Metamath Proof Explorer


Theorem cvmlift2lem9a

Description: Lemma for cvmlift2 and cvmlift3 . (Contributed by Mario Carneiro, 9-Jul-2015)

Ref Expression
Hypotheses cvmlift2lem9a.b B = C
cvmlift2lem9a.y Y = K
cvmlift2lem9a.s S = k J s 𝒫 C | s = F -1 k c s d s c c d = F c C 𝑡 c Homeo J 𝑡 k
cvmlift2lem9a.f φ F C CovMap J
cvmlift2lem9a.h φ H : Y B
cvmlift2lem9a.g φ F H K Cn J
cvmlift2lem9a.k φ K Top
cvmlift2lem9a.1 φ X Y
cvmlift2lem9a.2 φ T S A
cvmlift2lem9a.3 φ W T H X W
cvmlift2lem9a.4 φ M Y
cvmlift2lem9a.6 φ H M W
Assertion cvmlift2lem9a φ H M K 𝑡 M Cn C

Proof

Step Hyp Ref Expression
1 cvmlift2lem9a.b B = C
2 cvmlift2lem9a.y Y = K
3 cvmlift2lem9a.s S = k J s 𝒫 C | s = F -1 k c s d s c c d = F c C 𝑡 c Homeo J 𝑡 k
4 cvmlift2lem9a.f φ F C CovMap J
5 cvmlift2lem9a.h φ H : Y B
6 cvmlift2lem9a.g φ F H K Cn J
7 cvmlift2lem9a.k φ K Top
8 cvmlift2lem9a.1 φ X Y
9 cvmlift2lem9a.2 φ T S A
10 cvmlift2lem9a.3 φ W T H X W
11 cvmlift2lem9a.4 φ M Y
12 cvmlift2lem9a.6 φ H M W
13 cvmtop1 F C CovMap J C Top
14 4 13 syl φ C Top
15 cnrest2r C Top K 𝑡 M Cn C 𝑡 W K 𝑡 M Cn C
16 14 15 syl φ K 𝑡 M Cn C 𝑡 W K 𝑡 M Cn C
17 5 ffnd φ H Fn Y
18 fnssres H Fn Y M Y H M Fn M
19 17 11 18 syl2anc φ H M Fn M
20 df-ima H M = ran H M
21 20 12 eqsstrrid φ ran H M W
22 df-f H M : M W H M Fn M ran H M W
23 19 21 22 sylanbrc φ H M : M W
24 10 simpld φ W T
25 3 cvmsf1o F C CovMap J T S A W T F W : W 1-1 onto A
26 4 9 24 25 syl3anc φ F W : W 1-1 onto A
27 26 adantr φ x C 𝑡 W F W : W 1-1 onto A
28 f1of1 F W : W 1-1 onto A F W : W 1-1 A
29 27 28 syl φ x C 𝑡 W F W : W 1-1 A
30 1 toptopon C Top C TopOn B
31 14 30 sylib φ C TopOn B
32 3 cvmsss T S A T C
33 9 32 syl φ T C
34 33 24 sseldd φ W C
35 toponss C TopOn B W C W B
36 31 34 35 syl2anc φ W B
37 resttopon C TopOn B W B C 𝑡 W TopOn W
38 31 36 37 syl2anc φ C 𝑡 W TopOn W
39 toponss C 𝑡 W TopOn W x C 𝑡 W x W
40 38 39 sylan φ x C 𝑡 W x W
41 f1imacnv F W : W 1-1 A x W F W -1 F W x = x
42 29 40 41 syl2anc φ x C 𝑡 W F W -1 F W x = x
43 42 imaeq2d φ x C 𝑡 W H M -1 F W -1 F W x = H M -1 x
44 imaco H M -1 F W -1 F W x = H M -1 F W -1 F W x
45 cnvco F W H M -1 = H M -1 F W -1
46 cores ran H M W F W H M = F H M
47 21 46 syl φ F W H M = F H M
48 resco F H M = F H M
49 47 48 eqtr4di φ F W H M = F H M
50 49 adantr φ x C 𝑡 W F W H M = F H M
51 50 cnveqd φ x C 𝑡 W F W H M -1 = F H M -1
52 45 51 eqtr3id φ x C 𝑡 W H M -1 F W -1 = F H M -1
53 52 imaeq1d φ x C 𝑡 W H M -1 F W -1 F W x = F H M -1 F W x
54 44 53 eqtr3id φ x C 𝑡 W H M -1 F W -1 F W x = F H M -1 F W x
55 43 54 eqtr3d φ x C 𝑡 W H M -1 x = F H M -1 F W x
56 2 cnrest F H K Cn J M Y F H M K 𝑡 M Cn J
57 6 11 56 syl2anc φ F H M K 𝑡 M Cn J
58 57 adantr φ x C 𝑡 W F H M K 𝑡 M Cn J
59 resima2 x W F W x = F x
60 40 59 syl φ x C 𝑡 W F W x = F x
61 4 adantr φ x C 𝑡 W F C CovMap J
62 restopn2 C Top W C x C 𝑡 W x C x W
63 14 34 62 syl2anc φ x C 𝑡 W x C x W
64 63 simprbda φ x C 𝑡 W x C
65 cvmopn F C CovMap J x C F x J
66 61 64 65 syl2anc φ x C 𝑡 W F x J
67 60 66 eqeltrd φ x C 𝑡 W F W x J
68 cnima F H M K 𝑡 M Cn J F W x J F H M -1 F W x K 𝑡 M
69 58 67 68 syl2anc φ x C 𝑡 W F H M -1 F W x K 𝑡 M
70 55 69 eqeltrd φ x C 𝑡 W H M -1 x K 𝑡 M
71 70 ralrimiva φ x C 𝑡 W H M -1 x K 𝑡 M
72 2 toptopon K Top K TopOn Y
73 7 72 sylib φ K TopOn Y
74 resttopon K TopOn Y M Y K 𝑡 M TopOn M
75 73 11 74 syl2anc φ K 𝑡 M TopOn M
76 iscn K 𝑡 M TopOn M C 𝑡 W TopOn W H M K 𝑡 M Cn C 𝑡 W H M : M W x C 𝑡 W H M -1 x K 𝑡 M
77 75 38 76 syl2anc φ H M K 𝑡 M Cn C 𝑡 W H M : M W x C 𝑡 W H M -1 x K 𝑡 M
78 23 71 77 mpbir2and φ H M K 𝑡 M Cn C 𝑡 W
79 16 78 sseldd φ H M K 𝑡 M Cn C