| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmlift3.b | ⊢ 𝐵  =  ∪  𝐶 | 
						
							| 2 |  | cvmlift3.y | ⊢ 𝑌  =  ∪  𝐾 | 
						
							| 3 |  | cvmlift3.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 4 |  | cvmlift3.k | ⊢ ( 𝜑  →  𝐾  ∈  SConn ) | 
						
							| 5 |  | cvmlift3.l | ⊢ ( 𝜑  →  𝐾  ∈  𝑛-Locally  PConn ) | 
						
							| 6 |  | cvmlift3.o | ⊢ ( 𝜑  →  𝑂  ∈  𝑌 ) | 
						
							| 7 |  | cvmlift3.g | ⊢ ( 𝜑  →  𝐺  ∈  ( 𝐾  Cn  𝐽 ) ) | 
						
							| 8 |  | cvmlift3.p | ⊢ ( 𝜑  →  𝑃  ∈  𝐵 ) | 
						
							| 9 |  | cvmlift3.e | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑂 ) ) | 
						
							| 10 |  | cvmlift3.h | ⊢ 𝐻  =  ( 𝑥  ∈  𝑌  ↦  ( ℩ 𝑧  ∈  𝐵 ∃ 𝑓  ∈  ( II  Cn  𝐾 ) ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑥  ∧  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  𝑧 ) ) ) | 
						
							| 11 |  | cvmlift3lem7.s | ⊢ 𝑆  =  ( 𝑘  ∈  𝐽  ↦  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑐  ∈  𝑠 ( ∀ 𝑑  ∈  ( 𝑠  ∖  { 𝑐 } ) ( 𝑐  ∩  𝑑 )  =  ∅  ∧  ( 𝐹  ↾  𝑐 )  ∈  ( ( 𝐶  ↾t  𝑐 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } ) | 
						
							| 12 | 1 2 3 4 5 6 7 8 9 10 11 | cvmlift3lem8 | ⊢ ( 𝜑  →  𝐻  ∈  ( 𝐾  Cn  𝐶 ) ) | 
						
							| 13 | 1 2 3 4 5 6 7 8 9 10 | cvmlift3lem5 | ⊢ ( 𝜑  →  ( 𝐹  ∘  𝐻 )  =  𝐺 ) | 
						
							| 14 |  | iitopon | ⊢ II  ∈  ( TopOn ‘ ( 0 [,] 1 ) ) | 
						
							| 15 | 14 | a1i | ⊢ ( 𝜑  →  II  ∈  ( TopOn ‘ ( 0 [,] 1 ) ) ) | 
						
							| 16 |  | sconntop | ⊢ ( 𝐾  ∈  SConn  →  𝐾  ∈  Top ) | 
						
							| 17 | 4 16 | syl | ⊢ ( 𝜑  →  𝐾  ∈  Top ) | 
						
							| 18 | 2 | toptopon | ⊢ ( 𝐾  ∈  Top  ↔  𝐾  ∈  ( TopOn ‘ 𝑌 ) ) | 
						
							| 19 | 17 18 | sylib | ⊢ ( 𝜑  →  𝐾  ∈  ( TopOn ‘ 𝑌 ) ) | 
						
							| 20 |  | cnconst2 | ⊢ ( ( II  ∈  ( TopOn ‘ ( 0 [,] 1 ) )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 )  ∧  𝑂  ∈  𝑌 )  →  ( ( 0 [,] 1 )  ×  { 𝑂 } )  ∈  ( II  Cn  𝐾 ) ) | 
						
							| 21 | 15 19 6 20 | syl3anc | ⊢ ( 𝜑  →  ( ( 0 [,] 1 )  ×  { 𝑂 } )  ∈  ( II  Cn  𝐾 ) ) | 
						
							| 22 |  | 0elunit | ⊢ 0  ∈  ( 0 [,] 1 ) | 
						
							| 23 |  | fvconst2g | ⊢ ( ( 𝑂  ∈  𝑌  ∧  0  ∈  ( 0 [,] 1 ) )  →  ( ( ( 0 [,] 1 )  ×  { 𝑂 } ) ‘ 0 )  =  𝑂 ) | 
						
							| 24 | 6 22 23 | sylancl | ⊢ ( 𝜑  →  ( ( ( 0 [,] 1 )  ×  { 𝑂 } ) ‘ 0 )  =  𝑂 ) | 
						
							| 25 |  | 1elunit | ⊢ 1  ∈  ( 0 [,] 1 ) | 
						
							| 26 |  | fvconst2g | ⊢ ( ( 𝑂  ∈  𝑌  ∧  1  ∈  ( 0 [,] 1 ) )  →  ( ( ( 0 [,] 1 )  ×  { 𝑂 } ) ‘ 1 )  =  𝑂 ) | 
						
							| 27 | 6 25 26 | sylancl | ⊢ ( 𝜑  →  ( ( ( 0 [,] 1 )  ×  { 𝑂 } ) ‘ 1 )  =  𝑂 ) | 
						
							| 28 | 9 | sneqd | ⊢ ( 𝜑  →  { ( 𝐹 ‘ 𝑃 ) }  =  { ( 𝐺 ‘ 𝑂 ) } ) | 
						
							| 29 | 28 | xpeq2d | ⊢ ( 𝜑  →  ( ( 0 [,] 1 )  ×  { ( 𝐹 ‘ 𝑃 ) } )  =  ( ( 0 [,] 1 )  ×  { ( 𝐺 ‘ 𝑂 ) } ) ) | 
						
							| 30 |  | cvmcn | ⊢ ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  →  𝐹  ∈  ( 𝐶  Cn  𝐽 ) ) | 
						
							| 31 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 32 | 1 31 | cnf | ⊢ ( 𝐹  ∈  ( 𝐶  Cn  𝐽 )  →  𝐹 : 𝐵 ⟶ ∪  𝐽 ) | 
						
							| 33 |  | ffn | ⊢ ( 𝐹 : 𝐵 ⟶ ∪  𝐽  →  𝐹  Fn  𝐵 ) | 
						
							| 34 | 3 30 32 33 | 4syl | ⊢ ( 𝜑  →  𝐹  Fn  𝐵 ) | 
						
							| 35 |  | fcoconst | ⊢ ( ( 𝐹  Fn  𝐵  ∧  𝑃  ∈  𝐵 )  →  ( 𝐹  ∘  ( ( 0 [,] 1 )  ×  { 𝑃 } ) )  =  ( ( 0 [,] 1 )  ×  { ( 𝐹 ‘ 𝑃 ) } ) ) | 
						
							| 36 | 34 8 35 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹  ∘  ( ( 0 [,] 1 )  ×  { 𝑃 } ) )  =  ( ( 0 [,] 1 )  ×  { ( 𝐹 ‘ 𝑃 ) } ) ) | 
						
							| 37 | 2 31 | cnf | ⊢ ( 𝐺  ∈  ( 𝐾  Cn  𝐽 )  →  𝐺 : 𝑌 ⟶ ∪  𝐽 ) | 
						
							| 38 | 7 37 | syl | ⊢ ( 𝜑  →  𝐺 : 𝑌 ⟶ ∪  𝐽 ) | 
						
							| 39 | 38 | ffnd | ⊢ ( 𝜑  →  𝐺  Fn  𝑌 ) | 
						
							| 40 |  | fcoconst | ⊢ ( ( 𝐺  Fn  𝑌  ∧  𝑂  ∈  𝑌 )  →  ( 𝐺  ∘  ( ( 0 [,] 1 )  ×  { 𝑂 } ) )  =  ( ( 0 [,] 1 )  ×  { ( 𝐺 ‘ 𝑂 ) } ) ) | 
						
							| 41 | 39 6 40 | syl2anc | ⊢ ( 𝜑  →  ( 𝐺  ∘  ( ( 0 [,] 1 )  ×  { 𝑂 } ) )  =  ( ( 0 [,] 1 )  ×  { ( 𝐺 ‘ 𝑂 ) } ) ) | 
						
							| 42 | 29 36 41 | 3eqtr4d | ⊢ ( 𝜑  →  ( 𝐹  ∘  ( ( 0 [,] 1 )  ×  { 𝑃 } ) )  =  ( 𝐺  ∘  ( ( 0 [,] 1 )  ×  { 𝑂 } ) ) ) | 
						
							| 43 |  | fvconst2g | ⊢ ( ( 𝑃  ∈  𝐵  ∧  0  ∈  ( 0 [,] 1 ) )  →  ( ( ( 0 [,] 1 )  ×  { 𝑃 } ) ‘ 0 )  =  𝑃 ) | 
						
							| 44 | 8 22 43 | sylancl | ⊢ ( 𝜑  →  ( ( ( 0 [,] 1 )  ×  { 𝑃 } ) ‘ 0 )  =  𝑃 ) | 
						
							| 45 |  | cvmtop1 | ⊢ ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  →  𝐶  ∈  Top ) | 
						
							| 46 | 3 45 | syl | ⊢ ( 𝜑  →  𝐶  ∈  Top ) | 
						
							| 47 | 1 | toptopon | ⊢ ( 𝐶  ∈  Top  ↔  𝐶  ∈  ( TopOn ‘ 𝐵 ) ) | 
						
							| 48 | 46 47 | sylib | ⊢ ( 𝜑  →  𝐶  ∈  ( TopOn ‘ 𝐵 ) ) | 
						
							| 49 |  | cnconst2 | ⊢ ( ( II  ∈  ( TopOn ‘ ( 0 [,] 1 ) )  ∧  𝐶  ∈  ( TopOn ‘ 𝐵 )  ∧  𝑃  ∈  𝐵 )  →  ( ( 0 [,] 1 )  ×  { 𝑃 } )  ∈  ( II  Cn  𝐶 ) ) | 
						
							| 50 | 15 48 8 49 | syl3anc | ⊢ ( 𝜑  →  ( ( 0 [,] 1 )  ×  { 𝑃 } )  ∈  ( II  Cn  𝐶 ) ) | 
						
							| 51 |  | cvmtop2 | ⊢ ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  →  𝐽  ∈  Top ) | 
						
							| 52 | 3 51 | syl | ⊢ ( 𝜑  →  𝐽  ∈  Top ) | 
						
							| 53 | 31 | toptopon | ⊢ ( 𝐽  ∈  Top  ↔  𝐽  ∈  ( TopOn ‘ ∪  𝐽 ) ) | 
						
							| 54 | 52 53 | sylib | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ ∪  𝐽 ) ) | 
						
							| 55 | 38 6 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑂 )  ∈  ∪  𝐽 ) | 
						
							| 56 |  | cnconst2 | ⊢ ( ( II  ∈  ( TopOn ‘ ( 0 [,] 1 ) )  ∧  𝐽  ∈  ( TopOn ‘ ∪  𝐽 )  ∧  ( 𝐺 ‘ 𝑂 )  ∈  ∪  𝐽 )  →  ( ( 0 [,] 1 )  ×  { ( 𝐺 ‘ 𝑂 ) } )  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 57 | 15 54 55 56 | syl3anc | ⊢ ( 𝜑  →  ( ( 0 [,] 1 )  ×  { ( 𝐺 ‘ 𝑂 ) } )  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 58 | 41 57 | eqeltrd | ⊢ ( 𝜑  →  ( 𝐺  ∘  ( ( 0 [,] 1 )  ×  { 𝑂 } ) )  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 59 |  | fvconst2g | ⊢ ( ( ( 𝐺 ‘ 𝑂 )  ∈  ∪  𝐽  ∧  0  ∈  ( 0 [,] 1 ) )  →  ( ( ( 0 [,] 1 )  ×  { ( 𝐺 ‘ 𝑂 ) } ) ‘ 0 )  =  ( 𝐺 ‘ 𝑂 ) ) | 
						
							| 60 | 55 22 59 | sylancl | ⊢ ( 𝜑  →  ( ( ( 0 [,] 1 )  ×  { ( 𝐺 ‘ 𝑂 ) } ) ‘ 0 )  =  ( 𝐺 ‘ 𝑂 ) ) | 
						
							| 61 | 41 | fveq1d | ⊢ ( 𝜑  →  ( ( 𝐺  ∘  ( ( 0 [,] 1 )  ×  { 𝑂 } ) ) ‘ 0 )  =  ( ( ( 0 [,] 1 )  ×  { ( 𝐺 ‘ 𝑂 ) } ) ‘ 0 ) ) | 
						
							| 62 | 60 61 9 | 3eqtr4rd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑃 )  =  ( ( 𝐺  ∘  ( ( 0 [,] 1 )  ×  { 𝑂 } ) ) ‘ 0 ) ) | 
						
							| 63 | 1 | cvmlift | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  ( 𝐺  ∘  ( ( 0 [,] 1 )  ×  { 𝑂 } ) )  ∈  ( II  Cn  𝐽 ) )  ∧  ( 𝑃  ∈  𝐵  ∧  ( 𝐹 ‘ 𝑃 )  =  ( ( 𝐺  ∘  ( ( 0 [,] 1 )  ×  { 𝑂 } ) ) ‘ 0 ) ) )  →  ∃! 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  ( ( 0 [,] 1 )  ×  { 𝑂 } ) )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) | 
						
							| 64 | 3 58 8 62 63 | syl22anc | ⊢ ( 𝜑  →  ∃! 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  ( ( 0 [,] 1 )  ×  { 𝑂 } ) )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) | 
						
							| 65 |  | coeq2 | ⊢ ( 𝑔  =  ( ( 0 [,] 1 )  ×  { 𝑃 } )  →  ( 𝐹  ∘  𝑔 )  =  ( 𝐹  ∘  ( ( 0 [,] 1 )  ×  { 𝑃 } ) ) ) | 
						
							| 66 | 65 | eqeq1d | ⊢ ( 𝑔  =  ( ( 0 [,] 1 )  ×  { 𝑃 } )  →  ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  ( ( 0 [,] 1 )  ×  { 𝑂 } ) )  ↔  ( 𝐹  ∘  ( ( 0 [,] 1 )  ×  { 𝑃 } ) )  =  ( 𝐺  ∘  ( ( 0 [,] 1 )  ×  { 𝑂 } ) ) ) ) | 
						
							| 67 |  | fveq1 | ⊢ ( 𝑔  =  ( ( 0 [,] 1 )  ×  { 𝑃 } )  →  ( 𝑔 ‘ 0 )  =  ( ( ( 0 [,] 1 )  ×  { 𝑃 } ) ‘ 0 ) ) | 
						
							| 68 | 67 | eqeq1d | ⊢ ( 𝑔  =  ( ( 0 [,] 1 )  ×  { 𝑃 } )  →  ( ( 𝑔 ‘ 0 )  =  𝑃  ↔  ( ( ( 0 [,] 1 )  ×  { 𝑃 } ) ‘ 0 )  =  𝑃 ) ) | 
						
							| 69 | 66 68 | anbi12d | ⊢ ( 𝑔  =  ( ( 0 [,] 1 )  ×  { 𝑃 } )  →  ( ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  ( ( 0 [,] 1 )  ×  { 𝑂 } ) )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 )  ↔  ( ( 𝐹  ∘  ( ( 0 [,] 1 )  ×  { 𝑃 } ) )  =  ( 𝐺  ∘  ( ( 0 [,] 1 )  ×  { 𝑂 } ) )  ∧  ( ( ( 0 [,] 1 )  ×  { 𝑃 } ) ‘ 0 )  =  𝑃 ) ) ) | 
						
							| 70 | 69 | riota2 | ⊢ ( ( ( ( 0 [,] 1 )  ×  { 𝑃 } )  ∈  ( II  Cn  𝐶 )  ∧  ∃! 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  ( ( 0 [,] 1 )  ×  { 𝑂 } ) )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) )  →  ( ( ( 𝐹  ∘  ( ( 0 [,] 1 )  ×  { 𝑃 } ) )  =  ( 𝐺  ∘  ( ( 0 [,] 1 )  ×  { 𝑂 } ) )  ∧  ( ( ( 0 [,] 1 )  ×  { 𝑃 } ) ‘ 0 )  =  𝑃 )  ↔  ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  ( ( 0 [,] 1 )  ×  { 𝑂 } ) )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) )  =  ( ( 0 [,] 1 )  ×  { 𝑃 } ) ) ) | 
						
							| 71 | 50 64 70 | syl2anc | ⊢ ( 𝜑  →  ( ( ( 𝐹  ∘  ( ( 0 [,] 1 )  ×  { 𝑃 } ) )  =  ( 𝐺  ∘  ( ( 0 [,] 1 )  ×  { 𝑂 } ) )  ∧  ( ( ( 0 [,] 1 )  ×  { 𝑃 } ) ‘ 0 )  =  𝑃 )  ↔  ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  ( ( 0 [,] 1 )  ×  { 𝑂 } ) )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) )  =  ( ( 0 [,] 1 )  ×  { 𝑃 } ) ) ) | 
						
							| 72 | 42 44 71 | mpbi2and | ⊢ ( 𝜑  →  ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  ( ( 0 [,] 1 )  ×  { 𝑂 } ) )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) )  =  ( ( 0 [,] 1 )  ×  { 𝑃 } ) ) | 
						
							| 73 | 72 | fveq1d | ⊢ ( 𝜑  →  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  ( ( 0 [,] 1 )  ×  { 𝑂 } ) )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( ( ( 0 [,] 1 )  ×  { 𝑃 } ) ‘ 1 ) ) | 
						
							| 74 |  | fvconst2g | ⊢ ( ( 𝑃  ∈  𝐵  ∧  1  ∈  ( 0 [,] 1 ) )  →  ( ( ( 0 [,] 1 )  ×  { 𝑃 } ) ‘ 1 )  =  𝑃 ) | 
						
							| 75 | 8 25 74 | sylancl | ⊢ ( 𝜑  →  ( ( ( 0 [,] 1 )  ×  { 𝑃 } ) ‘ 1 )  =  𝑃 ) | 
						
							| 76 | 73 75 | eqtrd | ⊢ ( 𝜑  →  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  ( ( 0 [,] 1 )  ×  { 𝑂 } ) )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  𝑃 ) | 
						
							| 77 |  | fveq1 | ⊢ ( 𝑓  =  ( ( 0 [,] 1 )  ×  { 𝑂 } )  →  ( 𝑓 ‘ 0 )  =  ( ( ( 0 [,] 1 )  ×  { 𝑂 } ) ‘ 0 ) ) | 
						
							| 78 | 77 | eqeq1d | ⊢ ( 𝑓  =  ( ( 0 [,] 1 )  ×  { 𝑂 } )  →  ( ( 𝑓 ‘ 0 )  =  𝑂  ↔  ( ( ( 0 [,] 1 )  ×  { 𝑂 } ) ‘ 0 )  =  𝑂 ) ) | 
						
							| 79 |  | fveq1 | ⊢ ( 𝑓  =  ( ( 0 [,] 1 )  ×  { 𝑂 } )  →  ( 𝑓 ‘ 1 )  =  ( ( ( 0 [,] 1 )  ×  { 𝑂 } ) ‘ 1 ) ) | 
						
							| 80 | 79 | eqeq1d | ⊢ ( 𝑓  =  ( ( 0 [,] 1 )  ×  { 𝑂 } )  →  ( ( 𝑓 ‘ 1 )  =  𝑂  ↔  ( ( ( 0 [,] 1 )  ×  { 𝑂 } ) ‘ 1 )  =  𝑂 ) ) | 
						
							| 81 |  | coeq2 | ⊢ ( 𝑓  =  ( ( 0 [,] 1 )  ×  { 𝑂 } )  →  ( 𝐺  ∘  𝑓 )  =  ( 𝐺  ∘  ( ( 0 [,] 1 )  ×  { 𝑂 } ) ) ) | 
						
							| 82 | 81 | eqeq2d | ⊢ ( 𝑓  =  ( ( 0 [,] 1 )  ×  { 𝑂 } )  →  ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ↔  ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  ( ( 0 [,] 1 )  ×  { 𝑂 } ) ) ) ) | 
						
							| 83 | 82 | anbi1d | ⊢ ( 𝑓  =  ( ( 0 [,] 1 )  ×  { 𝑂 } )  →  ( ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 )  ↔  ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  ( ( 0 [,] 1 )  ×  { 𝑂 } ) )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ) | 
						
							| 84 | 83 | riotabidv | ⊢ ( 𝑓  =  ( ( 0 [,] 1 )  ×  { 𝑂 } )  →  ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) )  =  ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  ( ( 0 [,] 1 )  ×  { 𝑂 } ) )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ) | 
						
							| 85 | 84 | fveq1d | ⊢ ( 𝑓  =  ( ( 0 [,] 1 )  ×  { 𝑂 } )  →  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  ( ( 0 [,] 1 )  ×  { 𝑂 } ) )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 ) ) | 
						
							| 86 | 85 | eqeq1d | ⊢ ( 𝑓  =  ( ( 0 [,] 1 )  ×  { 𝑂 } )  →  ( ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  𝑃  ↔  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  ( ( 0 [,] 1 )  ×  { 𝑂 } ) )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  𝑃 ) ) | 
						
							| 87 | 78 80 86 | 3anbi123d | ⊢ ( 𝑓  =  ( ( 0 [,] 1 )  ×  { 𝑂 } )  →  ( ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑂  ∧  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  𝑃 )  ↔  ( ( ( ( 0 [,] 1 )  ×  { 𝑂 } ) ‘ 0 )  =  𝑂  ∧  ( ( ( 0 [,] 1 )  ×  { 𝑂 } ) ‘ 1 )  =  𝑂  ∧  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  ( ( 0 [,] 1 )  ×  { 𝑂 } ) )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  𝑃 ) ) ) | 
						
							| 88 | 87 | rspcev | ⊢ ( ( ( ( 0 [,] 1 )  ×  { 𝑂 } )  ∈  ( II  Cn  𝐾 )  ∧  ( ( ( ( 0 [,] 1 )  ×  { 𝑂 } ) ‘ 0 )  =  𝑂  ∧  ( ( ( 0 [,] 1 )  ×  { 𝑂 } ) ‘ 1 )  =  𝑂  ∧  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  ( ( 0 [,] 1 )  ×  { 𝑂 } ) )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  𝑃 ) )  →  ∃ 𝑓  ∈  ( II  Cn  𝐾 ) ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑂  ∧  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  𝑃 ) ) | 
						
							| 89 | 21 24 27 76 88 | syl13anc | ⊢ ( 𝜑  →  ∃ 𝑓  ∈  ( II  Cn  𝐾 ) ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑂  ∧  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  𝑃 ) ) | 
						
							| 90 | 1 2 3 4 5 6 7 8 9 10 | cvmlift3lem4 | ⊢ ( ( 𝜑  ∧  𝑂  ∈  𝑌 )  →  ( ( 𝐻 ‘ 𝑂 )  =  𝑃  ↔  ∃ 𝑓  ∈  ( II  Cn  𝐾 ) ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑂  ∧  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  𝑃 ) ) ) | 
						
							| 91 | 6 90 | mpdan | ⊢ ( 𝜑  →  ( ( 𝐻 ‘ 𝑂 )  =  𝑃  ↔  ∃ 𝑓  ∈  ( II  Cn  𝐾 ) ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑂  ∧  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  𝑃 ) ) ) | 
						
							| 92 | 89 91 | mpbird | ⊢ ( 𝜑  →  ( 𝐻 ‘ 𝑂 )  =  𝑃 ) | 
						
							| 93 |  | coeq2 | ⊢ ( 𝑓  =  𝐻  →  ( 𝐹  ∘  𝑓 )  =  ( 𝐹  ∘  𝐻 ) ) | 
						
							| 94 | 93 | eqeq1d | ⊢ ( 𝑓  =  𝐻  →  ( ( 𝐹  ∘  𝑓 )  =  𝐺  ↔  ( 𝐹  ∘  𝐻 )  =  𝐺 ) ) | 
						
							| 95 |  | fveq1 | ⊢ ( 𝑓  =  𝐻  →  ( 𝑓 ‘ 𝑂 )  =  ( 𝐻 ‘ 𝑂 ) ) | 
						
							| 96 | 95 | eqeq1d | ⊢ ( 𝑓  =  𝐻  →  ( ( 𝑓 ‘ 𝑂 )  =  𝑃  ↔  ( 𝐻 ‘ 𝑂 )  =  𝑃 ) ) | 
						
							| 97 | 94 96 | anbi12d | ⊢ ( 𝑓  =  𝐻  →  ( ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 𝑂 )  =  𝑃 )  ↔  ( ( 𝐹  ∘  𝐻 )  =  𝐺  ∧  ( 𝐻 ‘ 𝑂 )  =  𝑃 ) ) ) | 
						
							| 98 | 97 | rspcev | ⊢ ( ( 𝐻  ∈  ( 𝐾  Cn  𝐶 )  ∧  ( ( 𝐹  ∘  𝐻 )  =  𝐺  ∧  ( 𝐻 ‘ 𝑂 )  =  𝑃 ) )  →  ∃ 𝑓  ∈  ( 𝐾  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 𝑂 )  =  𝑃 ) ) | 
						
							| 99 | 12 13 92 98 | syl12anc | ⊢ ( 𝜑  →  ∃ 𝑓  ∈  ( 𝐾  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 𝑂 )  =  𝑃 ) ) |