| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmlift2.b | ⊢ 𝐵  =  ∪  𝐶 | 
						
							| 2 |  | cvmlift2.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 3 |  | cvmlift2.g | ⊢ ( 𝜑  →  𝐺  ∈  ( ( II  ×t  II )  Cn  𝐽 ) ) | 
						
							| 4 |  | cvmlift2.p | ⊢ ( 𝜑  →  𝑃  ∈  𝐵 ) | 
						
							| 5 |  | cvmlift2.i | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑃 )  =  ( 0 𝐺 0 ) ) | 
						
							| 6 |  | cvmlift2.h | ⊢ 𝐻  =  ( ℩ 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑧 𝐺 0 ) )  ∧  ( 𝑓 ‘ 0 )  =  𝑃 ) ) | 
						
							| 7 |  | cvmlift2.k | ⊢ 𝐾  =  ( 𝑥  ∈  ( 0 [,] 1 ) ,  𝑦  ∈  ( 0 [,] 1 )  ↦  ( ( ℩ 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑥 𝐺 𝑧 ) )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝐻 ‘ 𝑥 ) ) ) ‘ 𝑦 ) ) | 
						
							| 8 |  | cvmlift2lem10.s | ⊢ 𝑆  =  ( 𝑘  ∈  𝐽  ↦  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑐  ∈  𝑠 ( ∀ 𝑑  ∈  ( 𝑠  ∖  { 𝑐 } ) ( 𝑐  ∩  𝑑 )  =  ∅  ∧  ( 𝐹  ↾  𝑐 )  ∈  ( ( 𝐶  ↾t  𝑐 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } ) | 
						
							| 9 |  | cvmlift2lem10.1 | ⊢ ( 𝜑  →  𝑋  ∈  ( 0 [,] 1 ) ) | 
						
							| 10 |  | cvmlift2lem10.2 | ⊢ ( 𝜑  →  𝑌  ∈  ( 0 [,] 1 ) ) | 
						
							| 11 |  | iitop | ⊢ II  ∈  Top | 
						
							| 12 |  | iiuni | ⊢ ( 0 [,] 1 )  =  ∪  II | 
						
							| 13 | 11 11 12 12 | txunii | ⊢ ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  =  ∪  ( II  ×t  II ) | 
						
							| 14 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 15 | 13 14 | cnf | ⊢ ( 𝐺  ∈  ( ( II  ×t  II )  Cn  𝐽 )  →  𝐺 : ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ⟶ ∪  𝐽 ) | 
						
							| 16 | 3 15 | syl | ⊢ ( 𝜑  →  𝐺 : ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ⟶ ∪  𝐽 ) | 
						
							| 17 | 9 10 | opelxpd | ⊢ ( 𝜑  →  〈 𝑋 ,  𝑌 〉  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 18 | 16 17 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  ∪  𝐽 ) | 
						
							| 19 | 8 14 | cvmcov | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  ∪  𝐽 )  →  ∃ 𝑚  ∈  𝐽 ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  ( 𝑆 ‘ 𝑚 )  ≠  ∅ ) ) | 
						
							| 20 | 2 18 19 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑚  ∈  𝐽 ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  ( 𝑆 ‘ 𝑚 )  ≠  ∅ ) ) | 
						
							| 21 |  | n0 | ⊢ ( ( 𝑆 ‘ 𝑚 )  ≠  ∅  ↔  ∃ 𝑡 𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) | 
						
							| 22 |  | eleq1 | ⊢ ( 𝑧  =  〈 𝑋 ,  𝑌 〉  →  ( 𝑧  ∈  ( 𝑎  ×  𝑏 )  ↔  〈 𝑋 ,  𝑌 〉  ∈  ( 𝑎  ×  𝑏 ) ) ) | 
						
							| 23 |  | opelxp | ⊢ ( 〈 𝑋 ,  𝑌 〉  ∈  ( 𝑎  ×  𝑏 )  ↔  ( 𝑋  ∈  𝑎  ∧  𝑌  ∈  𝑏 ) ) | 
						
							| 24 | 22 23 | bitrdi | ⊢ ( 𝑧  =  〈 𝑋 ,  𝑌 〉  →  ( 𝑧  ∈  ( 𝑎  ×  𝑏 )  ↔  ( 𝑋  ∈  𝑎  ∧  𝑌  ∈  𝑏 ) ) ) | 
						
							| 25 | 24 | anbi1d | ⊢ ( 𝑧  =  〈 𝑋 ,  𝑌 〉  →  ( ( 𝑧  ∈  ( 𝑎  ×  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐺  “  𝑚 ) )  ↔  ( ( 𝑋  ∈  𝑎  ∧  𝑌  ∈  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐺  “  𝑚 ) ) ) ) | 
						
							| 26 | 25 | 2rexbidv | ⊢ ( 𝑧  =  〈 𝑋 ,  𝑌 〉  →  ( ∃ 𝑎  ∈  II ∃ 𝑏  ∈  II ( 𝑧  ∈  ( 𝑎  ×  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐺  “  𝑚 ) )  ↔  ∃ 𝑎  ∈  II ∃ 𝑏  ∈  II ( ( 𝑋  ∈  𝑎  ∧  𝑌  ∈  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐺  “  𝑚 ) ) ) ) | 
						
							| 27 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  →  𝐺  ∈  ( ( II  ×t  II )  Cn  𝐽 ) ) | 
						
							| 28 | 8 | cvmsrcl | ⊢ ( 𝑡  ∈  ( 𝑆 ‘ 𝑚 )  →  𝑚  ∈  𝐽 ) | 
						
							| 29 | 28 | ad2antll | ⊢ ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  →  𝑚  ∈  𝐽 ) | 
						
							| 30 |  | cnima | ⊢ ( ( 𝐺  ∈  ( ( II  ×t  II )  Cn  𝐽 )  ∧  𝑚  ∈  𝐽 )  →  ( ◡ 𝐺  “  𝑚 )  ∈  ( II  ×t  II ) ) | 
						
							| 31 | 27 29 30 | syl2anc | ⊢ ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  →  ( ◡ 𝐺  “  𝑚 )  ∈  ( II  ×t  II ) ) | 
						
							| 32 |  | eltx | ⊢ ( ( II  ∈  Top  ∧  II  ∈  Top )  →  ( ( ◡ 𝐺  “  𝑚 )  ∈  ( II  ×t  II )  ↔  ∀ 𝑧  ∈  ( ◡ 𝐺  “  𝑚 ) ∃ 𝑎  ∈  II ∃ 𝑏  ∈  II ( 𝑧  ∈  ( 𝑎  ×  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐺  “  𝑚 ) ) ) ) | 
						
							| 33 | 11 11 32 | mp2an | ⊢ ( ( ◡ 𝐺  “  𝑚 )  ∈  ( II  ×t  II )  ↔  ∀ 𝑧  ∈  ( ◡ 𝐺  “  𝑚 ) ∃ 𝑎  ∈  II ∃ 𝑏  ∈  II ( 𝑧  ∈  ( 𝑎  ×  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐺  “  𝑚 ) ) ) | 
						
							| 34 | 31 33 | sylib | ⊢ ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  →  ∀ 𝑧  ∈  ( ◡ 𝐺  “  𝑚 ) ∃ 𝑎  ∈  II ∃ 𝑏  ∈  II ( 𝑧  ∈  ( 𝑎  ×  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐺  “  𝑚 ) ) ) | 
						
							| 35 | 17 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  →  〈 𝑋 ,  𝑌 〉  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 36 |  | simprl | ⊢ ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  →  ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚 ) | 
						
							| 37 | 16 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  →  𝐺 : ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ⟶ ∪  𝐽 ) | 
						
							| 38 |  | ffn | ⊢ ( 𝐺 : ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ⟶ ∪  𝐽  →  𝐺  Fn  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 39 |  | elpreima | ⊢ ( 𝐺  Fn  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  →  ( 〈 𝑋 ,  𝑌 〉  ∈  ( ◡ 𝐺  “  𝑚 )  ↔  ( 〈 𝑋 ,  𝑌 〉  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∧  ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚 ) ) ) | 
						
							| 40 | 37 38 39 | 3syl | ⊢ ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  →  ( 〈 𝑋 ,  𝑌 〉  ∈  ( ◡ 𝐺  “  𝑚 )  ↔  ( 〈 𝑋 ,  𝑌 〉  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∧  ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚 ) ) ) | 
						
							| 41 | 35 36 40 | mpbir2and | ⊢ ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  →  〈 𝑋 ,  𝑌 〉  ∈  ( ◡ 𝐺  “  𝑚 ) ) | 
						
							| 42 | 26 34 41 | rspcdva | ⊢ ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  →  ∃ 𝑎  ∈  II ∃ 𝑏  ∈  II ( ( 𝑋  ∈  𝑎  ∧  𝑌  ∈  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐺  “  𝑚 ) ) ) | 
						
							| 43 |  | iillysconn | ⊢ II  ∈  Locally  SConn | 
						
							| 44 |  | simplrl | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑎  ∈  II  ∧  𝑏  ∈  II ) )  ∧  ( ( 𝑋  ∈  𝑎  ∧  𝑌  ∈  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐺  “  𝑚 ) ) )  →  𝑎  ∈  II ) | 
						
							| 45 |  | simprll | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑎  ∈  II  ∧  𝑏  ∈  II ) )  ∧  ( ( 𝑋  ∈  𝑎  ∧  𝑌  ∈  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐺  “  𝑚 ) ) )  →  𝑋  ∈  𝑎 ) | 
						
							| 46 |  | llyi | ⊢ ( ( II  ∈  Locally  SConn  ∧  𝑎  ∈  II  ∧  𝑋  ∈  𝑎 )  →  ∃ 𝑢  ∈  II ( 𝑢  ⊆  𝑎  ∧  𝑋  ∈  𝑢  ∧  ( II  ↾t  𝑢 )  ∈  SConn ) ) | 
						
							| 47 | 43 44 45 46 | mp3an2i | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑎  ∈  II  ∧  𝑏  ∈  II ) )  ∧  ( ( 𝑋  ∈  𝑎  ∧  𝑌  ∈  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐺  “  𝑚 ) ) )  →  ∃ 𝑢  ∈  II ( 𝑢  ⊆  𝑎  ∧  𝑋  ∈  𝑢  ∧  ( II  ↾t  𝑢 )  ∈  SConn ) ) | 
						
							| 48 |  | simplrr | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑎  ∈  II  ∧  𝑏  ∈  II ) )  ∧  ( ( 𝑋  ∈  𝑎  ∧  𝑌  ∈  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐺  “  𝑚 ) ) )  →  𝑏  ∈  II ) | 
						
							| 49 |  | simprlr | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑎  ∈  II  ∧  𝑏  ∈  II ) )  ∧  ( ( 𝑋  ∈  𝑎  ∧  𝑌  ∈  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐺  “  𝑚 ) ) )  →  𝑌  ∈  𝑏 ) | 
						
							| 50 |  | llyi | ⊢ ( ( II  ∈  Locally  SConn  ∧  𝑏  ∈  II  ∧  𝑌  ∈  𝑏 )  →  ∃ 𝑣  ∈  II ( 𝑣  ⊆  𝑏  ∧  𝑌  ∈  𝑣  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) | 
						
							| 51 | 43 48 49 50 | mp3an2i | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑎  ∈  II  ∧  𝑏  ∈  II ) )  ∧  ( ( 𝑋  ∈  𝑎  ∧  𝑌  ∈  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐺  “  𝑚 ) ) )  →  ∃ 𝑣  ∈  II ( 𝑣  ⊆  𝑏  ∧  𝑌  ∈  𝑣  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) | 
						
							| 52 |  | reeanv | ⊢ ( ∃ 𝑢  ∈  II ∃ 𝑣  ∈  II ( ( 𝑢  ⊆  𝑎  ∧  𝑋  ∈  𝑢  ∧  ( II  ↾t  𝑢 )  ∈  SConn )  ∧  ( 𝑣  ⊆  𝑏  ∧  𝑌  ∈  𝑣  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) )  ↔  ( ∃ 𝑢  ∈  II ( 𝑢  ⊆  𝑎  ∧  𝑋  ∈  𝑢  ∧  ( II  ↾t  𝑢 )  ∈  SConn )  ∧  ∃ 𝑣  ∈  II ( 𝑣  ⊆  𝑏  ∧  𝑌  ∈  𝑣  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) ) | 
						
							| 53 |  | simpl2 | ⊢ ( ( ( 𝑢  ⊆  𝑎  ∧  𝑋  ∈  𝑢  ∧  ( II  ↾t  𝑢 )  ∈  SConn )  ∧  ( 𝑣  ⊆  𝑏  ∧  𝑌  ∈  𝑣  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) )  →  𝑋  ∈  𝑢 ) | 
						
							| 54 | 53 | a1i | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑎  ∈  II  ∧  𝑏  ∈  II ) )  ∧  ( ( 𝑋  ∈  𝑎  ∧  𝑌  ∈  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐺  “  𝑚 ) ) )  →  ( ( ( 𝑢  ⊆  𝑎  ∧  𝑋  ∈  𝑢  ∧  ( II  ↾t  𝑢 )  ∈  SConn )  ∧  ( 𝑣  ⊆  𝑏  ∧  𝑌  ∈  𝑣  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) )  →  𝑋  ∈  𝑢 ) ) | 
						
							| 55 |  | simpr2 | ⊢ ( ( ( 𝑢  ⊆  𝑎  ∧  𝑋  ∈  𝑢  ∧  ( II  ↾t  𝑢 )  ∈  SConn )  ∧  ( 𝑣  ⊆  𝑏  ∧  𝑌  ∈  𝑣  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) )  →  𝑌  ∈  𝑣 ) | 
						
							| 56 | 55 | a1i | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑎  ∈  II  ∧  𝑏  ∈  II ) )  ∧  ( ( 𝑋  ∈  𝑎  ∧  𝑌  ∈  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐺  “  𝑚 ) ) )  →  ( ( ( 𝑢  ⊆  𝑎  ∧  𝑋  ∈  𝑢  ∧  ( II  ↾t  𝑢 )  ∈  SConn )  ∧  ( 𝑣  ⊆  𝑏  ∧  𝑌  ∈  𝑣  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) )  →  𝑌  ∈  𝑣 ) ) | 
						
							| 57 |  | simprl1 | ⊢ ( ( ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑎  ∈  II  ∧  𝑏  ∈  II ) )  ∧  ( ( 𝑋  ∈  𝑎  ∧  𝑌  ∈  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐺  “  𝑚 ) ) )  ∧  ( ( 𝑢  ⊆  𝑎  ∧  𝑋  ∈  𝑢  ∧  ( II  ↾t  𝑢 )  ∈  SConn )  ∧  ( 𝑣  ⊆  𝑏  ∧  𝑌  ∈  𝑣  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) )  →  𝑢  ⊆  𝑎 ) | 
						
							| 58 |  | simprr1 | ⊢ ( ( ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑎  ∈  II  ∧  𝑏  ∈  II ) )  ∧  ( ( 𝑋  ∈  𝑎  ∧  𝑌  ∈  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐺  “  𝑚 ) ) )  ∧  ( ( 𝑢  ⊆  𝑎  ∧  𝑋  ∈  𝑢  ∧  ( II  ↾t  𝑢 )  ∈  SConn )  ∧  ( 𝑣  ⊆  𝑏  ∧  𝑌  ∈  𝑣  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) )  →  𝑣  ⊆  𝑏 ) | 
						
							| 59 |  | xpss12 | ⊢ ( ( 𝑢  ⊆  𝑎  ∧  𝑣  ⊆  𝑏 )  →  ( 𝑢  ×  𝑣 )  ⊆  ( 𝑎  ×  𝑏 ) ) | 
						
							| 60 | 57 58 59 | syl2anc | ⊢ ( ( ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑎  ∈  II  ∧  𝑏  ∈  II ) )  ∧  ( ( 𝑋  ∈  𝑎  ∧  𝑌  ∈  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐺  “  𝑚 ) ) )  ∧  ( ( 𝑢  ⊆  𝑎  ∧  𝑋  ∈  𝑢  ∧  ( II  ↾t  𝑢 )  ∈  SConn )  ∧  ( 𝑣  ⊆  𝑏  ∧  𝑌  ∈  𝑣  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) )  →  ( 𝑢  ×  𝑣 )  ⊆  ( 𝑎  ×  𝑏 ) ) | 
						
							| 61 |  | simplrr | ⊢ ( ( ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑎  ∈  II  ∧  𝑏  ∈  II ) )  ∧  ( ( 𝑋  ∈  𝑎  ∧  𝑌  ∈  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐺  “  𝑚 ) ) )  ∧  ( ( 𝑢  ⊆  𝑎  ∧  𝑋  ∈  𝑢  ∧  ( II  ↾t  𝑢 )  ∈  SConn )  ∧  ( 𝑣  ⊆  𝑏  ∧  𝑌  ∈  𝑣  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) )  →  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐺  “  𝑚 ) ) | 
						
							| 62 | 60 61 | sstrd | ⊢ ( ( ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑎  ∈  II  ∧  𝑏  ∈  II ) )  ∧  ( ( 𝑋  ∈  𝑎  ∧  𝑌  ∈  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐺  “  𝑚 ) ) )  ∧  ( ( 𝑢  ⊆  𝑎  ∧  𝑋  ∈  𝑢  ∧  ( II  ↾t  𝑢 )  ∈  SConn )  ∧  ( 𝑣  ⊆  𝑏  ∧  𝑌  ∈  𝑣  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) )  →  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐺  “  𝑚 ) ) | 
						
							| 63 | 62 | ex | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑎  ∈  II  ∧  𝑏  ∈  II ) )  ∧  ( ( 𝑋  ∈  𝑎  ∧  𝑌  ∈  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐺  “  𝑚 ) ) )  →  ( ( ( 𝑢  ⊆  𝑎  ∧  𝑋  ∈  𝑢  ∧  ( II  ↾t  𝑢 )  ∈  SConn )  ∧  ( 𝑣  ⊆  𝑏  ∧  𝑌  ∈  𝑣  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) )  →  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐺  “  𝑚 ) ) ) | 
						
							| 64 | 54 56 63 | 3jcad | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑎  ∈  II  ∧  𝑏  ∈  II ) )  ∧  ( ( 𝑋  ∈  𝑎  ∧  𝑌  ∈  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐺  “  𝑚 ) ) )  →  ( ( ( 𝑢  ⊆  𝑎  ∧  𝑋  ∈  𝑢  ∧  ( II  ↾t  𝑢 )  ∈  SConn )  ∧  ( 𝑣  ⊆  𝑏  ∧  𝑌  ∈  𝑣  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) )  →  ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐺  “  𝑚 ) ) ) ) | 
						
							| 65 |  | simp3 | ⊢ ( ( 𝑢  ⊆  𝑎  ∧  𝑋  ∈  𝑢  ∧  ( II  ↾t  𝑢 )  ∈  SConn )  →  ( II  ↾t  𝑢 )  ∈  SConn ) | 
						
							| 66 |  | simp3 | ⊢ ( ( 𝑣  ⊆  𝑏  ∧  𝑌  ∈  𝑣  ∧  ( II  ↾t  𝑣 )  ∈  SConn )  →  ( II  ↾t  𝑣 )  ∈  SConn ) | 
						
							| 67 | 65 66 | anim12i | ⊢ ( ( ( 𝑢  ⊆  𝑎  ∧  𝑋  ∈  𝑢  ∧  ( II  ↾t  𝑢 )  ∈  SConn )  ∧  ( 𝑣  ⊆  𝑏  ∧  𝑌  ∈  𝑣  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) )  →  ( ( II  ↾t  𝑢 )  ∈  SConn  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) | 
						
							| 68 | 64 67 | jca2 | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑎  ∈  II  ∧  𝑏  ∈  II ) )  ∧  ( ( 𝑋  ∈  𝑎  ∧  𝑌  ∈  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐺  “  𝑚 ) ) )  →  ( ( ( 𝑢  ⊆  𝑎  ∧  𝑋  ∈  𝑢  ∧  ( II  ↾t  𝑢 )  ∈  SConn )  ∧  ( 𝑣  ⊆  𝑏  ∧  𝑌  ∈  𝑣  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) )  →  ( ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐺  “  𝑚 ) )  ∧  ( ( II  ↾t  𝑢 )  ∈  SConn  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) ) ) | 
						
							| 69 | 68 | reximdv | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑎  ∈  II  ∧  𝑏  ∈  II ) )  ∧  ( ( 𝑋  ∈  𝑎  ∧  𝑌  ∈  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐺  “  𝑚 ) ) )  →  ( ∃ 𝑣  ∈  II ( ( 𝑢  ⊆  𝑎  ∧  𝑋  ∈  𝑢  ∧  ( II  ↾t  𝑢 )  ∈  SConn )  ∧  ( 𝑣  ⊆  𝑏  ∧  𝑌  ∈  𝑣  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) )  →  ∃ 𝑣  ∈  II ( ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐺  “  𝑚 ) )  ∧  ( ( II  ↾t  𝑢 )  ∈  SConn  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) ) ) | 
						
							| 70 | 69 | reximdv | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑎  ∈  II  ∧  𝑏  ∈  II ) )  ∧  ( ( 𝑋  ∈  𝑎  ∧  𝑌  ∈  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐺  “  𝑚 ) ) )  →  ( ∃ 𝑢  ∈  II ∃ 𝑣  ∈  II ( ( 𝑢  ⊆  𝑎  ∧  𝑋  ∈  𝑢  ∧  ( II  ↾t  𝑢 )  ∈  SConn )  ∧  ( 𝑣  ⊆  𝑏  ∧  𝑌  ∈  𝑣  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) )  →  ∃ 𝑢  ∈  II ∃ 𝑣  ∈  II ( ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐺  “  𝑚 ) )  ∧  ( ( II  ↾t  𝑢 )  ∈  SConn  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) ) ) | 
						
							| 71 | 52 70 | biimtrrid | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑎  ∈  II  ∧  𝑏  ∈  II ) )  ∧  ( ( 𝑋  ∈  𝑎  ∧  𝑌  ∈  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐺  “  𝑚 ) ) )  →  ( ( ∃ 𝑢  ∈  II ( 𝑢  ⊆  𝑎  ∧  𝑋  ∈  𝑢  ∧  ( II  ↾t  𝑢 )  ∈  SConn )  ∧  ∃ 𝑣  ∈  II ( 𝑣  ⊆  𝑏  ∧  𝑌  ∈  𝑣  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) )  →  ∃ 𝑢  ∈  II ∃ 𝑣  ∈  II ( ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐺  “  𝑚 ) )  ∧  ( ( II  ↾t  𝑢 )  ∈  SConn  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) ) ) | 
						
							| 72 | 47 51 71 | mp2and | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑎  ∈  II  ∧  𝑏  ∈  II ) )  ∧  ( ( 𝑋  ∈  𝑎  ∧  𝑌  ∈  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐺  “  𝑚 ) ) )  →  ∃ 𝑢  ∈  II ∃ 𝑣  ∈  II ( ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐺  “  𝑚 ) )  ∧  ( ( II  ↾t  𝑢 )  ∈  SConn  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) ) | 
						
							| 73 | 72 | ex | ⊢ ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑎  ∈  II  ∧  𝑏  ∈  II ) )  →  ( ( ( 𝑋  ∈  𝑎  ∧  𝑌  ∈  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐺  “  𝑚 ) )  →  ∃ 𝑢  ∈  II ∃ 𝑣  ∈  II ( ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐺  “  𝑚 ) )  ∧  ( ( II  ↾t  𝑢 )  ∈  SConn  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) ) ) | 
						
							| 74 | 73 | rexlimdvva | ⊢ ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  →  ( ∃ 𝑎  ∈  II ∃ 𝑏  ∈  II ( ( 𝑋  ∈  𝑎  ∧  𝑌  ∈  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐺  “  𝑚 ) )  →  ∃ 𝑢  ∈  II ∃ 𝑣  ∈  II ( ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐺  “  𝑚 ) )  ∧  ( ( II  ↾t  𝑢 )  ∈  SConn  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) ) ) | 
						
							| 75 | 42 74 | mpd | ⊢ ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  →  ∃ 𝑢  ∈  II ∃ 𝑣  ∈  II ( ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐺  “  𝑚 ) )  ∧  ( ( II  ↾t  𝑢 )  ∈  SConn  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) ) | 
						
							| 76 |  | simp3l1 | ⊢ ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II )  ∧  ( ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐺  “  𝑚 ) )  ∧  ( ( II  ↾t  𝑢 )  ∈  SConn  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) )  →  𝑋  ∈  𝑢 ) | 
						
							| 77 |  | simp3l2 | ⊢ ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II )  ∧  ( ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐺  “  𝑚 ) )  ∧  ( ( II  ↾t  𝑢 )  ∈  SConn  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) )  →  𝑌  ∈  𝑣 ) | 
						
							| 78 |  | simpl1l | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II )  ∧  ( ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐺  “  𝑚 ) )  ∧  ( ( II  ↾t  𝑢 )  ∈  SConn  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) )  ∧  ( 𝑤  ∈  𝑣  ∧  ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 ) ) )  →  𝜑 ) | 
						
							| 79 | 78 2 | syl | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II )  ∧  ( ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐺  “  𝑚 ) )  ∧  ( ( II  ↾t  𝑢 )  ∈  SConn  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) )  ∧  ( 𝑤  ∈  𝑣  ∧  ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 ) ) )  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 80 | 78 3 | syl | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II )  ∧  ( ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐺  “  𝑚 ) )  ∧  ( ( II  ↾t  𝑢 )  ∈  SConn  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) )  ∧  ( 𝑤  ∈  𝑣  ∧  ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 ) ) )  →  𝐺  ∈  ( ( II  ×t  II )  Cn  𝐽 ) ) | 
						
							| 81 | 78 4 | syl | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II )  ∧  ( ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐺  “  𝑚 ) )  ∧  ( ( II  ↾t  𝑢 )  ∈  SConn  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) )  ∧  ( 𝑤  ∈  𝑣  ∧  ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 ) ) )  →  𝑃  ∈  𝐵 ) | 
						
							| 82 | 78 5 | syl | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II )  ∧  ( ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐺  “  𝑚 ) )  ∧  ( ( II  ↾t  𝑢 )  ∈  SConn  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) )  ∧  ( 𝑤  ∈  𝑣  ∧  ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 ) ) )  →  ( 𝐹 ‘ 𝑃 )  =  ( 0 𝐺 0 ) ) | 
						
							| 83 |  | df-ov | ⊢ ( 𝑋 𝐺 𝑌 )  =  ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 ) | 
						
							| 84 |  | simpl1r | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II )  ∧  ( ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐺  “  𝑚 ) )  ∧  ( ( II  ↾t  𝑢 )  ∈  SConn  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) )  ∧  ( 𝑤  ∈  𝑣  ∧  ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 ) ) )  →  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) ) | 
						
							| 85 | 84 | simpld | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II )  ∧  ( ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐺  “  𝑚 ) )  ∧  ( ( II  ↾t  𝑢 )  ∈  SConn  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) )  ∧  ( 𝑤  ∈  𝑣  ∧  ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 ) ) )  →  ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚 ) | 
						
							| 86 | 83 85 | eqeltrid | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II )  ∧  ( ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐺  “  𝑚 ) )  ∧  ( ( II  ↾t  𝑢 )  ∈  SConn  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) )  ∧  ( 𝑤  ∈  𝑣  ∧  ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 ) ) )  →  ( 𝑋 𝐺 𝑌 )  ∈  𝑚 ) | 
						
							| 87 | 84 | simprd | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II )  ∧  ( ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐺  “  𝑚 ) )  ∧  ( ( II  ↾t  𝑢 )  ∈  SConn  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) )  ∧  ( 𝑤  ∈  𝑣  ∧  ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 ) ) )  →  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) | 
						
							| 88 |  | simpl2l | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II )  ∧  ( ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐺  “  𝑚 ) )  ∧  ( ( II  ↾t  𝑢 )  ∈  SConn  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) )  ∧  ( 𝑤  ∈  𝑣  ∧  ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 ) ) )  →  𝑢  ∈  II ) | 
						
							| 89 |  | simpl2r | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II )  ∧  ( ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐺  “  𝑚 ) )  ∧  ( ( II  ↾t  𝑢 )  ∈  SConn  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) )  ∧  ( 𝑤  ∈  𝑣  ∧  ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 ) ) )  →  𝑣  ∈  II ) | 
						
							| 90 |  | simp3rl | ⊢ ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II )  ∧  ( ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐺  “  𝑚 ) )  ∧  ( ( II  ↾t  𝑢 )  ∈  SConn  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) )  →  ( II  ↾t  𝑢 )  ∈  SConn ) | 
						
							| 91 | 90 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II )  ∧  ( ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐺  “  𝑚 ) )  ∧  ( ( II  ↾t  𝑢 )  ∈  SConn  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) )  ∧  ( 𝑤  ∈  𝑣  ∧  ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 ) ) )  →  ( II  ↾t  𝑢 )  ∈  SConn ) | 
						
							| 92 |  | sconnpconn | ⊢ ( ( II  ↾t  𝑢 )  ∈  SConn  →  ( II  ↾t  𝑢 )  ∈  PConn ) | 
						
							| 93 |  | pconnconn | ⊢ ( ( II  ↾t  𝑢 )  ∈  PConn  →  ( II  ↾t  𝑢 )  ∈  Conn ) | 
						
							| 94 | 91 92 93 | 3syl | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II )  ∧  ( ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐺  “  𝑚 ) )  ∧  ( ( II  ↾t  𝑢 )  ∈  SConn  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) )  ∧  ( 𝑤  ∈  𝑣  ∧  ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 ) ) )  →  ( II  ↾t  𝑢 )  ∈  Conn ) | 
						
							| 95 |  | simp3rr | ⊢ ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II )  ∧  ( ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐺  “  𝑚 ) )  ∧  ( ( II  ↾t  𝑢 )  ∈  SConn  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) )  →  ( II  ↾t  𝑣 )  ∈  SConn ) | 
						
							| 96 | 95 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II )  ∧  ( ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐺  “  𝑚 ) )  ∧  ( ( II  ↾t  𝑢 )  ∈  SConn  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) )  ∧  ( 𝑤  ∈  𝑣  ∧  ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 ) ) )  →  ( II  ↾t  𝑣 )  ∈  SConn ) | 
						
							| 97 |  | sconnpconn | ⊢ ( ( II  ↾t  𝑣 )  ∈  SConn  →  ( II  ↾t  𝑣 )  ∈  PConn ) | 
						
							| 98 |  | pconnconn | ⊢ ( ( II  ↾t  𝑣 )  ∈  PConn  →  ( II  ↾t  𝑣 )  ∈  Conn ) | 
						
							| 99 | 96 97 98 | 3syl | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II )  ∧  ( ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐺  “  𝑚 ) )  ∧  ( ( II  ↾t  𝑢 )  ∈  SConn  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) )  ∧  ( 𝑤  ∈  𝑣  ∧  ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 ) ) )  →  ( II  ↾t  𝑣 )  ∈  Conn ) | 
						
							| 100 | 76 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II )  ∧  ( ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐺  “  𝑚 ) )  ∧  ( ( II  ↾t  𝑢 )  ∈  SConn  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) )  ∧  ( 𝑤  ∈  𝑣  ∧  ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 ) ) )  →  𝑋  ∈  𝑢 ) | 
						
							| 101 | 77 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II )  ∧  ( ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐺  “  𝑚 ) )  ∧  ( ( II  ↾t  𝑢 )  ∈  SConn  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) )  ∧  ( 𝑤  ∈  𝑣  ∧  ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 ) ) )  →  𝑌  ∈  𝑣 ) | 
						
							| 102 |  | simp3l3 | ⊢ ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II )  ∧  ( ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐺  “  𝑚 ) )  ∧  ( ( II  ↾t  𝑢 )  ∈  SConn  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) )  →  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐺  “  𝑚 ) ) | 
						
							| 103 | 102 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II )  ∧  ( ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐺  “  𝑚 ) )  ∧  ( ( II  ↾t  𝑢 )  ∈  SConn  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) )  ∧  ( 𝑤  ∈  𝑣  ∧  ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 ) ) )  →  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐺  “  𝑚 ) ) | 
						
							| 104 |  | simprl | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II )  ∧  ( ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐺  “  𝑚 ) )  ∧  ( ( II  ↾t  𝑢 )  ∈  SConn  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) )  ∧  ( 𝑤  ∈  𝑣  ∧  ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 ) ) )  →  𝑤  ∈  𝑣 ) | 
						
							| 105 |  | simprr | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II )  ∧  ( ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐺  “  𝑚 ) )  ∧  ( ( II  ↾t  𝑢 )  ∈  SConn  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) )  ∧  ( 𝑤  ∈  𝑣  ∧  ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 ) ) )  →  ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 ) ) | 
						
							| 106 |  | eqid | ⊢ ( ℩ 𝑏  ∈  𝑡 ( 𝑋 𝐾 𝑌 )  ∈  𝑏 )  =  ( ℩ 𝑏  ∈  𝑡 ( 𝑋 𝐾 𝑌 )  ∈  𝑏 ) | 
						
							| 107 | 1 79 80 81 82 6 7 8 86 87 88 89 94 99 100 101 103 104 105 106 | cvmlift2lem9 | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II )  ∧  ( ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐺  “  𝑚 ) )  ∧  ( ( II  ↾t  𝑢 )  ∈  SConn  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) )  ∧  ( 𝑤  ∈  𝑣  ∧  ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 ) ) )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) | 
						
							| 108 | 107 | rexlimdvaa | ⊢ ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II )  ∧  ( ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐺  “  𝑚 ) )  ∧  ( ( II  ↾t  𝑢 )  ∈  SConn  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) )  →  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) | 
						
							| 109 | 76 77 108 | 3jca | ⊢ ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II )  ∧  ( ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐺  “  𝑚 ) )  ∧  ( ( II  ↾t  𝑢 )  ∈  SConn  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) ) )  →  ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) ) | 
						
							| 110 | 109 | 3expia | ⊢ ( ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  →  ( ( ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐺  “  𝑚 ) )  ∧  ( ( II  ↾t  𝑢 )  ∈  SConn  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) )  →  ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) ) ) | 
						
							| 111 | 110 | reximdvva | ⊢ ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  →  ( ∃ 𝑢  ∈  II ∃ 𝑣  ∈  II ( ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐺  “  𝑚 ) )  ∧  ( ( II  ↾t  𝑢 )  ∈  SConn  ∧  ( II  ↾t  𝑣 )  ∈  SConn ) )  →  ∃ 𝑢  ∈  II ∃ 𝑣  ∈  II ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) ) ) | 
						
							| 112 | 75 111 | mpd | ⊢ ( ( 𝜑  ∧  ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  𝑡  ∈  ( 𝑆 ‘ 𝑚 ) ) )  →  ∃ 𝑢  ∈  II ∃ 𝑣  ∈  II ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) ) | 
						
							| 113 | 112 | expr | ⊢ ( ( 𝜑  ∧  ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚 )  →  ( 𝑡  ∈  ( 𝑆 ‘ 𝑚 )  →  ∃ 𝑢  ∈  II ∃ 𝑣  ∈  II ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) ) ) | 
						
							| 114 | 113 | exlimdv | ⊢ ( ( 𝜑  ∧  ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚 )  →  ( ∃ 𝑡 𝑡  ∈  ( 𝑆 ‘ 𝑚 )  →  ∃ 𝑢  ∈  II ∃ 𝑣  ∈  II ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) ) ) | 
						
							| 115 | 21 114 | biimtrid | ⊢ ( ( 𝜑  ∧  ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚 )  →  ( ( 𝑆 ‘ 𝑚 )  ≠  ∅  →  ∃ 𝑢  ∈  II ∃ 𝑣  ∈  II ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) ) ) | 
						
							| 116 | 115 | expimpd | ⊢ ( 𝜑  →  ( ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  ( 𝑆 ‘ 𝑚 )  ≠  ∅ )  →  ∃ 𝑢  ∈  II ∃ 𝑣  ∈  II ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) ) ) | 
						
							| 117 | 116 | rexlimdvw | ⊢ ( 𝜑  →  ( ∃ 𝑚  ∈  𝐽 ( ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑚  ∧  ( 𝑆 ‘ 𝑚 )  ≠  ∅ )  →  ∃ 𝑢  ∈  II ∃ 𝑣  ∈  II ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) ) ) | 
						
							| 118 | 20 117 | mpd | ⊢ ( 𝜑  →  ∃ 𝑢  ∈  II ∃ 𝑣  ∈  II ( 𝑋  ∈  𝑢  ∧  𝑌  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) ) |