𝐺 ‘ 𝑦 )  ∈  𝑎  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑎 ) ) )  →  𝑡  ∈  ( 𝑆 ‘ 𝑎 ) ) | 
						
							| 24 | 11 | cvmsrcl | ⊢ ( 𝑡  ∈  ( 𝑆 ‘ 𝑎 )  →  𝑎  ∈  𝐽 ) | 
						
							| 25 | 23 24 | syl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  ( ( 𝐺 ‘ 𝑦 )  ∈  𝑎  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑎 ) ) )  →  𝑎  ∈  𝐽 ) | 
						
							| 26 |  | cnima | ⊢ ( ( 𝐺  ∈  ( 𝐾  Cn  𝐽 )  ∧  𝑎  ∈  𝐽 )  →  ( ◡ 𝐺  “  𝑎 )  ∈  𝐾 ) | 
						
							| 27 | 22 25 26 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  ( ( 𝐺 ‘ 𝑦 )  ∈  𝑎  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑎 ) ) )  →  ( ◡ 𝐺  “  𝑎 )  ∈  𝐾 ) | 
						
							| 28 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  ( ( 𝐺 ‘ 𝑦 )  ∈  𝑎  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑎 ) ) )  →  𝑦  ∈  𝑌 ) | 
						
							| 29 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  ( ( 𝐺 ‘ 𝑦 )  ∈  𝑎  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑎 ) ) )  →  ( 𝐺 ‘ 𝑦 )  ∈  𝑎 ) | 
						
							| 30 |  | ffn | ⊢ ( 𝐺 : 𝑌 ⟶ ∪  𝐽  →  𝐺  Fn  𝑌 ) | 
						
							| 31 |  | elpreima | ⊢ ( 𝐺  Fn  𝑌  →  ( 𝑦  ∈  ( ◡ 𝐺  “  𝑎 )  ↔  ( 𝑦  ∈  𝑌  ∧  ( 𝐺 ‘ 𝑦 )  ∈  𝑎 ) ) ) | 
						
							| 32 | 22 15 30 31 | 4syl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  ( ( 𝐺 ‘ 𝑦 )  ∈  𝑎  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑎 ) ) )  →  ( 𝑦  ∈  ( ◡ 𝐺  “  𝑎 )  ↔  ( 𝑦  ∈  𝑌  ∧  ( 𝐺 ‘ 𝑦 )  ∈  𝑎 ) ) ) | 
						
							| 33 | 28 29 32 | mpbir2and | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  ( ( 𝐺 ‘ 𝑦 )  ∈  𝑎  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑎 ) ) )  →  𝑦  ∈  ( ◡ 𝐺  “  𝑎 ) ) | 
						
							| 34 |  | nlly2i | ⊢ ( ( 𝐾  ∈  𝑛-Locally  PConn  ∧  ( ◡ 𝐺  “  𝑎 )  ∈  𝐾  ∧  𝑦  ∈  ( ◡ 𝐺  “  𝑎 ) )  →  ∃ 𝑚  ∈  𝒫  ( ◡ 𝐺  “  𝑎 ) ∃ 𝑣  ∈  𝐾 ( 𝑦  ∈  𝑣  ∧  𝑣  ⊆  𝑚  ∧  ( 𝐾  ↾t  𝑚 )  ∈  PConn ) ) | 
						
							| 35 | 21 27 33 34 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  ( ( 𝐺 ‘ 𝑦 )  ∈  𝑎  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑎 ) ) )  →  ∃ 𝑚  ∈  𝒫  ( ◡ 𝐺  “  𝑎 ) ∃ 𝑣  ∈  𝐾 ( 𝑦  ∈  𝑣  ∧  𝑣  ⊆  𝑚  ∧  ( 𝐾  ↾t  𝑚 )  ∈  PConn ) ) | 
						
							| 36 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  ( ( 𝐺 ‘ 𝑦 )  ∈  𝑎  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑎 ) ) )  ∧  ( ( 𝑚  ∈  𝒫  ( ◡ 𝐺  “  𝑎 )  ∧  𝑣  ∈  𝐾 )  ∧  ( 𝑦  ∈  𝑣  ∧  𝑣  ⊆  𝑚  ∧  ( 𝐾  ↾t  𝑚 )  ∈  PConn ) ) )  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 37 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  ( ( 𝐺 ‘ 𝑦 )  ∈  𝑎  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑎 ) ) )  ∧  ( ( 𝑚  ∈  𝒫  ( ◡ 𝐺  “  𝑎 )  ∧  𝑣  ∈  𝐾 )  ∧  ( 𝑦  ∈  𝑣  ∧  𝑣  ⊆  𝑚  ∧  ( 𝐾  ↾t  𝑚 )  ∈  PConn ) ) )  →  𝐾  ∈  SConn ) | 
						
							| 38 | 5 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  ( ( 𝐺 ‘ 𝑦 )  ∈  𝑎  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑎 ) ) )  ∧  ( ( 𝑚  ∈  𝒫  ( ◡ 𝐺  “  𝑎 )  ∧  𝑣  ∈  𝐾 )  ∧  ( 𝑦  ∈  𝑣  ∧  𝑣  ⊆  𝑚  ∧  ( 𝐾  ↾t  𝑚 )  ∈  PConn ) ) )  →  𝐾  ∈  𝑛-Locally  PConn ) | 
						
							| 39 | 6 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  ( ( 𝐺 ‘ 𝑦 )  ∈  𝑎  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑎 ) ) )  ∧  ( ( 𝑚  ∈  𝒫  ( ◡ 𝐺  “  𝑎 )  ∧  𝑣  ∈  𝐾 )  ∧  ( 𝑦  ∈  𝑣  ∧  𝑣  ⊆  𝑚  ∧  ( 𝐾  ↾t  𝑚 )  ∈  PConn ) ) )  →  𝑂  ∈  𝑌 ) | 
						
							| 40 | 7 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  ( ( 𝐺 ‘ 𝑦 )  ∈  𝑎  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑎 ) ) )  ∧  ( ( 𝑚  ∈  𝒫  ( ◡ 𝐺  “  𝑎 )  ∧  𝑣  ∈  𝐾 )  ∧  ( 𝑦  ∈  𝑣  ∧  𝑣  ⊆  𝑚  ∧  ( 𝐾  ↾t  𝑚 )  ∈  PConn ) ) )  →  𝐺  ∈  ( 𝐾  Cn  𝐽 ) ) | 
						
							| 41 | 8 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  ( ( 𝐺 ‘ 𝑦 )  ∈  𝑎  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑎 ) ) )  ∧  ( ( 𝑚  ∈  𝒫  ( ◡ 𝐺  “  𝑎 )  ∧  𝑣  ∈  𝐾 )  ∧  ( 𝑦  ∈  𝑣  ∧  𝑣  ⊆  𝑚  ∧  ( 𝐾  ↾t  𝑚 )  ∈  PConn ) ) )  →  𝑃  ∈  𝐵 ) | 
						
							| 42 | 9 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  ( ( 𝐺 ‘ 𝑦 )  ∈  𝑎  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑎 ) ) )  ∧  ( ( 𝑚  ∈  𝒫  ( ◡ 𝐺  “  𝑎 )  ∧  𝑣  ∈  𝐾 )  ∧  ( 𝑦  ∈  𝑣  ∧  𝑣  ⊆  𝑚  ∧  ( 𝐾  ↾t  𝑚 )  ∈  PConn ) ) )  →  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑂 ) ) | 
						
							| 43 | 29 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  ( ( 𝐺 ‘ 𝑦 )  ∈  𝑎  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑎 ) ) )  ∧  ( ( 𝑚  ∈  𝒫  ( ◡ 𝐺  “  𝑎 )  ∧  𝑣  ∈  𝐾 )  ∧  ( 𝑦  ∈  𝑣  ∧  𝑣  ⊆  𝑚  ∧  ( 𝐾  ↾t  𝑚 )  ∈  PConn ) ) )  →  ( 𝐺 ‘ 𝑦 )  ∈  𝑎 ) | 
						
							| 44 | 23 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  ( ( 𝐺 ‘ 𝑦 )  ∈  𝑎  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑎 ) ) )  ∧  ( ( 𝑚  ∈  𝒫  ( ◡ 𝐺  “  𝑎 )  ∧  𝑣  ∈  𝐾 )  ∧  ( 𝑦  ∈  𝑣  ∧  𝑣  ⊆  𝑚  ∧  ( 𝐾  ↾t  𝑚 )  ∈  PConn ) ) )  →  𝑡  ∈  ( 𝑆 ‘ 𝑎 ) ) | 
						
							| 45 |  | simprll | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  ( ( 𝐺 ‘ 𝑦 )  ∈  𝑎  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑎 ) ) )  ∧  ( ( 𝑚  ∈  𝒫  ( ◡ 𝐺  “  𝑎 )  ∧  𝑣  ∈  𝐾 )  ∧  ( 𝑦  ∈  𝑣  ∧  𝑣  ⊆  𝑚  ∧  ( 𝐾  ↾t  𝑚 )  ∈  PConn ) ) )  →  𝑚  ∈  𝒫  ( ◡ 𝐺  “  𝑎 ) ) | 
						
							| 46 | 45 | elpwid | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  ( ( 𝐺 ‘ 𝑦 )  ∈  𝑎  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑎 ) ) )  ∧  ( ( 𝑚  ∈  𝒫  ( ◡ 𝐺  “  𝑎 )  ∧  𝑣  ∈  𝐾 )  ∧  ( 𝑦  ∈  𝑣  ∧  𝑣  ⊆  𝑚  ∧  ( 𝐾  ↾t  𝑚 )  ∈  PConn ) ) )  →  𝑚  ⊆  ( ◡ 𝐺  “  𝑎 ) ) | 
						
							| 47 |  | eqid | ⊢ ( ℩ 𝑏  ∈  𝑡 ( 𝐻 ‘ 𝑦 )  ∈  𝑏 )  =  ( ℩ 𝑏  ∈  𝑡 ( 𝐻 ‘ 𝑦 )  ∈  𝑏 ) | 
						
							| 48 |  | simprr3 | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  ( ( 𝐺 ‘ 𝑦 )  ∈  𝑎  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑎 ) ) )  ∧  ( ( 𝑚  ∈  𝒫  ( ◡ 𝐺  “  𝑎 )  ∧  𝑣  ∈  𝐾 )  ∧  ( 𝑦  ∈  𝑣  ∧  𝑣  ⊆  𝑚  ∧  ( 𝐾  ↾t  𝑚 )  ∈  PConn ) ) )  →  ( 𝐾  ↾t  𝑚 )  ∈  PConn ) | 
						
							| 49 |  | simprlr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  ( ( 𝐺 ‘ 𝑦 )  ∈  𝑎  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑎 ) ) )  ∧  ( ( 𝑚  ∈  𝒫  ( ◡ 𝐺  “  𝑎 )  ∧  𝑣  ∈  𝐾 )  ∧  ( 𝑦  ∈  𝑣  ∧  𝑣  ⊆  𝑚  ∧  ( 𝐾  ↾t  𝑚 )  ∈  PConn ) ) )  →  𝑣  ∈  𝐾 ) | 
						
							| 50 |  | simprr2 | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  ( ( 𝐺 ‘ 𝑦 )  ∈  𝑎  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑎 ) ) )  ∧  ( ( 𝑚  ∈  𝒫  ( ◡ 𝐺  “  𝑎 )  ∧  𝑣  ∈  𝐾 )  ∧  ( 𝑦  ∈  𝑣  ∧  𝑣  ⊆  𝑚  ∧  ( 𝐾  ↾t  𝑚 )  ∈  PConn ) ) )  →  𝑣  ⊆  𝑚 ) | 
						
							| 51 |  | simprr1 | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  ( ( 𝐺 ‘ 𝑦 )  ∈  𝑎  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑎 ) ) )  ∧  ( ( 𝑚  ∈  𝒫  ( ◡ 𝐺  “  𝑎 )  ∧  𝑣  ∈  𝐾 )  ∧  ( 𝑦  ∈  𝑣  ∧  𝑣  ⊆  𝑚  ∧  ( 𝐾  ↾t  𝑚 )  ∈  PConn ) ) )  →  𝑦  ∈  𝑣 ) | 
						
							| 52 | 1 2 36 37 38 39 40 41 42 10 11 43 44 46 47 48 49 50 51 | cvmlift3lem7 | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  ( ( 𝐺 ‘ 𝑦 )  ∈  𝑎  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑎 ) ) )  ∧  ( ( 𝑚  ∈  𝒫  ( ◡ 𝐺  “  𝑎 )  ∧  𝑣  ∈  𝐾 )  ∧  ( 𝑦  ∈  𝑣  ∧  𝑣  ⊆  𝑚  ∧  ( 𝐾  ↾t  𝑚 )  ∈  PConn ) ) )  →  𝐻  ∈  ( ( 𝐾  CnP  𝐶 ) ‘ 𝑦 ) ) | 
						
							| 53 | 52 | expr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  ( ( 𝐺 ‘ 𝑦 )  ∈  𝑎  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑎 ) ) )  ∧  ( 𝑚  ∈  𝒫  ( ◡ 𝐺  “  𝑎 )  ∧  𝑣  ∈  𝐾 ) )  →  ( ( 𝑦  ∈  𝑣  ∧  𝑣  ⊆  𝑚  ∧  ( 𝐾  ↾t  𝑚 )  ∈  PConn )  →  𝐻  ∈  ( ( 𝐾  CnP  𝐶 ) ‘ 𝑦 ) ) ) | 
						
							| 54 | 53 | rexlimdvva | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  ( ( 𝐺 ‘ 𝑦 )  ∈  𝑎  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑎 ) ) )  →  ( ∃ 𝑚  ∈  𝒫  ( ◡ 𝐺  “  𝑎 ) ∃ 𝑣  ∈  𝐾 ( 𝑦  ∈  𝑣  ∧  𝑣  ⊆  𝑚  ∧  ( 𝐾  ↾t  𝑚 )  ∈  PConn )  →  𝐻  ∈  ( ( 𝐾  CnP  𝐶 ) ‘ 𝑦 ) ) ) | 
						
							| 55 | 35 54 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  ( ( 𝐺 ‘ 𝑦 )  ∈  𝑎  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑎 ) ) )  →  𝐻  ∈  ( ( 𝐾  CnP  𝐶 ) ‘ 𝑦 ) ) | 
						
							| 56 | 55 | expr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  ( 𝐺 ‘ 𝑦 )  ∈  𝑎 )  →  ( 𝑡  ∈  ( 𝑆 ‘ 𝑎 )  →  𝐻  ∈  ( ( 𝐾  CnP  𝐶 ) ‘ 𝑦 ) ) ) | 
						
							| 57 | 56 | exlimdv | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  ( 𝐺 ‘ 𝑦 )  ∈  𝑎 )  →  ( ∃ 𝑡 𝑡  ∈  ( 𝑆 ‘ 𝑎 )  →  𝐻  ∈  ( ( 𝐾  CnP  𝐶 ) ‘ 𝑦 ) ) ) | 
						
							| 58 | 20 57 | biimtrid | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  ( 𝐺 ‘ 𝑦 )  ∈  𝑎 )  →  ( ( 𝑆 ‘ 𝑎 )  ≠  ∅  →  𝐻  ∈  ( ( 𝐾  CnP  𝐶 ) ‘ 𝑦 ) ) ) | 
						
							| 59 | 58 | expimpd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  ( ( ( 𝐺 ‘ 𝑦 )  ∈  𝑎  ∧  ( 𝑆 ‘ 𝑎 )  ≠  ∅ )  →  𝐻  ∈  ( ( 𝐾  CnP  𝐶 ) ‘ 𝑦 ) ) ) | 
						
							| 60 | 59 | rexlimdvw | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  ( ∃ 𝑎  ∈  𝐽 ( ( 𝐺 ‘ 𝑦 )  ∈  𝑎  ∧  ( 𝑆 ‘ 𝑎 )  ≠  ∅ )  →  𝐻  ∈  ( ( 𝐾  CnP  𝐶 ) ‘ 𝑦 ) ) ) | 
						
							| 61 | 19 60 | mpd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  𝐻  ∈  ( ( 𝐾  CnP  𝐶 ) ‘ 𝑦 ) ) | 
						
							| 62 | 61 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝑌 𝐻  ∈  ( ( 𝐾  CnP  𝐶 ) ‘ 𝑦 ) ) | 
						
							| 63 |  | sconntop | ⊢ ( 𝐾  ∈  SConn  →  𝐾  ∈  Top ) | 
						
							| 64 | 4 63 | syl | ⊢ ( 𝜑  →  𝐾  ∈  Top ) | 
						
							| 65 | 2 | toptopon | ⊢ ( 𝐾  ∈  Top  ↔  𝐾  ∈  ( TopOn ‘ 𝑌 ) ) | 
						
							| 66 | 64 65 | sylib | ⊢ ( 𝜑  →  𝐾  ∈  ( TopOn ‘ 𝑌 ) ) | 
						
							| 67 |  | cvmtop1 | ⊢ ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  →  𝐶  ∈  Top ) | 
						
							| 68 | 3 67 | syl | ⊢ ( 𝜑  →  𝐶  ∈  Top ) | 
						
							| 69 | 1 | toptopon | ⊢ ( 𝐶  ∈  Top  ↔  𝐶  ∈  ( TopOn ‘ 𝐵 ) ) | 
						
							| 70 | 68 69 | sylib | ⊢ ( 𝜑  →  𝐶  ∈  ( TopOn ‘ 𝐵 ) ) | 
						
							| 71 |  | cncnp | ⊢ ( ( 𝐾  ∈  ( TopOn ‘ 𝑌 )  ∧  𝐶  ∈  ( TopOn ‘ 𝐵 ) )  →  ( 𝐻  ∈  ( 𝐾  Cn  𝐶 )  ↔  ( 𝐻 : 𝑌 ⟶ 𝐵  ∧  ∀ 𝑦  ∈  𝑌 𝐻  ∈  ( ( 𝐾  CnP  𝐶 ) ‘ 𝑦 ) ) ) ) | 
						
							| 72 | 66 70 71 | syl2anc | ⊢ ( 𝜑  →  ( 𝐻  ∈  ( 𝐾  Cn  𝐶 )  ↔  ( 𝐻 : 𝑌 ⟶ 𝐵  ∧  ∀ 𝑦  ∈  𝑌 𝐻  ∈  ( ( 𝐾  CnP  𝐶 ) ‘ 𝑦 ) ) ) ) | 
						
							| 73 | 12 62 72 | mpbir2and | ⊢ ( 𝜑  →  𝐻  ∈  ( 𝐾  Cn  𝐶 ) ) |