| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmcov.1 | ⊢ 𝑆  =  ( 𝑘  ∈  𝐽  ↦  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } ) | 
						
							| 2 |  | cvmtop1 | ⊢ ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  →  𝐶  ∈  Top ) | 
						
							| 3 | 2 | 3ad2ant1 | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  𝐶  ∈  Top ) | 
						
							| 4 | 1 | cvmsuni | ⊢ ( 𝑇  ∈  ( 𝑆 ‘ 𝑈 )  →  ∪  𝑇  =  ( ◡ 𝐹  “  𝑈 ) ) | 
						
							| 5 | 4 | 3ad2ant2 | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  ∪  𝑇  =  ( ◡ 𝐹  “  𝑈 ) ) | 
						
							| 6 | 1 | cvmsss | ⊢ ( 𝑇  ∈  ( 𝑆 ‘ 𝑈 )  →  𝑇  ⊆  𝐶 ) | 
						
							| 7 | 6 | 3ad2ant2 | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  𝑇  ⊆  𝐶 ) | 
						
							| 8 | 7 | unissd | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  ∪  𝑇  ⊆  ∪  𝐶 ) | 
						
							| 9 | 5 8 | eqsstrrd | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  ( ◡ 𝐹  “  𝑈 )  ⊆  ∪  𝐶 ) | 
						
							| 10 |  | eqid | ⊢ ∪  𝐶  =  ∪  𝐶 | 
						
							| 11 | 10 | restuni | ⊢ ( ( 𝐶  ∈  Top  ∧  ( ◡ 𝐹  “  𝑈 )  ⊆  ∪  𝐶 )  →  ( ◡ 𝐹  “  𝑈 )  =  ∪  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑈 ) ) ) | 
						
							| 12 | 3 9 11 | syl2anc | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  ( ◡ 𝐹  “  𝑈 )  =  ∪  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑈 ) ) ) | 
						
							| 13 | 12 | difeq1d | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  ( ( ◡ 𝐹  “  𝑈 )  ∖  ∪  ( 𝑇  ∖  { 𝐴 } ) )  =  ( ∪  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑈 ) )  ∖  ∪  ( 𝑇  ∖  { 𝐴 } ) ) ) | 
						
							| 14 |  | unisng | ⊢ ( 𝐴  ∈  𝑇  →  ∪  { 𝐴 }  =  𝐴 ) | 
						
							| 15 | 14 | 3ad2ant3 | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  ∪  { 𝐴 }  =  𝐴 ) | 
						
							| 16 | 15 | uneq2d | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  ( ∪  ( 𝑇  ∖  { 𝐴 } )  ∪  ∪  { 𝐴 } )  =  ( ∪  ( 𝑇  ∖  { 𝐴 } )  ∪  𝐴 ) ) | 
						
							| 17 |  | uniun | ⊢ ∪  ( ( 𝑇  ∖  { 𝐴 } )  ∪  { 𝐴 } )  =  ( ∪  ( 𝑇  ∖  { 𝐴 } )  ∪  ∪  { 𝐴 } ) | 
						
							| 18 |  | undif1 | ⊢ ( ( 𝑇  ∖  { 𝐴 } )  ∪  { 𝐴 } )  =  ( 𝑇  ∪  { 𝐴 } ) | 
						
							| 19 |  | simp3 | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  𝐴  ∈  𝑇 ) | 
						
							| 20 | 19 | snssd | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  { 𝐴 }  ⊆  𝑇 ) | 
						
							| 21 |  | ssequn2 | ⊢ ( { 𝐴 }  ⊆  𝑇  ↔  ( 𝑇  ∪  { 𝐴 } )  =  𝑇 ) | 
						
							| 22 | 20 21 | sylib | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  ( 𝑇  ∪  { 𝐴 } )  =  𝑇 ) | 
						
							| 23 | 18 22 | eqtrid | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  ( ( 𝑇  ∖  { 𝐴 } )  ∪  { 𝐴 } )  =  𝑇 ) | 
						
							| 24 | 23 | unieqd | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  ∪  ( ( 𝑇  ∖  { 𝐴 } )  ∪  { 𝐴 } )  =  ∪  𝑇 ) | 
						
							| 25 | 24 5 | eqtrd | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  ∪  ( ( 𝑇  ∖  { 𝐴 } )  ∪  { 𝐴 } )  =  ( ◡ 𝐹  “  𝑈 ) ) | 
						
							| 26 | 17 25 | eqtr3id | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  ( ∪  ( 𝑇  ∖  { 𝐴 } )  ∪  ∪  { 𝐴 } )  =  ( ◡ 𝐹  “  𝑈 ) ) | 
						
							| 27 | 16 26 | eqtr3d | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  ( ∪  ( 𝑇  ∖  { 𝐴 } )  ∪  𝐴 )  =  ( ◡ 𝐹  “  𝑈 ) ) | 
						
							| 28 |  | difss | ⊢ ( 𝑇  ∖  { 𝐴 } )  ⊆  𝑇 | 
						
							| 29 | 28 | unissi | ⊢ ∪  ( 𝑇  ∖  { 𝐴 } )  ⊆  ∪  𝑇 | 
						
							| 30 | 29 5 | sseqtrid | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  ∪  ( 𝑇  ∖  { 𝐴 } )  ⊆  ( ◡ 𝐹  “  𝑈 ) ) | 
						
							| 31 |  | uniiun | ⊢ ∪  ( 𝑇  ∖  { 𝐴 } )  =  ∪  𝑥  ∈  ( 𝑇  ∖  { 𝐴 } ) 𝑥 | 
						
							| 32 | 31 | ineq2i | ⊢ ( 𝐴  ∩  ∪  ( 𝑇  ∖  { 𝐴 } ) )  =  ( 𝐴  ∩  ∪  𝑥  ∈  ( 𝑇  ∖  { 𝐴 } ) 𝑥 ) | 
						
							| 33 |  | incom | ⊢ ( ∪  ( 𝑇  ∖  { 𝐴 } )  ∩  𝐴 )  =  ( 𝐴  ∩  ∪  ( 𝑇  ∖  { 𝐴 } ) ) | 
						
							| 34 |  | iunin2 | ⊢ ∪  𝑥  ∈  ( 𝑇  ∖  { 𝐴 } ) ( 𝐴  ∩  𝑥 )  =  ( 𝐴  ∩  ∪  𝑥  ∈  ( 𝑇  ∖  { 𝐴 } ) 𝑥 ) | 
						
							| 35 | 32 33 34 | 3eqtr4i | ⊢ ( ∪  ( 𝑇  ∖  { 𝐴 } )  ∩  𝐴 )  =  ∪  𝑥  ∈  ( 𝑇  ∖  { 𝐴 } ) ( 𝐴  ∩  𝑥 ) | 
						
							| 36 |  | eldifsn | ⊢ ( 𝑥  ∈  ( 𝑇  ∖  { 𝐴 } )  ↔  ( 𝑥  ∈  𝑇  ∧  𝑥  ≠  𝐴 ) ) | 
						
							| 37 |  | nesym | ⊢ ( 𝑥  ≠  𝐴  ↔  ¬  𝐴  =  𝑥 ) | 
						
							| 38 | 1 | cvmsdisj | ⊢ ( ( 𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇  ∧  𝑥  ∈  𝑇 )  →  ( 𝐴  =  𝑥  ∨  ( 𝐴  ∩  𝑥 )  =  ∅ ) ) | 
						
							| 39 | 38 | 3expa | ⊢ ( ( ( 𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  ∧  𝑥  ∈  𝑇 )  →  ( 𝐴  =  𝑥  ∨  ( 𝐴  ∩  𝑥 )  =  ∅ ) ) | 
						
							| 40 | 39 | ord | ⊢ ( ( ( 𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  ∧  𝑥  ∈  𝑇 )  →  ( ¬  𝐴  =  𝑥  →  ( 𝐴  ∩  𝑥 )  =  ∅ ) ) | 
						
							| 41 | 37 40 | biimtrid | ⊢ ( ( ( 𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  ∧  𝑥  ∈  𝑇 )  →  ( 𝑥  ≠  𝐴  →  ( 𝐴  ∩  𝑥 )  =  ∅ ) ) | 
						
							| 42 | 41 | impr | ⊢ ( ( ( 𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  ∧  ( 𝑥  ∈  𝑇  ∧  𝑥  ≠  𝐴 ) )  →  ( 𝐴  ∩  𝑥 )  =  ∅ ) | 
						
							| 43 | 36 42 | sylan2b | ⊢ ( ( ( 𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  ∧  𝑥  ∈  ( 𝑇  ∖  { 𝐴 } ) )  →  ( 𝐴  ∩  𝑥 )  =  ∅ ) | 
						
							| 44 | 43 | iuneq2dv | ⊢ ( ( 𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  ∪  𝑥  ∈  ( 𝑇  ∖  { 𝐴 } ) ( 𝐴  ∩  𝑥 )  =  ∪  𝑥  ∈  ( 𝑇  ∖  { 𝐴 } ) ∅ ) | 
						
							| 45 | 44 | 3adant1 | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  ∪  𝑥  ∈  ( 𝑇  ∖  { 𝐴 } ) ( 𝐴  ∩  𝑥 )  =  ∪  𝑥  ∈  ( 𝑇  ∖  { 𝐴 } ) ∅ ) | 
						
							| 46 |  | iun0 | ⊢ ∪  𝑥  ∈  ( 𝑇  ∖  { 𝐴 } ) ∅  =  ∅ | 
						
							| 47 | 45 46 | eqtrdi | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  ∪  𝑥  ∈  ( 𝑇  ∖  { 𝐴 } ) ( 𝐴  ∩  𝑥 )  =  ∅ ) | 
						
							| 48 | 35 47 | eqtrid | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  ( ∪  ( 𝑇  ∖  { 𝐴 } )  ∩  𝐴 )  =  ∅ ) | 
						
							| 49 |  | uneqdifeq | ⊢ ( ( ∪  ( 𝑇  ∖  { 𝐴 } )  ⊆  ( ◡ 𝐹  “  𝑈 )  ∧  ( ∪  ( 𝑇  ∖  { 𝐴 } )  ∩  𝐴 )  =  ∅ )  →  ( ( ∪  ( 𝑇  ∖  { 𝐴 } )  ∪  𝐴 )  =  ( ◡ 𝐹  “  𝑈 )  ↔  ( ( ◡ 𝐹  “  𝑈 )  ∖  ∪  ( 𝑇  ∖  { 𝐴 } ) )  =  𝐴 ) ) | 
						
							| 50 | 30 48 49 | syl2anc | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  ( ( ∪  ( 𝑇  ∖  { 𝐴 } )  ∪  𝐴 )  =  ( ◡ 𝐹  “  𝑈 )  ↔  ( ( ◡ 𝐹  “  𝑈 )  ∖  ∪  ( 𝑇  ∖  { 𝐴 } ) )  =  𝐴 ) ) | 
						
							| 51 | 27 50 | mpbid | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  ( ( ◡ 𝐹  “  𝑈 )  ∖  ∪  ( 𝑇  ∖  { 𝐴 } ) )  =  𝐴 ) | 
						
							| 52 | 13 51 | eqtr3d | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  ( ∪  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑈 ) )  ∖  ∪  ( 𝑇  ∖  { 𝐴 } ) )  =  𝐴 ) | 
						
							| 53 |  | uniexg | ⊢ ( 𝑇  ∈  ( 𝑆 ‘ 𝑈 )  →  ∪  𝑇  ∈  V ) | 
						
							| 54 | 53 | 3ad2ant2 | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  ∪  𝑇  ∈  V ) | 
						
							| 55 | 5 54 | eqeltrrd | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  ( ◡ 𝐹  “  𝑈 )  ∈  V ) | 
						
							| 56 |  | resttop | ⊢ ( ( 𝐶  ∈  Top  ∧  ( ◡ 𝐹  “  𝑈 )  ∈  V )  →  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑈 ) )  ∈  Top ) | 
						
							| 57 | 3 55 56 | syl2anc | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑈 ) )  ∈  Top ) | 
						
							| 58 |  | elssuni | ⊢ ( 𝑥  ∈  𝑇  →  𝑥  ⊆  ∪  𝑇 ) | 
						
							| 59 | 58 | adantl | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  ∧  𝑥  ∈  𝑇 )  →  𝑥  ⊆  ∪  𝑇 ) | 
						
							| 60 | 5 | adantr | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  ∧  𝑥  ∈  𝑇 )  →  ∪  𝑇  =  ( ◡ 𝐹  “  𝑈 ) ) | 
						
							| 61 | 59 60 | sseqtrd | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  ∧  𝑥  ∈  𝑇 )  →  𝑥  ⊆  ( ◡ 𝐹  “  𝑈 ) ) | 
						
							| 62 |  | dfss2 | ⊢ ( 𝑥  ⊆  ( ◡ 𝐹  “  𝑈 )  ↔  ( 𝑥  ∩  ( ◡ 𝐹  “  𝑈 ) )  =  𝑥 ) | 
						
							| 63 | 61 62 | sylib | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  ∧  𝑥  ∈  𝑇 )  →  ( 𝑥  ∩  ( ◡ 𝐹  “  𝑈 ) )  =  𝑥 ) | 
						
							| 64 | 3 | adantr | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  ∧  𝑥  ∈  𝑇 )  →  𝐶  ∈  Top ) | 
						
							| 65 | 55 | adantr | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  ∧  𝑥  ∈  𝑇 )  →  ( ◡ 𝐹  “  𝑈 )  ∈  V ) | 
						
							| 66 | 7 | sselda | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  ∧  𝑥  ∈  𝑇 )  →  𝑥  ∈  𝐶 ) | 
						
							| 67 |  | elrestr | ⊢ ( ( 𝐶  ∈  Top  ∧  ( ◡ 𝐹  “  𝑈 )  ∈  V  ∧  𝑥  ∈  𝐶 )  →  ( 𝑥  ∩  ( ◡ 𝐹  “  𝑈 ) )  ∈  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑈 ) ) ) | 
						
							| 68 | 64 65 66 67 | syl3anc | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  ∧  𝑥  ∈  𝑇 )  →  ( 𝑥  ∩  ( ◡ 𝐹  “  𝑈 ) )  ∈  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑈 ) ) ) | 
						
							| 69 | 63 68 | eqeltrrd | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  ∧  𝑥  ∈  𝑇 )  →  𝑥  ∈  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑈 ) ) ) | 
						
							| 70 | 69 | ex | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  ( 𝑥  ∈  𝑇  →  𝑥  ∈  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑈 ) ) ) ) | 
						
							| 71 | 70 | ssrdv | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  𝑇  ⊆  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑈 ) ) ) | 
						
							| 72 | 71 | ssdifssd | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  ( 𝑇  ∖  { 𝐴 } )  ⊆  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑈 ) ) ) | 
						
							| 73 |  | uniopn | ⊢ ( ( ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑈 ) )  ∈  Top  ∧  ( 𝑇  ∖  { 𝐴 } )  ⊆  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑈 ) ) )  →  ∪  ( 𝑇  ∖  { 𝐴 } )  ∈  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑈 ) ) ) | 
						
							| 74 | 57 72 73 | syl2anc | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  ∪  ( 𝑇  ∖  { 𝐴 } )  ∈  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑈 ) ) ) | 
						
							| 75 |  | eqid | ⊢ ∪  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑈 ) )  =  ∪  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑈 ) ) | 
						
							| 76 | 75 | opncld | ⊢ ( ( ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑈 ) )  ∈  Top  ∧  ∪  ( 𝑇  ∖  { 𝐴 } )  ∈  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑈 ) ) )  →  ( ∪  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑈 ) )  ∖  ∪  ( 𝑇  ∖  { 𝐴 } ) )  ∈  ( Clsd ‘ ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑈 ) ) ) ) | 
						
							| 77 | 57 74 76 | syl2anc | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  ( ∪  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑈 ) )  ∖  ∪  ( 𝑇  ∖  { 𝐴 } ) )  ∈  ( Clsd ‘ ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑈 ) ) ) ) | 
						
							| 78 | 52 77 | eqeltrrd | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  𝐴  ∈  ( Clsd ‘ ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑈 ) ) ) ) |