| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvmlift3.b |
|
| 2 |
|
cvmlift3.y |
|
| 3 |
|
cvmlift3.f |
|
| 4 |
|
cvmlift3.k |
|
| 5 |
|
cvmlift3.l |
|
| 6 |
|
cvmlift3.o |
|
| 7 |
|
cvmlift3.g |
|
| 8 |
|
cvmlift3.p |
|
| 9 |
|
cvmlift3.e |
|
| 10 |
|
cvmlift3.h |
|
| 11 |
|
cvmlift3lem7.s |
|
| 12 |
1 2 3 4 5 6 7 8 9 10
|
cvmlift3lem3 |
|
| 13 |
3
|
adantr |
|
| 14 |
|
eqid |
|
| 15 |
2 14
|
cnf |
|
| 16 |
7 15
|
syl |
|
| 17 |
16
|
ffvelcdmda |
|
| 18 |
11 14
|
cvmcov |
|
| 19 |
13 17 18
|
syl2anc |
|
| 20 |
|
n0 |
|
| 21 |
5
|
ad2antrr |
|
| 22 |
7
|
ad2antrr |
|
| 23 |
|
simprr |
|
| 24 |
11
|
cvmsrcl |
|
| 25 |
23 24
|
syl |
|
| 26 |
|
cnima |
|
| 27 |
22 25 26
|
syl2anc |
|
| 28 |
|
simplr |
|
| 29 |
|
simprl |
|
| 30 |
|
ffn |
|
| 31 |
|
elpreima |
|
| 32 |
22 15 30 31
|
4syl |
|
| 33 |
28 29 32
|
mpbir2and |
|
| 34 |
|
nlly2i |
|
| 35 |
21 27 33 34
|
syl3anc |
|
| 36 |
3
|
ad3antrrr |
|
| 37 |
4
|
ad3antrrr |
|
| 38 |
5
|
ad3antrrr |
|
| 39 |
6
|
ad3antrrr |
|
| 40 |
7
|
ad3antrrr |
|
| 41 |
8
|
ad3antrrr |
|
| 42 |
9
|
ad3antrrr |
|
| 43 |
29
|
adantr |
|
| 44 |
23
|
adantr |
|
| 45 |
|
simprll |
|
| 46 |
45
|
elpwid |
|
| 47 |
|
eqid |
|
| 48 |
|
simprr3 |
|
| 49 |
|
simprlr |
|
| 50 |
|
simprr2 |
|
| 51 |
|
simprr1 |
|
| 52 |
1 2 36 37 38 39 40 41 42 10 11 43 44 46 47 48 49 50 51
|
cvmlift3lem7 |
|
| 53 |
52
|
expr |
|
| 54 |
53
|
rexlimdvva |
|
| 55 |
35 54
|
mpd |
|
| 56 |
55
|
expr |
|
| 57 |
56
|
exlimdv |
|
| 58 |
20 57
|
biimtrid |
|
| 59 |
58
|
expimpd |
|
| 60 |
59
|
rexlimdvw |
|
| 61 |
19 60
|
mpd |
|
| 62 |
61
|
ralrimiva |
|
| 63 |
|
sconntop |
|
| 64 |
4 63
|
syl |
|
| 65 |
2
|
toptopon |
|
| 66 |
64 65
|
sylib |
|
| 67 |
|
cvmtop1 |
|
| 68 |
3 67
|
syl |
|
| 69 |
1
|
toptopon |
|
| 70 |
68 69
|
sylib |
|
| 71 |
|
cncnp |
|
| 72 |
66 70 71
|
syl2anc |
|
| 73 |
12 62 72
|
mpbir2and |
|