Step |
Hyp |
Ref |
Expression |
1 |
|
cvmlift3.b |
⊢ 𝐵 = ∪ 𝐶 |
2 |
|
cvmlift3.y |
⊢ 𝑌 = ∪ 𝐾 |
3 |
|
cvmlift3.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
4 |
|
cvmlift3.k |
⊢ ( 𝜑 → 𝐾 ∈ SConn ) |
5 |
|
cvmlift3.l |
⊢ ( 𝜑 → 𝐾 ∈ 𝑛-Locally PConn ) |
6 |
|
cvmlift3.o |
⊢ ( 𝜑 → 𝑂 ∈ 𝑌 ) |
7 |
|
cvmlift3.g |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐾 Cn 𝐽 ) ) |
8 |
|
cvmlift3.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝐵 ) |
9 |
|
cvmlift3.e |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑂 ) ) |
10 |
|
cvmlift3.h |
⊢ 𝐻 = ( 𝑥 ∈ 𝑌 ↦ ( ℩ 𝑧 ∈ 𝐵 ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑂 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = 𝑧 ) ) ) |
11 |
|
cvmlift3lem7.s |
⊢ 𝑆 = ( 𝑘 ∈ 𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑐 ∈ 𝑠 ( ∀ 𝑑 ∈ ( 𝑠 ∖ { 𝑐 } ) ( 𝑐 ∩ 𝑑 ) = ∅ ∧ ( 𝐹 ↾ 𝑐 ) ∈ ( ( 𝐶 ↾t 𝑐 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } ) |
12 |
1 2 3 4 5 6 7 8 9 10
|
cvmlift3lem3 |
⊢ ( 𝜑 → 𝐻 : 𝑌 ⟶ 𝐵 ) |
13 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
14 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
15 |
2 14
|
cnf |
⊢ ( 𝐺 ∈ ( 𝐾 Cn 𝐽 ) → 𝐺 : 𝑌 ⟶ ∪ 𝐽 ) |
16 |
7 15
|
syl |
⊢ ( 𝜑 → 𝐺 : 𝑌 ⟶ ∪ 𝐽 ) |
17 |
16
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( 𝐺 ‘ 𝑦 ) ∈ ∪ 𝐽 ) |
18 |
11 14
|
cvmcov |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ ∪ 𝐽 ) → ∃ 𝑎 ∈ 𝐽 ( ( 𝐺 ‘ 𝑦 ) ∈ 𝑎 ∧ ( 𝑆 ‘ 𝑎 ) ≠ ∅ ) ) |
19 |
13 17 18
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ∃ 𝑎 ∈ 𝐽 ( ( 𝐺 ‘ 𝑦 ) ∈ 𝑎 ∧ ( 𝑆 ‘ 𝑎 ) ≠ ∅ ) ) |
20 |
|
n0 |
⊢ ( ( 𝑆 ‘ 𝑎 ) ≠ ∅ ↔ ∃ 𝑡 𝑡 ∈ ( 𝑆 ‘ 𝑎 ) ) |
21 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) ∧ ( ( 𝐺 ‘ 𝑦 ) ∈ 𝑎 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑎 ) ) ) → 𝐾 ∈ 𝑛-Locally PConn ) |
22 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) ∧ ( ( 𝐺 ‘ 𝑦 ) ∈ 𝑎 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑎 ) ) ) → 𝐺 ∈ ( 𝐾 Cn 𝐽 ) ) |
23 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) ∧ ( ( 𝐺 ‘ 𝑦 ) ∈ 𝑎 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑎 ) ) ) → 𝑡 ∈ ( 𝑆 ‘ 𝑎 ) ) |
24 |
11
|
cvmsrcl |
⊢ ( 𝑡 ∈ ( 𝑆 ‘ 𝑎 ) → 𝑎 ∈ 𝐽 ) |
25 |
23 24
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) ∧ ( ( 𝐺 ‘ 𝑦 ) ∈ 𝑎 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑎 ) ) ) → 𝑎 ∈ 𝐽 ) |
26 |
|
cnima |
⊢ ( ( 𝐺 ∈ ( 𝐾 Cn 𝐽 ) ∧ 𝑎 ∈ 𝐽 ) → ( ◡ 𝐺 “ 𝑎 ) ∈ 𝐾 ) |
27 |
22 25 26
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) ∧ ( ( 𝐺 ‘ 𝑦 ) ∈ 𝑎 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑎 ) ) ) → ( ◡ 𝐺 “ 𝑎 ) ∈ 𝐾 ) |
28 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) ∧ ( ( 𝐺 ‘ 𝑦 ) ∈ 𝑎 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑎 ) ) ) → 𝑦 ∈ 𝑌 ) |
29 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) ∧ ( ( 𝐺 ‘ 𝑦 ) ∈ 𝑎 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑎 ) ) ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝑎 ) |
30 |
|
ffn |
⊢ ( 𝐺 : 𝑌 ⟶ ∪ 𝐽 → 𝐺 Fn 𝑌 ) |
31 |
|
elpreima |
⊢ ( 𝐺 Fn 𝑌 → ( 𝑦 ∈ ( ◡ 𝐺 “ 𝑎 ) ↔ ( 𝑦 ∈ 𝑌 ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑎 ) ) ) |
32 |
22 15 30 31
|
4syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) ∧ ( ( 𝐺 ‘ 𝑦 ) ∈ 𝑎 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑎 ) ) ) → ( 𝑦 ∈ ( ◡ 𝐺 “ 𝑎 ) ↔ ( 𝑦 ∈ 𝑌 ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑎 ) ) ) |
33 |
28 29 32
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) ∧ ( ( 𝐺 ‘ 𝑦 ) ∈ 𝑎 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑎 ) ) ) → 𝑦 ∈ ( ◡ 𝐺 “ 𝑎 ) ) |
34 |
|
nlly2i |
⊢ ( ( 𝐾 ∈ 𝑛-Locally PConn ∧ ( ◡ 𝐺 “ 𝑎 ) ∈ 𝐾 ∧ 𝑦 ∈ ( ◡ 𝐺 “ 𝑎 ) ) → ∃ 𝑚 ∈ 𝒫 ( ◡ 𝐺 “ 𝑎 ) ∃ 𝑣 ∈ 𝐾 ( 𝑦 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑚 ∧ ( 𝐾 ↾t 𝑚 ) ∈ PConn ) ) |
35 |
21 27 33 34
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) ∧ ( ( 𝐺 ‘ 𝑦 ) ∈ 𝑎 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑎 ) ) ) → ∃ 𝑚 ∈ 𝒫 ( ◡ 𝐺 “ 𝑎 ) ∃ 𝑣 ∈ 𝐾 ( 𝑦 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑚 ∧ ( 𝐾 ↾t 𝑚 ) ∈ PConn ) ) |
36 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) ∧ ( ( 𝐺 ‘ 𝑦 ) ∈ 𝑎 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑎 ) ) ) ∧ ( ( 𝑚 ∈ 𝒫 ( ◡ 𝐺 “ 𝑎 ) ∧ 𝑣 ∈ 𝐾 ) ∧ ( 𝑦 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑚 ∧ ( 𝐾 ↾t 𝑚 ) ∈ PConn ) ) ) → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
37 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) ∧ ( ( 𝐺 ‘ 𝑦 ) ∈ 𝑎 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑎 ) ) ) ∧ ( ( 𝑚 ∈ 𝒫 ( ◡ 𝐺 “ 𝑎 ) ∧ 𝑣 ∈ 𝐾 ) ∧ ( 𝑦 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑚 ∧ ( 𝐾 ↾t 𝑚 ) ∈ PConn ) ) ) → 𝐾 ∈ SConn ) |
38 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) ∧ ( ( 𝐺 ‘ 𝑦 ) ∈ 𝑎 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑎 ) ) ) ∧ ( ( 𝑚 ∈ 𝒫 ( ◡ 𝐺 “ 𝑎 ) ∧ 𝑣 ∈ 𝐾 ) ∧ ( 𝑦 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑚 ∧ ( 𝐾 ↾t 𝑚 ) ∈ PConn ) ) ) → 𝐾 ∈ 𝑛-Locally PConn ) |
39 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) ∧ ( ( 𝐺 ‘ 𝑦 ) ∈ 𝑎 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑎 ) ) ) ∧ ( ( 𝑚 ∈ 𝒫 ( ◡ 𝐺 “ 𝑎 ) ∧ 𝑣 ∈ 𝐾 ) ∧ ( 𝑦 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑚 ∧ ( 𝐾 ↾t 𝑚 ) ∈ PConn ) ) ) → 𝑂 ∈ 𝑌 ) |
40 |
7
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) ∧ ( ( 𝐺 ‘ 𝑦 ) ∈ 𝑎 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑎 ) ) ) ∧ ( ( 𝑚 ∈ 𝒫 ( ◡ 𝐺 “ 𝑎 ) ∧ 𝑣 ∈ 𝐾 ) ∧ ( 𝑦 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑚 ∧ ( 𝐾 ↾t 𝑚 ) ∈ PConn ) ) ) → 𝐺 ∈ ( 𝐾 Cn 𝐽 ) ) |
41 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) ∧ ( ( 𝐺 ‘ 𝑦 ) ∈ 𝑎 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑎 ) ) ) ∧ ( ( 𝑚 ∈ 𝒫 ( ◡ 𝐺 “ 𝑎 ) ∧ 𝑣 ∈ 𝐾 ) ∧ ( 𝑦 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑚 ∧ ( 𝐾 ↾t 𝑚 ) ∈ PConn ) ) ) → 𝑃 ∈ 𝐵 ) |
42 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) ∧ ( ( 𝐺 ‘ 𝑦 ) ∈ 𝑎 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑎 ) ) ) ∧ ( ( 𝑚 ∈ 𝒫 ( ◡ 𝐺 “ 𝑎 ) ∧ 𝑣 ∈ 𝐾 ) ∧ ( 𝑦 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑚 ∧ ( 𝐾 ↾t 𝑚 ) ∈ PConn ) ) ) → ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑂 ) ) |
43 |
29
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) ∧ ( ( 𝐺 ‘ 𝑦 ) ∈ 𝑎 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑎 ) ) ) ∧ ( ( 𝑚 ∈ 𝒫 ( ◡ 𝐺 “ 𝑎 ) ∧ 𝑣 ∈ 𝐾 ) ∧ ( 𝑦 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑚 ∧ ( 𝐾 ↾t 𝑚 ) ∈ PConn ) ) ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝑎 ) |
44 |
23
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) ∧ ( ( 𝐺 ‘ 𝑦 ) ∈ 𝑎 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑎 ) ) ) ∧ ( ( 𝑚 ∈ 𝒫 ( ◡ 𝐺 “ 𝑎 ) ∧ 𝑣 ∈ 𝐾 ) ∧ ( 𝑦 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑚 ∧ ( 𝐾 ↾t 𝑚 ) ∈ PConn ) ) ) → 𝑡 ∈ ( 𝑆 ‘ 𝑎 ) ) |
45 |
|
simprll |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) ∧ ( ( 𝐺 ‘ 𝑦 ) ∈ 𝑎 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑎 ) ) ) ∧ ( ( 𝑚 ∈ 𝒫 ( ◡ 𝐺 “ 𝑎 ) ∧ 𝑣 ∈ 𝐾 ) ∧ ( 𝑦 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑚 ∧ ( 𝐾 ↾t 𝑚 ) ∈ PConn ) ) ) → 𝑚 ∈ 𝒫 ( ◡ 𝐺 “ 𝑎 ) ) |
46 |
45
|
elpwid |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) ∧ ( ( 𝐺 ‘ 𝑦 ) ∈ 𝑎 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑎 ) ) ) ∧ ( ( 𝑚 ∈ 𝒫 ( ◡ 𝐺 “ 𝑎 ) ∧ 𝑣 ∈ 𝐾 ) ∧ ( 𝑦 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑚 ∧ ( 𝐾 ↾t 𝑚 ) ∈ PConn ) ) ) → 𝑚 ⊆ ( ◡ 𝐺 “ 𝑎 ) ) |
47 |
|
eqid |
⊢ ( ℩ 𝑏 ∈ 𝑡 ( 𝐻 ‘ 𝑦 ) ∈ 𝑏 ) = ( ℩ 𝑏 ∈ 𝑡 ( 𝐻 ‘ 𝑦 ) ∈ 𝑏 ) |
48 |
|
simprr3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) ∧ ( ( 𝐺 ‘ 𝑦 ) ∈ 𝑎 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑎 ) ) ) ∧ ( ( 𝑚 ∈ 𝒫 ( ◡ 𝐺 “ 𝑎 ) ∧ 𝑣 ∈ 𝐾 ) ∧ ( 𝑦 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑚 ∧ ( 𝐾 ↾t 𝑚 ) ∈ PConn ) ) ) → ( 𝐾 ↾t 𝑚 ) ∈ PConn ) |
49 |
|
simprlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) ∧ ( ( 𝐺 ‘ 𝑦 ) ∈ 𝑎 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑎 ) ) ) ∧ ( ( 𝑚 ∈ 𝒫 ( ◡ 𝐺 “ 𝑎 ) ∧ 𝑣 ∈ 𝐾 ) ∧ ( 𝑦 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑚 ∧ ( 𝐾 ↾t 𝑚 ) ∈ PConn ) ) ) → 𝑣 ∈ 𝐾 ) |
50 |
|
simprr2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) ∧ ( ( 𝐺 ‘ 𝑦 ) ∈ 𝑎 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑎 ) ) ) ∧ ( ( 𝑚 ∈ 𝒫 ( ◡ 𝐺 “ 𝑎 ) ∧ 𝑣 ∈ 𝐾 ) ∧ ( 𝑦 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑚 ∧ ( 𝐾 ↾t 𝑚 ) ∈ PConn ) ) ) → 𝑣 ⊆ 𝑚 ) |
51 |
|
simprr1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) ∧ ( ( 𝐺 ‘ 𝑦 ) ∈ 𝑎 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑎 ) ) ) ∧ ( ( 𝑚 ∈ 𝒫 ( ◡ 𝐺 “ 𝑎 ) ∧ 𝑣 ∈ 𝐾 ) ∧ ( 𝑦 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑚 ∧ ( 𝐾 ↾t 𝑚 ) ∈ PConn ) ) ) → 𝑦 ∈ 𝑣 ) |
52 |
1 2 36 37 38 39 40 41 42 10 11 43 44 46 47 48 49 50 51
|
cvmlift3lem7 |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) ∧ ( ( 𝐺 ‘ 𝑦 ) ∈ 𝑎 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑎 ) ) ) ∧ ( ( 𝑚 ∈ 𝒫 ( ◡ 𝐺 “ 𝑎 ) ∧ 𝑣 ∈ 𝐾 ) ∧ ( 𝑦 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑚 ∧ ( 𝐾 ↾t 𝑚 ) ∈ PConn ) ) ) → 𝐻 ∈ ( ( 𝐾 CnP 𝐶 ) ‘ 𝑦 ) ) |
53 |
52
|
expr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) ∧ ( ( 𝐺 ‘ 𝑦 ) ∈ 𝑎 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑎 ) ) ) ∧ ( 𝑚 ∈ 𝒫 ( ◡ 𝐺 “ 𝑎 ) ∧ 𝑣 ∈ 𝐾 ) ) → ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑚 ∧ ( 𝐾 ↾t 𝑚 ) ∈ PConn ) → 𝐻 ∈ ( ( 𝐾 CnP 𝐶 ) ‘ 𝑦 ) ) ) |
54 |
53
|
rexlimdvva |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) ∧ ( ( 𝐺 ‘ 𝑦 ) ∈ 𝑎 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑎 ) ) ) → ( ∃ 𝑚 ∈ 𝒫 ( ◡ 𝐺 “ 𝑎 ) ∃ 𝑣 ∈ 𝐾 ( 𝑦 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑚 ∧ ( 𝐾 ↾t 𝑚 ) ∈ PConn ) → 𝐻 ∈ ( ( 𝐾 CnP 𝐶 ) ‘ 𝑦 ) ) ) |
55 |
35 54
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) ∧ ( ( 𝐺 ‘ 𝑦 ) ∈ 𝑎 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑎 ) ) ) → 𝐻 ∈ ( ( 𝐾 CnP 𝐶 ) ‘ 𝑦 ) ) |
56 |
55
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑎 ) → ( 𝑡 ∈ ( 𝑆 ‘ 𝑎 ) → 𝐻 ∈ ( ( 𝐾 CnP 𝐶 ) ‘ 𝑦 ) ) ) |
57 |
56
|
exlimdv |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑎 ) → ( ∃ 𝑡 𝑡 ∈ ( 𝑆 ‘ 𝑎 ) → 𝐻 ∈ ( ( 𝐾 CnP 𝐶 ) ‘ 𝑦 ) ) ) |
58 |
20 57
|
syl5bi |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑎 ) → ( ( 𝑆 ‘ 𝑎 ) ≠ ∅ → 𝐻 ∈ ( ( 𝐾 CnP 𝐶 ) ‘ 𝑦 ) ) ) |
59 |
58
|
expimpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( ( ( 𝐺 ‘ 𝑦 ) ∈ 𝑎 ∧ ( 𝑆 ‘ 𝑎 ) ≠ ∅ ) → 𝐻 ∈ ( ( 𝐾 CnP 𝐶 ) ‘ 𝑦 ) ) ) |
60 |
59
|
rexlimdvw |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( ∃ 𝑎 ∈ 𝐽 ( ( 𝐺 ‘ 𝑦 ) ∈ 𝑎 ∧ ( 𝑆 ‘ 𝑎 ) ≠ ∅ ) → 𝐻 ∈ ( ( 𝐾 CnP 𝐶 ) ‘ 𝑦 ) ) ) |
61 |
19 60
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝐻 ∈ ( ( 𝐾 CnP 𝐶 ) ‘ 𝑦 ) ) |
62 |
61
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑌 𝐻 ∈ ( ( 𝐾 CnP 𝐶 ) ‘ 𝑦 ) ) |
63 |
|
sconntop |
⊢ ( 𝐾 ∈ SConn → 𝐾 ∈ Top ) |
64 |
4 63
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Top ) |
65 |
2
|
toptopon |
⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
66 |
64 65
|
sylib |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
67 |
|
cvmtop1 |
⊢ ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → 𝐶 ∈ Top ) |
68 |
3 67
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ Top ) |
69 |
1
|
toptopon |
⊢ ( 𝐶 ∈ Top ↔ 𝐶 ∈ ( TopOn ‘ 𝐵 ) ) |
70 |
68 69
|
sylib |
⊢ ( 𝜑 → 𝐶 ∈ ( TopOn ‘ 𝐵 ) ) |
71 |
|
cncnp |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐶 ∈ ( TopOn ‘ 𝐵 ) ) → ( 𝐻 ∈ ( 𝐾 Cn 𝐶 ) ↔ ( 𝐻 : 𝑌 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝑌 𝐻 ∈ ( ( 𝐾 CnP 𝐶 ) ‘ 𝑦 ) ) ) ) |
72 |
66 70 71
|
syl2anc |
⊢ ( 𝜑 → ( 𝐻 ∈ ( 𝐾 Cn 𝐶 ) ↔ ( 𝐻 : 𝑌 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝑌 𝐻 ∈ ( ( 𝐾 CnP 𝐶 ) ‘ 𝑦 ) ) ) ) |
73 |
12 62 72
|
mpbir2and |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝐾 Cn 𝐶 ) ) |