Step |
Hyp |
Ref |
Expression |
1 |
|
cvmlift3.b |
⊢ 𝐵 = ∪ 𝐶 |
2 |
|
cvmlift3.y |
⊢ 𝑌 = ∪ 𝐾 |
3 |
|
cvmlift3.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
4 |
|
cvmlift3.k |
⊢ ( 𝜑 → 𝐾 ∈ SConn ) |
5 |
|
cvmlift3.l |
⊢ ( 𝜑 → 𝐾 ∈ 𝑛-Locally PConn ) |
6 |
|
cvmlift3.o |
⊢ ( 𝜑 → 𝑂 ∈ 𝑌 ) |
7 |
|
cvmlift3.g |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐾 Cn 𝐽 ) ) |
8 |
|
cvmlift3.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝐵 ) |
9 |
|
cvmlift3.e |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑂 ) ) |
10 |
|
cvmlift3.h |
⊢ 𝐻 = ( 𝑥 ∈ 𝑌 ↦ ( ℩ 𝑧 ∈ 𝐵 ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑂 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = 𝑧 ) ) ) |
11 |
|
cvmlift3lem7.s |
⊢ 𝑆 = ( 𝑘 ∈ 𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑐 ∈ 𝑠 ( ∀ 𝑑 ∈ ( 𝑠 ∖ { 𝑐 } ) ( 𝑐 ∩ 𝑑 ) = ∅ ∧ ( 𝐹 ↾ 𝑐 ) ∈ ( ( 𝐶 ↾t 𝑐 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } ) |
12 |
1 2 3 4 5 6 7 8 9 10 11
|
cvmlift3lem8 |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝐾 Cn 𝐶 ) ) |
13 |
1 2 3 4 5 6 7 8 9 10
|
cvmlift3lem5 |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐻 ) = 𝐺 ) |
14 |
|
iitopon |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
15 |
14
|
a1i |
⊢ ( 𝜑 → II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ) |
16 |
|
sconntop |
⊢ ( 𝐾 ∈ SConn → 𝐾 ∈ Top ) |
17 |
4 16
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Top ) |
18 |
2
|
toptopon |
⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
19 |
17 18
|
sylib |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
20 |
|
cnconst2 |
⊢ ( ( II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝑂 ∈ 𝑌 ) → ( ( 0 [,] 1 ) × { 𝑂 } ) ∈ ( II Cn 𝐾 ) ) |
21 |
15 19 6 20
|
syl3anc |
⊢ ( 𝜑 → ( ( 0 [,] 1 ) × { 𝑂 } ) ∈ ( II Cn 𝐾 ) ) |
22 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
23 |
|
fvconst2g |
⊢ ( ( 𝑂 ∈ 𝑌 ∧ 0 ∈ ( 0 [,] 1 ) ) → ( ( ( 0 [,] 1 ) × { 𝑂 } ) ‘ 0 ) = 𝑂 ) |
24 |
6 22 23
|
sylancl |
⊢ ( 𝜑 → ( ( ( 0 [,] 1 ) × { 𝑂 } ) ‘ 0 ) = 𝑂 ) |
25 |
|
1elunit |
⊢ 1 ∈ ( 0 [,] 1 ) |
26 |
|
fvconst2g |
⊢ ( ( 𝑂 ∈ 𝑌 ∧ 1 ∈ ( 0 [,] 1 ) ) → ( ( ( 0 [,] 1 ) × { 𝑂 } ) ‘ 1 ) = 𝑂 ) |
27 |
6 25 26
|
sylancl |
⊢ ( 𝜑 → ( ( ( 0 [,] 1 ) × { 𝑂 } ) ‘ 1 ) = 𝑂 ) |
28 |
9
|
sneqd |
⊢ ( 𝜑 → { ( 𝐹 ‘ 𝑃 ) } = { ( 𝐺 ‘ 𝑂 ) } ) |
29 |
28
|
xpeq2d |
⊢ ( 𝜑 → ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 𝑃 ) } ) = ( ( 0 [,] 1 ) × { ( 𝐺 ‘ 𝑂 ) } ) ) |
30 |
|
cvmcn |
⊢ ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ) |
31 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
32 |
1 31
|
cnf |
⊢ ( 𝐹 ∈ ( 𝐶 Cn 𝐽 ) → 𝐹 : 𝐵 ⟶ ∪ 𝐽 ) |
33 |
|
ffn |
⊢ ( 𝐹 : 𝐵 ⟶ ∪ 𝐽 → 𝐹 Fn 𝐵 ) |
34 |
3 30 32 33
|
4syl |
⊢ ( 𝜑 → 𝐹 Fn 𝐵 ) |
35 |
|
fcoconst |
⊢ ( ( 𝐹 Fn 𝐵 ∧ 𝑃 ∈ 𝐵 ) → ( 𝐹 ∘ ( ( 0 [,] 1 ) × { 𝑃 } ) ) = ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 𝑃 ) } ) ) |
36 |
34 8 35
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∘ ( ( 0 [,] 1 ) × { 𝑃 } ) ) = ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 𝑃 ) } ) ) |
37 |
2 31
|
cnf |
⊢ ( 𝐺 ∈ ( 𝐾 Cn 𝐽 ) → 𝐺 : 𝑌 ⟶ ∪ 𝐽 ) |
38 |
7 37
|
syl |
⊢ ( 𝜑 → 𝐺 : 𝑌 ⟶ ∪ 𝐽 ) |
39 |
38
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn 𝑌 ) |
40 |
|
fcoconst |
⊢ ( ( 𝐺 Fn 𝑌 ∧ 𝑂 ∈ 𝑌 ) → ( 𝐺 ∘ ( ( 0 [,] 1 ) × { 𝑂 } ) ) = ( ( 0 [,] 1 ) × { ( 𝐺 ‘ 𝑂 ) } ) ) |
41 |
39 6 40
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ∘ ( ( 0 [,] 1 ) × { 𝑂 } ) ) = ( ( 0 [,] 1 ) × { ( 𝐺 ‘ 𝑂 ) } ) ) |
42 |
29 36 41
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ∘ ( ( 0 [,] 1 ) × { 𝑃 } ) ) = ( 𝐺 ∘ ( ( 0 [,] 1 ) × { 𝑂 } ) ) ) |
43 |
|
fvconst2g |
⊢ ( ( 𝑃 ∈ 𝐵 ∧ 0 ∈ ( 0 [,] 1 ) ) → ( ( ( 0 [,] 1 ) × { 𝑃 } ) ‘ 0 ) = 𝑃 ) |
44 |
8 22 43
|
sylancl |
⊢ ( 𝜑 → ( ( ( 0 [,] 1 ) × { 𝑃 } ) ‘ 0 ) = 𝑃 ) |
45 |
|
cvmtop1 |
⊢ ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → 𝐶 ∈ Top ) |
46 |
3 45
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ Top ) |
47 |
1
|
toptopon |
⊢ ( 𝐶 ∈ Top ↔ 𝐶 ∈ ( TopOn ‘ 𝐵 ) ) |
48 |
46 47
|
sylib |
⊢ ( 𝜑 → 𝐶 ∈ ( TopOn ‘ 𝐵 ) ) |
49 |
|
cnconst2 |
⊢ ( ( II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ∧ 𝐶 ∈ ( TopOn ‘ 𝐵 ) ∧ 𝑃 ∈ 𝐵 ) → ( ( 0 [,] 1 ) × { 𝑃 } ) ∈ ( II Cn 𝐶 ) ) |
50 |
15 48 8 49
|
syl3anc |
⊢ ( 𝜑 → ( ( 0 [,] 1 ) × { 𝑃 } ) ∈ ( II Cn 𝐶 ) ) |
51 |
|
cvmtop2 |
⊢ ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → 𝐽 ∈ Top ) |
52 |
3 51
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
53 |
31
|
toptopon |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
54 |
52 53
|
sylib |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
55 |
38 6
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑂 ) ∈ ∪ 𝐽 ) |
56 |
|
cnconst2 |
⊢ ( ( II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ∧ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ ( 𝐺 ‘ 𝑂 ) ∈ ∪ 𝐽 ) → ( ( 0 [,] 1 ) × { ( 𝐺 ‘ 𝑂 ) } ) ∈ ( II Cn 𝐽 ) ) |
57 |
15 54 55 56
|
syl3anc |
⊢ ( 𝜑 → ( ( 0 [,] 1 ) × { ( 𝐺 ‘ 𝑂 ) } ) ∈ ( II Cn 𝐽 ) ) |
58 |
41 57
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐺 ∘ ( ( 0 [,] 1 ) × { 𝑂 } ) ) ∈ ( II Cn 𝐽 ) ) |
59 |
|
fvconst2g |
⊢ ( ( ( 𝐺 ‘ 𝑂 ) ∈ ∪ 𝐽 ∧ 0 ∈ ( 0 [,] 1 ) ) → ( ( ( 0 [,] 1 ) × { ( 𝐺 ‘ 𝑂 ) } ) ‘ 0 ) = ( 𝐺 ‘ 𝑂 ) ) |
60 |
55 22 59
|
sylancl |
⊢ ( 𝜑 → ( ( ( 0 [,] 1 ) × { ( 𝐺 ‘ 𝑂 ) } ) ‘ 0 ) = ( 𝐺 ‘ 𝑂 ) ) |
61 |
41
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐺 ∘ ( ( 0 [,] 1 ) × { 𝑂 } ) ) ‘ 0 ) = ( ( ( 0 [,] 1 ) × { ( 𝐺 ‘ 𝑂 ) } ) ‘ 0 ) ) |
62 |
60 61 9
|
3eqtr4rd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) = ( ( 𝐺 ∘ ( ( 0 [,] 1 ) × { 𝑂 } ) ) ‘ 0 ) ) |
63 |
1
|
cvmlift |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝐺 ∘ ( ( 0 [,] 1 ) × { 𝑂 } ) ) ∈ ( II Cn 𝐽 ) ) ∧ ( 𝑃 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑃 ) = ( ( 𝐺 ∘ ( ( 0 [,] 1 ) × { 𝑂 } ) ) ‘ 0 ) ) ) → ∃! 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ ( ( 0 [,] 1 ) × { 𝑂 } ) ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) |
64 |
3 58 8 62 63
|
syl22anc |
⊢ ( 𝜑 → ∃! 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ ( ( 0 [,] 1 ) × { 𝑂 } ) ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) |
65 |
|
coeq2 |
⊢ ( 𝑔 = ( ( 0 [,] 1 ) × { 𝑃 } ) → ( 𝐹 ∘ 𝑔 ) = ( 𝐹 ∘ ( ( 0 [,] 1 ) × { 𝑃 } ) ) ) |
66 |
65
|
eqeq1d |
⊢ ( 𝑔 = ( ( 0 [,] 1 ) × { 𝑃 } ) → ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ ( ( 0 [,] 1 ) × { 𝑂 } ) ) ↔ ( 𝐹 ∘ ( ( 0 [,] 1 ) × { 𝑃 } ) ) = ( 𝐺 ∘ ( ( 0 [,] 1 ) × { 𝑂 } ) ) ) ) |
67 |
|
fveq1 |
⊢ ( 𝑔 = ( ( 0 [,] 1 ) × { 𝑃 } ) → ( 𝑔 ‘ 0 ) = ( ( ( 0 [,] 1 ) × { 𝑃 } ) ‘ 0 ) ) |
68 |
67
|
eqeq1d |
⊢ ( 𝑔 = ( ( 0 [,] 1 ) × { 𝑃 } ) → ( ( 𝑔 ‘ 0 ) = 𝑃 ↔ ( ( ( 0 [,] 1 ) × { 𝑃 } ) ‘ 0 ) = 𝑃 ) ) |
69 |
66 68
|
anbi12d |
⊢ ( 𝑔 = ( ( 0 [,] 1 ) × { 𝑃 } ) → ( ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ ( ( 0 [,] 1 ) × { 𝑂 } ) ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ↔ ( ( 𝐹 ∘ ( ( 0 [,] 1 ) × { 𝑃 } ) ) = ( 𝐺 ∘ ( ( 0 [,] 1 ) × { 𝑂 } ) ) ∧ ( ( ( 0 [,] 1 ) × { 𝑃 } ) ‘ 0 ) = 𝑃 ) ) ) |
70 |
69
|
riota2 |
⊢ ( ( ( ( 0 [,] 1 ) × { 𝑃 } ) ∈ ( II Cn 𝐶 ) ∧ ∃! 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ ( ( 0 [,] 1 ) × { 𝑂 } ) ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) → ( ( ( 𝐹 ∘ ( ( 0 [,] 1 ) × { 𝑃 } ) ) = ( 𝐺 ∘ ( ( 0 [,] 1 ) × { 𝑂 } ) ) ∧ ( ( ( 0 [,] 1 ) × { 𝑃 } ) ‘ 0 ) = 𝑃 ) ↔ ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ ( ( 0 [,] 1 ) × { 𝑂 } ) ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) = ( ( 0 [,] 1 ) × { 𝑃 } ) ) ) |
71 |
50 64 70
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝐹 ∘ ( ( 0 [,] 1 ) × { 𝑃 } ) ) = ( 𝐺 ∘ ( ( 0 [,] 1 ) × { 𝑂 } ) ) ∧ ( ( ( 0 [,] 1 ) × { 𝑃 } ) ‘ 0 ) = 𝑃 ) ↔ ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ ( ( 0 [,] 1 ) × { 𝑂 } ) ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) = ( ( 0 [,] 1 ) × { 𝑃 } ) ) ) |
72 |
42 44 71
|
mpbi2and |
⊢ ( 𝜑 → ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ ( ( 0 [,] 1 ) × { 𝑂 } ) ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) = ( ( 0 [,] 1 ) × { 𝑃 } ) ) |
73 |
72
|
fveq1d |
⊢ ( 𝜑 → ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ ( ( 0 [,] 1 ) × { 𝑂 } ) ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( ( ( 0 [,] 1 ) × { 𝑃 } ) ‘ 1 ) ) |
74 |
|
fvconst2g |
⊢ ( ( 𝑃 ∈ 𝐵 ∧ 1 ∈ ( 0 [,] 1 ) ) → ( ( ( 0 [,] 1 ) × { 𝑃 } ) ‘ 1 ) = 𝑃 ) |
75 |
8 25 74
|
sylancl |
⊢ ( 𝜑 → ( ( ( 0 [,] 1 ) × { 𝑃 } ) ‘ 1 ) = 𝑃 ) |
76 |
73 75
|
eqtrd |
⊢ ( 𝜑 → ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ ( ( 0 [,] 1 ) × { 𝑂 } ) ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = 𝑃 ) |
77 |
|
fveq1 |
⊢ ( 𝑓 = ( ( 0 [,] 1 ) × { 𝑂 } ) → ( 𝑓 ‘ 0 ) = ( ( ( 0 [,] 1 ) × { 𝑂 } ) ‘ 0 ) ) |
78 |
77
|
eqeq1d |
⊢ ( 𝑓 = ( ( 0 [,] 1 ) × { 𝑂 } ) → ( ( 𝑓 ‘ 0 ) = 𝑂 ↔ ( ( ( 0 [,] 1 ) × { 𝑂 } ) ‘ 0 ) = 𝑂 ) ) |
79 |
|
fveq1 |
⊢ ( 𝑓 = ( ( 0 [,] 1 ) × { 𝑂 } ) → ( 𝑓 ‘ 1 ) = ( ( ( 0 [,] 1 ) × { 𝑂 } ) ‘ 1 ) ) |
80 |
79
|
eqeq1d |
⊢ ( 𝑓 = ( ( 0 [,] 1 ) × { 𝑂 } ) → ( ( 𝑓 ‘ 1 ) = 𝑂 ↔ ( ( ( 0 [,] 1 ) × { 𝑂 } ) ‘ 1 ) = 𝑂 ) ) |
81 |
|
coeq2 |
⊢ ( 𝑓 = ( ( 0 [,] 1 ) × { 𝑂 } ) → ( 𝐺 ∘ 𝑓 ) = ( 𝐺 ∘ ( ( 0 [,] 1 ) × { 𝑂 } ) ) ) |
82 |
81
|
eqeq2d |
⊢ ( 𝑓 = ( ( 0 [,] 1 ) × { 𝑂 } ) → ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑓 ) ↔ ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ ( ( 0 [,] 1 ) × { 𝑂 } ) ) ) ) |
83 |
82
|
anbi1d |
⊢ ( 𝑓 = ( ( 0 [,] 1 ) × { 𝑂 } ) → ( ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ↔ ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ ( ( 0 [,] 1 ) × { 𝑂 } ) ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ) |
84 |
83
|
riotabidv |
⊢ ( 𝑓 = ( ( 0 [,] 1 ) × { 𝑂 } ) → ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) = ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ ( ( 0 [,] 1 ) × { 𝑂 } ) ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ) |
85 |
84
|
fveq1d |
⊢ ( 𝑓 = ( ( 0 [,] 1 ) × { 𝑂 } ) → ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ ( ( 0 [,] 1 ) × { 𝑂 } ) ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) ) |
86 |
85
|
eqeq1d |
⊢ ( 𝑓 = ( ( 0 [,] 1 ) × { 𝑂 } ) → ( ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = 𝑃 ↔ ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ ( ( 0 [,] 1 ) × { 𝑂 } ) ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = 𝑃 ) ) |
87 |
78 80 86
|
3anbi123d |
⊢ ( 𝑓 = ( ( 0 [,] 1 ) × { 𝑂 } ) → ( ( ( 𝑓 ‘ 0 ) = 𝑂 ∧ ( 𝑓 ‘ 1 ) = 𝑂 ∧ ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = 𝑃 ) ↔ ( ( ( ( 0 [,] 1 ) × { 𝑂 } ) ‘ 0 ) = 𝑂 ∧ ( ( ( 0 [,] 1 ) × { 𝑂 } ) ‘ 1 ) = 𝑂 ∧ ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ ( ( 0 [,] 1 ) × { 𝑂 } ) ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = 𝑃 ) ) ) |
88 |
87
|
rspcev |
⊢ ( ( ( ( 0 [,] 1 ) × { 𝑂 } ) ∈ ( II Cn 𝐾 ) ∧ ( ( ( ( 0 [,] 1 ) × { 𝑂 } ) ‘ 0 ) = 𝑂 ∧ ( ( ( 0 [,] 1 ) × { 𝑂 } ) ‘ 1 ) = 𝑂 ∧ ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ ( ( 0 [,] 1 ) × { 𝑂 } ) ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = 𝑃 ) ) → ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑂 ∧ ( 𝑓 ‘ 1 ) = 𝑂 ∧ ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = 𝑃 ) ) |
89 |
21 24 27 76 88
|
syl13anc |
⊢ ( 𝜑 → ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑂 ∧ ( 𝑓 ‘ 1 ) = 𝑂 ∧ ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = 𝑃 ) ) |
90 |
1 2 3 4 5 6 7 8 9 10
|
cvmlift3lem4 |
⊢ ( ( 𝜑 ∧ 𝑂 ∈ 𝑌 ) → ( ( 𝐻 ‘ 𝑂 ) = 𝑃 ↔ ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑂 ∧ ( 𝑓 ‘ 1 ) = 𝑂 ∧ ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = 𝑃 ) ) ) |
91 |
6 90
|
mpdan |
⊢ ( 𝜑 → ( ( 𝐻 ‘ 𝑂 ) = 𝑃 ↔ ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑂 ∧ ( 𝑓 ‘ 1 ) = 𝑂 ∧ ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = 𝑃 ) ) ) |
92 |
89 91
|
mpbird |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑂 ) = 𝑃 ) |
93 |
|
coeq2 |
⊢ ( 𝑓 = 𝐻 → ( 𝐹 ∘ 𝑓 ) = ( 𝐹 ∘ 𝐻 ) ) |
94 |
93
|
eqeq1d |
⊢ ( 𝑓 = 𝐻 → ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ↔ ( 𝐹 ∘ 𝐻 ) = 𝐺 ) ) |
95 |
|
fveq1 |
⊢ ( 𝑓 = 𝐻 → ( 𝑓 ‘ 𝑂 ) = ( 𝐻 ‘ 𝑂 ) ) |
96 |
95
|
eqeq1d |
⊢ ( 𝑓 = 𝐻 → ( ( 𝑓 ‘ 𝑂 ) = 𝑃 ↔ ( 𝐻 ‘ 𝑂 ) = 𝑃 ) ) |
97 |
94 96
|
anbi12d |
⊢ ( 𝑓 = 𝐻 → ( ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 𝑂 ) = 𝑃 ) ↔ ( ( 𝐹 ∘ 𝐻 ) = 𝐺 ∧ ( 𝐻 ‘ 𝑂 ) = 𝑃 ) ) ) |
98 |
97
|
rspcev |
⊢ ( ( 𝐻 ∈ ( 𝐾 Cn 𝐶 ) ∧ ( ( 𝐹 ∘ 𝐻 ) = 𝐺 ∧ ( 𝐻 ‘ 𝑂 ) = 𝑃 ) ) → ∃ 𝑓 ∈ ( 𝐾 Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 𝑂 ) = 𝑃 ) ) |
99 |
12 13 92 98
|
syl12anc |
⊢ ( 𝜑 → ∃ 𝑓 ∈ ( 𝐾 Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 𝑂 ) = 𝑃 ) ) |