| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvmlift2.b |
⊢ 𝐵 = ∪ 𝐶 |
| 2 |
|
cvmlift2.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
| 3 |
|
cvmlift2.g |
⊢ ( 𝜑 → 𝐺 ∈ ( ( II ×t II ) Cn 𝐽 ) ) |
| 4 |
|
cvmlift2.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝐵 ) |
| 5 |
|
cvmlift2.i |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) = ( 0 𝐺 0 ) ) |
| 6 |
|
cvmlift2.h |
⊢ 𝐻 = ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑧 𝐺 0 ) ) ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) |
| 7 |
|
cvmlift2.k |
⊢ 𝐾 = ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 𝐺 𝑧 ) ) ∧ ( 𝑓 ‘ 0 ) = ( 𝐻 ‘ 𝑥 ) ) ) ‘ 𝑦 ) ) |
| 8 |
|
cvmlift2lem10.s |
⊢ 𝑆 = ( 𝑘 ∈ 𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑐 ∈ 𝑠 ( ∀ 𝑑 ∈ ( 𝑠 ∖ { 𝑐 } ) ( 𝑐 ∩ 𝑑 ) = ∅ ∧ ( 𝐹 ↾ 𝑐 ) ∈ ( ( 𝐶 ↾t 𝑐 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } ) |
| 9 |
|
cvmlift2lem10.1 |
⊢ ( 𝜑 → 𝑋 ∈ ( 0 [,] 1 ) ) |
| 10 |
|
cvmlift2lem10.2 |
⊢ ( 𝜑 → 𝑌 ∈ ( 0 [,] 1 ) ) |
| 11 |
|
iitop |
⊢ II ∈ Top |
| 12 |
|
iiuni |
⊢ ( 0 [,] 1 ) = ∪ II |
| 13 |
11 11 12 12
|
txunii |
⊢ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) = ∪ ( II ×t II ) |
| 14 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 15 |
13 14
|
cnf |
⊢ ( 𝐺 ∈ ( ( II ×t II ) Cn 𝐽 ) → 𝐺 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ ∪ 𝐽 ) |
| 16 |
3 15
|
syl |
⊢ ( 𝜑 → 𝐺 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ ∪ 𝐽 ) |
| 17 |
9 10
|
opelxpd |
⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
| 18 |
16 17
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ ∪ 𝐽 ) |
| 19 |
8 14
|
cvmcov |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ ∪ 𝐽 ) → ∃ 𝑚 ∈ 𝐽 ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ ( 𝑆 ‘ 𝑚 ) ≠ ∅ ) ) |
| 20 |
2 18 19
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑚 ∈ 𝐽 ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ ( 𝑆 ‘ 𝑚 ) ≠ ∅ ) ) |
| 21 |
|
n0 |
⊢ ( ( 𝑆 ‘ 𝑚 ) ≠ ∅ ↔ ∃ 𝑡 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) |
| 22 |
|
eleq1 |
⊢ ( 𝑧 = 〈 𝑋 , 𝑌 〉 → ( 𝑧 ∈ ( 𝑎 × 𝑏 ) ↔ 〈 𝑋 , 𝑌 〉 ∈ ( 𝑎 × 𝑏 ) ) ) |
| 23 |
|
opelxp |
⊢ ( 〈 𝑋 , 𝑌 〉 ∈ ( 𝑎 × 𝑏 ) ↔ ( 𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏 ) ) |
| 24 |
22 23
|
bitrdi |
⊢ ( 𝑧 = 〈 𝑋 , 𝑌 〉 → ( 𝑧 ∈ ( 𝑎 × 𝑏 ) ↔ ( 𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏 ) ) ) |
| 25 |
24
|
anbi1d |
⊢ ( 𝑧 = 〈 𝑋 , 𝑌 〉 → ( ( 𝑧 ∈ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ↔ ( ( 𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ) ) |
| 26 |
25
|
2rexbidv |
⊢ ( 𝑧 = 〈 𝑋 , 𝑌 〉 → ( ∃ 𝑎 ∈ II ∃ 𝑏 ∈ II ( 𝑧 ∈ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ↔ ∃ 𝑎 ∈ II ∃ 𝑏 ∈ II ( ( 𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ) ) |
| 27 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) → 𝐺 ∈ ( ( II ×t II ) Cn 𝐽 ) ) |
| 28 |
8
|
cvmsrcl |
⊢ ( 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) → 𝑚 ∈ 𝐽 ) |
| 29 |
28
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) → 𝑚 ∈ 𝐽 ) |
| 30 |
|
cnima |
⊢ ( ( 𝐺 ∈ ( ( II ×t II ) Cn 𝐽 ) ∧ 𝑚 ∈ 𝐽 ) → ( ◡ 𝐺 “ 𝑚 ) ∈ ( II ×t II ) ) |
| 31 |
27 29 30
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) → ( ◡ 𝐺 “ 𝑚 ) ∈ ( II ×t II ) ) |
| 32 |
|
eltx |
⊢ ( ( II ∈ Top ∧ II ∈ Top ) → ( ( ◡ 𝐺 “ 𝑚 ) ∈ ( II ×t II ) ↔ ∀ 𝑧 ∈ ( ◡ 𝐺 “ 𝑚 ) ∃ 𝑎 ∈ II ∃ 𝑏 ∈ II ( 𝑧 ∈ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ) ) |
| 33 |
11 11 32
|
mp2an |
⊢ ( ( ◡ 𝐺 “ 𝑚 ) ∈ ( II ×t II ) ↔ ∀ 𝑧 ∈ ( ◡ 𝐺 “ 𝑚 ) ∃ 𝑎 ∈ II ∃ 𝑏 ∈ II ( 𝑧 ∈ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ) |
| 34 |
31 33
|
sylib |
⊢ ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) → ∀ 𝑧 ∈ ( ◡ 𝐺 “ 𝑚 ) ∃ 𝑎 ∈ II ∃ 𝑏 ∈ II ( 𝑧 ∈ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ) |
| 35 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) → 〈 𝑋 , 𝑌 〉 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
| 36 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) → ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ) |
| 37 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) → 𝐺 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ ∪ 𝐽 ) |
| 38 |
|
ffn |
⊢ ( 𝐺 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ ∪ 𝐽 → 𝐺 Fn ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
| 39 |
|
elpreima |
⊢ ( 𝐺 Fn ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) → ( 〈 𝑋 , 𝑌 〉 ∈ ( ◡ 𝐺 “ 𝑚 ) ↔ ( 〈 𝑋 , 𝑌 〉 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ∧ ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ) ) ) |
| 40 |
37 38 39
|
3syl |
⊢ ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) → ( 〈 𝑋 , 𝑌 〉 ∈ ( ◡ 𝐺 “ 𝑚 ) ↔ ( 〈 𝑋 , 𝑌 〉 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ∧ ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ) ) ) |
| 41 |
35 36 40
|
mpbir2and |
⊢ ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) → 〈 𝑋 , 𝑌 〉 ∈ ( ◡ 𝐺 “ 𝑚 ) ) |
| 42 |
26 34 41
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) → ∃ 𝑎 ∈ II ∃ 𝑏 ∈ II ( ( 𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ) |
| 43 |
|
iillysconn |
⊢ II ∈ Locally SConn |
| 44 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑎 ∈ II ∧ 𝑏 ∈ II ) ) ∧ ( ( 𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ) → 𝑎 ∈ II ) |
| 45 |
|
simprll |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑎 ∈ II ∧ 𝑏 ∈ II ) ) ∧ ( ( 𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ) → 𝑋 ∈ 𝑎 ) |
| 46 |
|
llyi |
⊢ ( ( II ∈ Locally SConn ∧ 𝑎 ∈ II ∧ 𝑋 ∈ 𝑎 ) → ∃ 𝑢 ∈ II ( 𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ ( II ↾t 𝑢 ) ∈ SConn ) ) |
| 47 |
43 44 45 46
|
mp3an2i |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑎 ∈ II ∧ 𝑏 ∈ II ) ) ∧ ( ( 𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ) → ∃ 𝑢 ∈ II ( 𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ ( II ↾t 𝑢 ) ∈ SConn ) ) |
| 48 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑎 ∈ II ∧ 𝑏 ∈ II ) ) ∧ ( ( 𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ) → 𝑏 ∈ II ) |
| 49 |
|
simprlr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑎 ∈ II ∧ 𝑏 ∈ II ) ) ∧ ( ( 𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ) → 𝑌 ∈ 𝑏 ) |
| 50 |
|
llyi |
⊢ ( ( II ∈ Locally SConn ∧ 𝑏 ∈ II ∧ 𝑌 ∈ 𝑏 ) → ∃ 𝑣 ∈ II ( 𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) |
| 51 |
43 48 49 50
|
mp3an2i |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑎 ∈ II ∧ 𝑏 ∈ II ) ) ∧ ( ( 𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ) → ∃ 𝑣 ∈ II ( 𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) |
| 52 |
|
reeanv |
⊢ ( ∃ 𝑢 ∈ II ∃ 𝑣 ∈ II ( ( 𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ ( II ↾t 𝑢 ) ∈ SConn ) ∧ ( 𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) ↔ ( ∃ 𝑢 ∈ II ( 𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ ( II ↾t 𝑢 ) ∈ SConn ) ∧ ∃ 𝑣 ∈ II ( 𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) ) |
| 53 |
|
simpl2 |
⊢ ( ( ( 𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ ( II ↾t 𝑢 ) ∈ SConn ) ∧ ( 𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) → 𝑋 ∈ 𝑢 ) |
| 54 |
53
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑎 ∈ II ∧ 𝑏 ∈ II ) ) ∧ ( ( 𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ) → ( ( ( 𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ ( II ↾t 𝑢 ) ∈ SConn ) ∧ ( 𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) → 𝑋 ∈ 𝑢 ) ) |
| 55 |
|
simpr2 |
⊢ ( ( ( 𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ ( II ↾t 𝑢 ) ∈ SConn ) ∧ ( 𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) → 𝑌 ∈ 𝑣 ) |
| 56 |
55
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑎 ∈ II ∧ 𝑏 ∈ II ) ) ∧ ( ( 𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ) → ( ( ( 𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ ( II ↾t 𝑢 ) ∈ SConn ) ∧ ( 𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) → 𝑌 ∈ 𝑣 ) ) |
| 57 |
|
simprl1 |
⊢ ( ( ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑎 ∈ II ∧ 𝑏 ∈ II ) ) ∧ ( ( 𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ) ∧ ( ( 𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ ( II ↾t 𝑢 ) ∈ SConn ) ∧ ( 𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) ) → 𝑢 ⊆ 𝑎 ) |
| 58 |
|
simprr1 |
⊢ ( ( ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑎 ∈ II ∧ 𝑏 ∈ II ) ) ∧ ( ( 𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ) ∧ ( ( 𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ ( II ↾t 𝑢 ) ∈ SConn ) ∧ ( 𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) ) → 𝑣 ⊆ 𝑏 ) |
| 59 |
|
xpss12 |
⊢ ( ( 𝑢 ⊆ 𝑎 ∧ 𝑣 ⊆ 𝑏 ) → ( 𝑢 × 𝑣 ) ⊆ ( 𝑎 × 𝑏 ) ) |
| 60 |
57 58 59
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑎 ∈ II ∧ 𝑏 ∈ II ) ) ∧ ( ( 𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ) ∧ ( ( 𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ ( II ↾t 𝑢 ) ∈ SConn ) ∧ ( 𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) ) → ( 𝑢 × 𝑣 ) ⊆ ( 𝑎 × 𝑏 ) ) |
| 61 |
|
simplrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑎 ∈ II ∧ 𝑏 ∈ II ) ) ∧ ( ( 𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ) ∧ ( ( 𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ ( II ↾t 𝑢 ) ∈ SConn ) ∧ ( 𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) ) → ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) |
| 62 |
60 61
|
sstrd |
⊢ ( ( ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑎 ∈ II ∧ 𝑏 ∈ II ) ) ∧ ( ( 𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ) ∧ ( ( 𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ ( II ↾t 𝑢 ) ∈ SConn ) ∧ ( 𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) ) → ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) |
| 63 |
62
|
ex |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑎 ∈ II ∧ 𝑏 ∈ II ) ) ∧ ( ( 𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ) → ( ( ( 𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ ( II ↾t 𝑢 ) ∈ SConn ) ∧ ( 𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) → ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ) |
| 64 |
54 56 63
|
3jcad |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑎 ∈ II ∧ 𝑏 ∈ II ) ) ∧ ( ( 𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ) → ( ( ( 𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ ( II ↾t 𝑢 ) ∈ SConn ) ∧ ( 𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) → ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ) ) |
| 65 |
|
simp3 |
⊢ ( ( 𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ ( II ↾t 𝑢 ) ∈ SConn ) → ( II ↾t 𝑢 ) ∈ SConn ) |
| 66 |
|
simp3 |
⊢ ( ( 𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ ( II ↾t 𝑣 ) ∈ SConn ) → ( II ↾t 𝑣 ) ∈ SConn ) |
| 67 |
65 66
|
anim12i |
⊢ ( ( ( 𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ ( II ↾t 𝑢 ) ∈ SConn ) ∧ ( 𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) → ( ( II ↾t 𝑢 ) ∈ SConn ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) |
| 68 |
64 67
|
jca2 |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑎 ∈ II ∧ 𝑏 ∈ II ) ) ∧ ( ( 𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ) → ( ( ( 𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ ( II ↾t 𝑢 ) ∈ SConn ) ∧ ( 𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) → ( ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ∧ ( ( II ↾t 𝑢 ) ∈ SConn ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) ) ) |
| 69 |
68
|
reximdv |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑎 ∈ II ∧ 𝑏 ∈ II ) ) ∧ ( ( 𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ) → ( ∃ 𝑣 ∈ II ( ( 𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ ( II ↾t 𝑢 ) ∈ SConn ) ∧ ( 𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) → ∃ 𝑣 ∈ II ( ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ∧ ( ( II ↾t 𝑢 ) ∈ SConn ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) ) ) |
| 70 |
69
|
reximdv |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑎 ∈ II ∧ 𝑏 ∈ II ) ) ∧ ( ( 𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ) → ( ∃ 𝑢 ∈ II ∃ 𝑣 ∈ II ( ( 𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ ( II ↾t 𝑢 ) ∈ SConn ) ∧ ( 𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) → ∃ 𝑢 ∈ II ∃ 𝑣 ∈ II ( ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ∧ ( ( II ↾t 𝑢 ) ∈ SConn ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) ) ) |
| 71 |
52 70
|
biimtrrid |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑎 ∈ II ∧ 𝑏 ∈ II ) ) ∧ ( ( 𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ) → ( ( ∃ 𝑢 ∈ II ( 𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ ( II ↾t 𝑢 ) ∈ SConn ) ∧ ∃ 𝑣 ∈ II ( 𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) → ∃ 𝑢 ∈ II ∃ 𝑣 ∈ II ( ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ∧ ( ( II ↾t 𝑢 ) ∈ SConn ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) ) ) |
| 72 |
47 51 71
|
mp2and |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑎 ∈ II ∧ 𝑏 ∈ II ) ) ∧ ( ( 𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ) → ∃ 𝑢 ∈ II ∃ 𝑣 ∈ II ( ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ∧ ( ( II ↾t 𝑢 ) ∈ SConn ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) ) |
| 73 |
72
|
ex |
⊢ ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑎 ∈ II ∧ 𝑏 ∈ II ) ) → ( ( ( 𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) → ∃ 𝑢 ∈ II ∃ 𝑣 ∈ II ( ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ∧ ( ( II ↾t 𝑢 ) ∈ SConn ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) ) ) |
| 74 |
73
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) → ( ∃ 𝑎 ∈ II ∃ 𝑏 ∈ II ( ( 𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) → ∃ 𝑢 ∈ II ∃ 𝑣 ∈ II ( ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ∧ ( ( II ↾t 𝑢 ) ∈ SConn ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) ) ) |
| 75 |
42 74
|
mpd |
⊢ ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) → ∃ 𝑢 ∈ II ∃ 𝑣 ∈ II ( ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ∧ ( ( II ↾t 𝑢 ) ∈ SConn ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) ) |
| 76 |
|
simp3l1 |
⊢ ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ∧ ( ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ∧ ( ( II ↾t 𝑢 ) ∈ SConn ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) ) → 𝑋 ∈ 𝑢 ) |
| 77 |
|
simp3l2 |
⊢ ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ∧ ( ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ∧ ( ( II ↾t 𝑢 ) ∈ SConn ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) ) → 𝑌 ∈ 𝑣 ) |
| 78 |
|
simpl1l |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ∧ ( ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ∧ ( ( II ↾t 𝑢 ) ∈ SConn ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) ) ∧ ( 𝑤 ∈ 𝑣 ∧ ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) ) ) → 𝜑 ) |
| 79 |
78 2
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ∧ ( ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ∧ ( ( II ↾t 𝑢 ) ∈ SConn ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) ) ∧ ( 𝑤 ∈ 𝑣 ∧ ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) ) ) → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
| 80 |
78 3
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ∧ ( ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ∧ ( ( II ↾t 𝑢 ) ∈ SConn ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) ) ∧ ( 𝑤 ∈ 𝑣 ∧ ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) ) ) → 𝐺 ∈ ( ( II ×t II ) Cn 𝐽 ) ) |
| 81 |
78 4
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ∧ ( ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ∧ ( ( II ↾t 𝑢 ) ∈ SConn ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) ) ∧ ( 𝑤 ∈ 𝑣 ∧ ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) ) ) → 𝑃 ∈ 𝐵 ) |
| 82 |
78 5
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ∧ ( ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ∧ ( ( II ↾t 𝑢 ) ∈ SConn ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) ) ∧ ( 𝑤 ∈ 𝑣 ∧ ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) ) ) → ( 𝐹 ‘ 𝑃 ) = ( 0 𝐺 0 ) ) |
| 83 |
|
df-ov |
⊢ ( 𝑋 𝐺 𝑌 ) = ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) |
| 84 |
|
simpl1r |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ∧ ( ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ∧ ( ( II ↾t 𝑢 ) ∈ SConn ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) ) ∧ ( 𝑤 ∈ 𝑣 ∧ ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) ) ) → ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) |
| 85 |
84
|
simpld |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ∧ ( ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ∧ ( ( II ↾t 𝑢 ) ∈ SConn ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) ) ∧ ( 𝑤 ∈ 𝑣 ∧ ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) ) ) → ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ) |
| 86 |
83 85
|
eqeltrid |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ∧ ( ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ∧ ( ( II ↾t 𝑢 ) ∈ SConn ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) ) ∧ ( 𝑤 ∈ 𝑣 ∧ ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) ) ) → ( 𝑋 𝐺 𝑌 ) ∈ 𝑚 ) |
| 87 |
84
|
simprd |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ∧ ( ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ∧ ( ( II ↾t 𝑢 ) ∈ SConn ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) ) ∧ ( 𝑤 ∈ 𝑣 ∧ ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) ) ) → 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) |
| 88 |
|
simpl2l |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ∧ ( ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ∧ ( ( II ↾t 𝑢 ) ∈ SConn ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) ) ∧ ( 𝑤 ∈ 𝑣 ∧ ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) ) ) → 𝑢 ∈ II ) |
| 89 |
|
simpl2r |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ∧ ( ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ∧ ( ( II ↾t 𝑢 ) ∈ SConn ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) ) ∧ ( 𝑤 ∈ 𝑣 ∧ ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) ) ) → 𝑣 ∈ II ) |
| 90 |
|
simp3rl |
⊢ ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ∧ ( ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ∧ ( ( II ↾t 𝑢 ) ∈ SConn ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) ) → ( II ↾t 𝑢 ) ∈ SConn ) |
| 91 |
90
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ∧ ( ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ∧ ( ( II ↾t 𝑢 ) ∈ SConn ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) ) ∧ ( 𝑤 ∈ 𝑣 ∧ ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) ) ) → ( II ↾t 𝑢 ) ∈ SConn ) |
| 92 |
|
sconnpconn |
⊢ ( ( II ↾t 𝑢 ) ∈ SConn → ( II ↾t 𝑢 ) ∈ PConn ) |
| 93 |
|
pconnconn |
⊢ ( ( II ↾t 𝑢 ) ∈ PConn → ( II ↾t 𝑢 ) ∈ Conn ) |
| 94 |
91 92 93
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ∧ ( ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ∧ ( ( II ↾t 𝑢 ) ∈ SConn ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) ) ∧ ( 𝑤 ∈ 𝑣 ∧ ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) ) ) → ( II ↾t 𝑢 ) ∈ Conn ) |
| 95 |
|
simp3rr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ∧ ( ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ∧ ( ( II ↾t 𝑢 ) ∈ SConn ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) ) → ( II ↾t 𝑣 ) ∈ SConn ) |
| 96 |
95
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ∧ ( ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ∧ ( ( II ↾t 𝑢 ) ∈ SConn ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) ) ∧ ( 𝑤 ∈ 𝑣 ∧ ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) ) ) → ( II ↾t 𝑣 ) ∈ SConn ) |
| 97 |
|
sconnpconn |
⊢ ( ( II ↾t 𝑣 ) ∈ SConn → ( II ↾t 𝑣 ) ∈ PConn ) |
| 98 |
|
pconnconn |
⊢ ( ( II ↾t 𝑣 ) ∈ PConn → ( II ↾t 𝑣 ) ∈ Conn ) |
| 99 |
96 97 98
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ∧ ( ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ∧ ( ( II ↾t 𝑢 ) ∈ SConn ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) ) ∧ ( 𝑤 ∈ 𝑣 ∧ ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) ) ) → ( II ↾t 𝑣 ) ∈ Conn ) |
| 100 |
76
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ∧ ( ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ∧ ( ( II ↾t 𝑢 ) ∈ SConn ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) ) ∧ ( 𝑤 ∈ 𝑣 ∧ ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) ) ) → 𝑋 ∈ 𝑢 ) |
| 101 |
77
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ∧ ( ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ∧ ( ( II ↾t 𝑢 ) ∈ SConn ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) ) ∧ ( 𝑤 ∈ 𝑣 ∧ ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) ) ) → 𝑌 ∈ 𝑣 ) |
| 102 |
|
simp3l3 |
⊢ ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ∧ ( ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ∧ ( ( II ↾t 𝑢 ) ∈ SConn ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) ) → ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) |
| 103 |
102
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ∧ ( ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ∧ ( ( II ↾t 𝑢 ) ∈ SConn ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) ) ∧ ( 𝑤 ∈ 𝑣 ∧ ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) ) ) → ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) |
| 104 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ∧ ( ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ∧ ( ( II ↾t 𝑢 ) ∈ SConn ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) ) ∧ ( 𝑤 ∈ 𝑣 ∧ ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) ) ) → 𝑤 ∈ 𝑣 ) |
| 105 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ∧ ( ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ∧ ( ( II ↾t 𝑢 ) ∈ SConn ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) ) ∧ ( 𝑤 ∈ 𝑣 ∧ ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) ) ) → ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) ) |
| 106 |
|
eqid |
⊢ ( ℩ 𝑏 ∈ 𝑡 ( 𝑋 𝐾 𝑌 ) ∈ 𝑏 ) = ( ℩ 𝑏 ∈ 𝑡 ( 𝑋 𝐾 𝑌 ) ∈ 𝑏 ) |
| 107 |
1 79 80 81 82 6 7 8 86 87 88 89 94 99 100 101 103 104 105 106
|
cvmlift2lem9 |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ∧ ( ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ∧ ( ( II ↾t 𝑢 ) ∈ SConn ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) ) ∧ ( 𝑤 ∈ 𝑣 ∧ ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) ) ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) |
| 108 |
107
|
rexlimdvaa |
⊢ ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ∧ ( ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ∧ ( ( II ↾t 𝑢 ) ∈ SConn ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) ) → ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) |
| 109 |
76 77 108
|
3jca |
⊢ ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ∧ ( ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ∧ ( ( II ↾t 𝑢 ) ∈ SConn ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) ) → ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) |
| 110 |
109
|
3expia |
⊢ ( ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) → ( ( ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ∧ ( ( II ↾t 𝑢 ) ∈ SConn ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) → ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) ) |
| 111 |
110
|
reximdvva |
⊢ ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) → ( ∃ 𝑢 ∈ II ∃ 𝑣 ∈ II ( ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐺 “ 𝑚 ) ) ∧ ( ( II ↾t 𝑢 ) ∈ SConn ∧ ( II ↾t 𝑣 ) ∈ SConn ) ) → ∃ 𝑢 ∈ II ∃ 𝑣 ∈ II ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) ) |
| 112 |
75 111
|
mpd |
⊢ ( ( 𝜑 ∧ ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) ) ) → ∃ 𝑢 ∈ II ∃ 𝑣 ∈ II ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) |
| 113 |
112
|
expr |
⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ) → ( 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) → ∃ 𝑢 ∈ II ∃ 𝑣 ∈ II ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) ) |
| 114 |
113
|
exlimdv |
⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ) → ( ∃ 𝑡 𝑡 ∈ ( 𝑆 ‘ 𝑚 ) → ∃ 𝑢 ∈ II ∃ 𝑣 ∈ II ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) ) |
| 115 |
21 114
|
biimtrid |
⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ) → ( ( 𝑆 ‘ 𝑚 ) ≠ ∅ → ∃ 𝑢 ∈ II ∃ 𝑣 ∈ II ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) ) |
| 116 |
115
|
expimpd |
⊢ ( 𝜑 → ( ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ ( 𝑆 ‘ 𝑚 ) ≠ ∅ ) → ∃ 𝑢 ∈ II ∃ 𝑣 ∈ II ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) ) |
| 117 |
116
|
rexlimdvw |
⊢ ( 𝜑 → ( ∃ 𝑚 ∈ 𝐽 ( ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑚 ∧ ( 𝑆 ‘ 𝑚 ) ≠ ∅ ) → ∃ 𝑢 ∈ II ∃ 𝑣 ∈ II ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) ) |
| 118 |
20 117
|
mpd |
⊢ ( 𝜑 → ∃ 𝑢 ∈ II ∃ 𝑣 ∈ II ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) |