| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmlift2.b | ⊢ 𝐵  =  ∪  𝐶 | 
						
							| 2 |  | cvmlift2.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 3 |  | cvmlift2.g | ⊢ ( 𝜑  →  𝐺  ∈  ( ( II  ×t  II )  Cn  𝐽 ) ) | 
						
							| 4 |  | cvmlift2.p | ⊢ ( 𝜑  →  𝑃  ∈  𝐵 ) | 
						
							| 5 |  | cvmlift2.i | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑃 )  =  ( 0 𝐺 0 ) ) | 
						
							| 6 |  | cvmlift2.h | ⊢ 𝐻  =  ( ℩ 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑧 𝐺 0 ) )  ∧  ( 𝑓 ‘ 0 )  =  𝑃 ) ) | 
						
							| 7 |  | cvmlift2.k | ⊢ 𝐾  =  ( 𝑥  ∈  ( 0 [,] 1 ) ,  𝑦  ∈  ( 0 [,] 1 )  ↦  ( ( ℩ 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑥 𝐺 𝑧 ) )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝐻 ‘ 𝑥 ) ) ) ‘ 𝑦 ) ) | 
						
							| 8 |  | cvmlift2.m | ⊢ 𝑀  =  { 𝑧  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑧 ) } | 
						
							| 9 |  | cvmlift2lem11.1 | ⊢ ( 𝜑  →  𝑈  ∈  II ) | 
						
							| 10 |  | cvmlift2lem11.2 | ⊢ ( 𝜑  →  𝑉  ∈  II ) | 
						
							| 11 |  | cvmlift2lem11.3 | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 12 |  | cvmlift2lem11.4 | ⊢ ( 𝜑  →  𝑍  ∈  𝑉 ) | 
						
							| 13 |  | cvmlift2lem11.5 | ⊢ ( 𝜑  →  ( ∃ 𝑤  ∈  𝑉 ( 𝐾  ↾  ( 𝑈  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑈  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑈  ×  𝑉 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑈  ×  𝑉 ) )  Cn  𝐶 ) ) ) | 
						
							| 14 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  →  𝑈  ∈  II ) | 
						
							| 15 |  | elssuni | ⊢ ( 𝑈  ∈  II  →  𝑈  ⊆  ∪  II ) | 
						
							| 16 |  | iiuni | ⊢ ( 0 [,] 1 )  =  ∪  II | 
						
							| 17 | 15 16 | sseqtrrdi | ⊢ ( 𝑈  ∈  II  →  𝑈  ⊆  ( 0 [,] 1 ) ) | 
						
							| 18 | 14 17 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  →  𝑈  ⊆  ( 0 [,] 1 ) ) | 
						
							| 19 |  | elunii | ⊢ ( ( 𝑍  ∈  𝑉  ∧  𝑉  ∈  II )  →  𝑍  ∈  ∪  II ) | 
						
							| 20 | 19 16 | eleqtrrdi | ⊢ ( ( 𝑍  ∈  𝑉  ∧  𝑉  ∈  II )  →  𝑍  ∈  ( 0 [,] 1 ) ) | 
						
							| 21 | 12 10 20 | syl2anc | ⊢ ( 𝜑  →  𝑍  ∈  ( 0 [,] 1 ) ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  →  𝑍  ∈  ( 0 [,] 1 ) ) | 
						
							| 23 | 22 | snssd | ⊢ ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  →  { 𝑍 }  ⊆  ( 0 [,] 1 ) ) | 
						
							| 24 |  | xpss12 | ⊢ ( ( 𝑈  ⊆  ( 0 [,] 1 )  ∧  { 𝑍 }  ⊆  ( 0 [,] 1 ) )  →  ( 𝑈  ×  { 𝑍 } )  ⊆  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 25 | 18 23 24 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  →  ( 𝑈  ×  { 𝑍 } )  ⊆  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 26 | 11 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  →  𝑌  ∈  𝑉 ) | 
						
							| 27 | 1 2 3 4 5 6 7 | cvmlift2lem5 | ⊢ ( 𝜑  →  𝐾 : ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ⟶ 𝐵 ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  →  𝐾 : ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ⟶ 𝐵 ) | 
						
							| 29 | 10 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  →  𝑉  ∈  II ) | 
						
							| 30 |  | elssuni | ⊢ ( 𝑉  ∈  II  →  𝑉  ⊆  ∪  II ) | 
						
							| 31 | 30 16 | sseqtrrdi | ⊢ ( 𝑉  ∈  II  →  𝑉  ⊆  ( 0 [,] 1 ) ) | 
						
							| 32 | 29 31 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  →  𝑉  ⊆  ( 0 [,] 1 ) ) | 
						
							| 33 | 32 26 | sseldd | ⊢ ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  →  𝑌  ∈  ( 0 [,] 1 ) ) | 
						
							| 34 | 33 | snssd | ⊢ ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  →  { 𝑌 }  ⊆  ( 0 [,] 1 ) ) | 
						
							| 35 |  | xpss12 | ⊢ ( ( 𝑈  ⊆  ( 0 [,] 1 )  ∧  { 𝑌 }  ⊆  ( 0 [,] 1 ) )  →  ( 𝑈  ×  { 𝑌 } )  ⊆  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 36 | 18 34 35 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  →  ( 𝑈  ×  { 𝑌 } )  ⊆  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 37 | 28 36 | fssresd | ⊢ ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  →  ( 𝐾  ↾  ( 𝑈  ×  { 𝑌 } ) ) : ( 𝑈  ×  { 𝑌 } ) ⟶ 𝐵 ) | 
						
							| 38 | 36 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  ∧  𝑧  ∈  ( 𝑈  ×  { 𝑌 } ) )  →  ( 𝑈  ×  { 𝑌 } )  ⊆  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 39 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  ∧  𝑧  ∈  ( 𝑈  ×  { 𝑌 } ) )  →  𝑧  ∈  ( 𝑈  ×  { 𝑌 } ) ) | 
						
							| 40 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  →  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 ) | 
						
							| 41 | 40 8 | sseqtrdi | ⊢ ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  →  ( 𝑈  ×  { 𝑌 } )  ⊆  { 𝑧  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑧 ) } ) | 
						
							| 42 |  | ssrab | ⊢ ( ( 𝑈  ×  { 𝑌 } )  ⊆  { 𝑧  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑧 ) }  ↔  ( ( 𝑈  ×  { 𝑌 } )  ⊆  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∧  ∀ 𝑧  ∈  ( 𝑈  ×  { 𝑌 } ) 𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑧 ) ) ) | 
						
							| 43 | 42 | simprbi | ⊢ ( ( 𝑈  ×  { 𝑌 } )  ⊆  { 𝑧  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑧 ) }  →  ∀ 𝑧  ∈  ( 𝑈  ×  { 𝑌 } ) 𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑧 ) ) | 
						
							| 44 | 41 43 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  →  ∀ 𝑧  ∈  ( 𝑈  ×  { 𝑌 } ) 𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑧 ) ) | 
						
							| 45 | 44 | r19.21bi | ⊢ ( ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  ∧  𝑧  ∈  ( 𝑈  ×  { 𝑌 } ) )  →  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑧 ) ) | 
						
							| 46 |  | iitopon | ⊢ II  ∈  ( TopOn ‘ ( 0 [,] 1 ) ) | 
						
							| 47 |  | txtopon | ⊢ ( ( II  ∈  ( TopOn ‘ ( 0 [,] 1 ) )  ∧  II  ∈  ( TopOn ‘ ( 0 [,] 1 ) ) )  →  ( II  ×t  II )  ∈  ( TopOn ‘ ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) ) | 
						
							| 48 | 46 46 47 | mp2an | ⊢ ( II  ×t  II )  ∈  ( TopOn ‘ ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 49 | 48 | toponunii | ⊢ ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  =  ∪  ( II  ×t  II ) | 
						
							| 50 | 49 | cnpresti | ⊢ ( ( ( 𝑈  ×  { 𝑌 } )  ⊆  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∧  𝑧  ∈  ( 𝑈  ×  { 𝑌 } )  ∧  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑧 ) )  →  ( 𝐾  ↾  ( 𝑈  ×  { 𝑌 } ) )  ∈  ( ( ( ( II  ×t  II )  ↾t  ( 𝑈  ×  { 𝑌 } ) )  CnP  𝐶 ) ‘ 𝑧 ) ) | 
						
							| 51 | 38 39 45 50 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  ∧  𝑧  ∈  ( 𝑈  ×  { 𝑌 } ) )  →  ( 𝐾  ↾  ( 𝑈  ×  { 𝑌 } ) )  ∈  ( ( ( ( II  ×t  II )  ↾t  ( 𝑈  ×  { 𝑌 } ) )  CnP  𝐶 ) ‘ 𝑧 ) ) | 
						
							| 52 | 51 | ralrimiva | ⊢ ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  →  ∀ 𝑧  ∈  ( 𝑈  ×  { 𝑌 } ) ( 𝐾  ↾  ( 𝑈  ×  { 𝑌 } ) )  ∈  ( ( ( ( II  ×t  II )  ↾t  ( 𝑈  ×  { 𝑌 } ) )  CnP  𝐶 ) ‘ 𝑧 ) ) | 
						
							| 53 |  | resttopon | ⊢ ( ( ( II  ×t  II )  ∈  ( TopOn ‘ ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) )  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) )  →  ( ( II  ×t  II )  ↾t  ( 𝑈  ×  { 𝑌 } ) )  ∈  ( TopOn ‘ ( 𝑈  ×  { 𝑌 } ) ) ) | 
						
							| 54 | 48 36 53 | sylancr | ⊢ ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  →  ( ( II  ×t  II )  ↾t  ( 𝑈  ×  { 𝑌 } ) )  ∈  ( TopOn ‘ ( 𝑈  ×  { 𝑌 } ) ) ) | 
						
							| 55 |  | cvmtop1 | ⊢ ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  →  𝐶  ∈  Top ) | 
						
							| 56 | 2 55 | syl | ⊢ ( 𝜑  →  𝐶  ∈  Top ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  →  𝐶  ∈  Top ) | 
						
							| 58 | 1 | toptopon | ⊢ ( 𝐶  ∈  Top  ↔  𝐶  ∈  ( TopOn ‘ 𝐵 ) ) | 
						
							| 59 | 57 58 | sylib | ⊢ ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  →  𝐶  ∈  ( TopOn ‘ 𝐵 ) ) | 
						
							| 60 |  | cncnp | ⊢ ( ( ( ( II  ×t  II )  ↾t  ( 𝑈  ×  { 𝑌 } ) )  ∈  ( TopOn ‘ ( 𝑈  ×  { 𝑌 } ) )  ∧  𝐶  ∈  ( TopOn ‘ 𝐵 ) )  →  ( ( 𝐾  ↾  ( 𝑈  ×  { 𝑌 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑈  ×  { 𝑌 } ) )  Cn  𝐶 )  ↔  ( ( 𝐾  ↾  ( 𝑈  ×  { 𝑌 } ) ) : ( 𝑈  ×  { 𝑌 } ) ⟶ 𝐵  ∧  ∀ 𝑧  ∈  ( 𝑈  ×  { 𝑌 } ) ( 𝐾  ↾  ( 𝑈  ×  { 𝑌 } ) )  ∈  ( ( ( ( II  ×t  II )  ↾t  ( 𝑈  ×  { 𝑌 } ) )  CnP  𝐶 ) ‘ 𝑧 ) ) ) ) | 
						
							| 61 | 54 59 60 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  →  ( ( 𝐾  ↾  ( 𝑈  ×  { 𝑌 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑈  ×  { 𝑌 } ) )  Cn  𝐶 )  ↔  ( ( 𝐾  ↾  ( 𝑈  ×  { 𝑌 } ) ) : ( 𝑈  ×  { 𝑌 } ) ⟶ 𝐵  ∧  ∀ 𝑧  ∈  ( 𝑈  ×  { 𝑌 } ) ( 𝐾  ↾  ( 𝑈  ×  { 𝑌 } ) )  ∈  ( ( ( ( II  ×t  II )  ↾t  ( 𝑈  ×  { 𝑌 } ) )  CnP  𝐶 ) ‘ 𝑧 ) ) ) ) | 
						
							| 62 | 37 52 61 | mpbir2and | ⊢ ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  →  ( 𝐾  ↾  ( 𝑈  ×  { 𝑌 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑈  ×  { 𝑌 } ) )  Cn  𝐶 ) ) | 
						
							| 63 |  | sneq | ⊢ ( 𝑤  =  𝑌  →  { 𝑤 }  =  { 𝑌 } ) | 
						
							| 64 | 63 | xpeq2d | ⊢ ( 𝑤  =  𝑌  →  ( 𝑈  ×  { 𝑤 } )  =  ( 𝑈  ×  { 𝑌 } ) ) | 
						
							| 65 | 64 | reseq2d | ⊢ ( 𝑤  =  𝑌  →  ( 𝐾  ↾  ( 𝑈  ×  { 𝑤 } ) )  =  ( 𝐾  ↾  ( 𝑈  ×  { 𝑌 } ) ) ) | 
						
							| 66 | 64 | oveq2d | ⊢ ( 𝑤  =  𝑌  →  ( ( II  ×t  II )  ↾t  ( 𝑈  ×  { 𝑤 } ) )  =  ( ( II  ×t  II )  ↾t  ( 𝑈  ×  { 𝑌 } ) ) ) | 
						
							| 67 | 66 | oveq1d | ⊢ ( 𝑤  =  𝑌  →  ( ( ( II  ×t  II )  ↾t  ( 𝑈  ×  { 𝑤 } ) )  Cn  𝐶 )  =  ( ( ( II  ×t  II )  ↾t  ( 𝑈  ×  { 𝑌 } ) )  Cn  𝐶 ) ) | 
						
							| 68 | 65 67 | eleq12d | ⊢ ( 𝑤  =  𝑌  →  ( ( 𝐾  ↾  ( 𝑈  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑈  ×  { 𝑤 } ) )  Cn  𝐶 )  ↔  ( 𝐾  ↾  ( 𝑈  ×  { 𝑌 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑈  ×  { 𝑌 } ) )  Cn  𝐶 ) ) ) | 
						
							| 69 | 68 | rspcev | ⊢ ( ( 𝑌  ∈  𝑉  ∧  ( 𝐾  ↾  ( 𝑈  ×  { 𝑌 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑈  ×  { 𝑌 } ) )  Cn  𝐶 ) )  →  ∃ 𝑤  ∈  𝑉 ( 𝐾  ↾  ( 𝑈  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑈  ×  { 𝑤 } ) )  Cn  𝐶 ) ) | 
						
							| 70 | 26 62 69 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  →  ∃ 𝑤  ∈  𝑉 ( 𝐾  ↾  ( 𝑈  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑈  ×  { 𝑤 } ) )  Cn  𝐶 ) ) | 
						
							| 71 | 13 | imp | ⊢ ( ( 𝜑  ∧  ∃ 𝑤  ∈  𝑉 ( 𝐾  ↾  ( 𝑈  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑈  ×  { 𝑤 } ) )  Cn  𝐶 ) )  →  ( 𝐾  ↾  ( 𝑈  ×  𝑉 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑈  ×  𝑉 ) )  Cn  𝐶 ) ) | 
						
							| 72 | 70 71 | syldan | ⊢ ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  →  ( 𝐾  ↾  ( 𝑈  ×  𝑉 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑈  ×  𝑉 ) )  Cn  𝐶 ) ) | 
						
							| 73 | 72 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  ∧  𝑧  ∈  ( 𝑈  ×  { 𝑍 } ) )  →  ( 𝐾  ↾  ( 𝑈  ×  𝑉 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑈  ×  𝑉 ) )  Cn  𝐶 ) ) | 
						
							| 74 | 12 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  →  𝑍  ∈  𝑉 ) | 
						
							| 75 | 74 | snssd | ⊢ ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  →  { 𝑍 }  ⊆  𝑉 ) | 
						
							| 76 |  | xpss2 | ⊢ ( { 𝑍 }  ⊆  𝑉  →  ( 𝑈  ×  { 𝑍 } )  ⊆  ( 𝑈  ×  𝑉 ) ) | 
						
							| 77 | 75 76 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  →  ( 𝑈  ×  { 𝑍 } )  ⊆  ( 𝑈  ×  𝑉 ) ) | 
						
							| 78 |  | iitop | ⊢ II  ∈  Top | 
						
							| 79 | 78 78 | txtopi | ⊢ ( II  ×t  II )  ∈  Top | 
						
							| 80 |  | xpss12 | ⊢ ( ( 𝑈  ⊆  ( 0 [,] 1 )  ∧  𝑉  ⊆  ( 0 [,] 1 ) )  →  ( 𝑈  ×  𝑉 )  ⊆  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 81 | 18 32 80 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  →  ( 𝑈  ×  𝑉 )  ⊆  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 82 | 49 | restuni | ⊢ ( ( ( II  ×t  II )  ∈  Top  ∧  ( 𝑈  ×  𝑉 )  ⊆  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) )  →  ( 𝑈  ×  𝑉 )  =  ∪  ( ( II  ×t  II )  ↾t  ( 𝑈  ×  𝑉 ) ) ) | 
						
							| 83 | 79 81 82 | sylancr | ⊢ ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  →  ( 𝑈  ×  𝑉 )  =  ∪  ( ( II  ×t  II )  ↾t  ( 𝑈  ×  𝑉 ) ) ) | 
						
							| 84 | 77 83 | sseqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  →  ( 𝑈  ×  { 𝑍 } )  ⊆  ∪  ( ( II  ×t  II )  ↾t  ( 𝑈  ×  𝑉 ) ) ) | 
						
							| 85 | 84 | sselda | ⊢ ( ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  ∧  𝑧  ∈  ( 𝑈  ×  { 𝑍 } ) )  →  𝑧  ∈  ∪  ( ( II  ×t  II )  ↾t  ( 𝑈  ×  𝑉 ) ) ) | 
						
							| 86 |  | eqid | ⊢ ∪  ( ( II  ×t  II )  ↾t  ( 𝑈  ×  𝑉 ) )  =  ∪  ( ( II  ×t  II )  ↾t  ( 𝑈  ×  𝑉 ) ) | 
						
							| 87 | 86 | cncnpi | ⊢ ( ( ( 𝐾  ↾  ( 𝑈  ×  𝑉 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑈  ×  𝑉 ) )  Cn  𝐶 )  ∧  𝑧  ∈  ∪  ( ( II  ×t  II )  ↾t  ( 𝑈  ×  𝑉 ) ) )  →  ( 𝐾  ↾  ( 𝑈  ×  𝑉 ) )  ∈  ( ( ( ( II  ×t  II )  ↾t  ( 𝑈  ×  𝑉 ) )  CnP  𝐶 ) ‘ 𝑧 ) ) | 
						
							| 88 | 73 85 87 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  ∧  𝑧  ∈  ( 𝑈  ×  { 𝑍 } ) )  →  ( 𝐾  ↾  ( 𝑈  ×  𝑉 ) )  ∈  ( ( ( ( II  ×t  II )  ↾t  ( 𝑈  ×  𝑉 ) )  CnP  𝐶 ) ‘ 𝑧 ) ) | 
						
							| 89 | 79 | a1i | ⊢ ( ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  ∧  𝑧  ∈  ( 𝑈  ×  { 𝑍 } ) )  →  ( II  ×t  II )  ∈  Top ) | 
						
							| 90 | 81 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  ∧  𝑧  ∈  ( 𝑈  ×  { 𝑍 } ) )  →  ( 𝑈  ×  𝑉 )  ⊆  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 91 | 78 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  →  II  ∈  Top ) | 
						
							| 92 |  | txopn | ⊢ ( ( ( II  ∈  Top  ∧  II  ∈  Top )  ∧  ( 𝑈  ∈  II  ∧  𝑉  ∈  II ) )  →  ( 𝑈  ×  𝑉 )  ∈  ( II  ×t  II ) ) | 
						
							| 93 | 91 91 14 29 92 | syl22anc | ⊢ ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  →  ( 𝑈  ×  𝑉 )  ∈  ( II  ×t  II ) ) | 
						
							| 94 |  | isopn3i | ⊢ ( ( ( II  ×t  II )  ∈  Top  ∧  ( 𝑈  ×  𝑉 )  ∈  ( II  ×t  II ) )  →  ( ( int ‘ ( II  ×t  II ) ) ‘ ( 𝑈  ×  𝑉 ) )  =  ( 𝑈  ×  𝑉 ) ) | 
						
							| 95 | 79 93 94 | sylancr | ⊢ ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  →  ( ( int ‘ ( II  ×t  II ) ) ‘ ( 𝑈  ×  𝑉 ) )  =  ( 𝑈  ×  𝑉 ) ) | 
						
							| 96 | 77 95 | sseqtrrd | ⊢ ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  →  ( 𝑈  ×  { 𝑍 } )  ⊆  ( ( int ‘ ( II  ×t  II ) ) ‘ ( 𝑈  ×  𝑉 ) ) ) | 
						
							| 97 | 96 | sselda | ⊢ ( ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  ∧  𝑧  ∈  ( 𝑈  ×  { 𝑍 } ) )  →  𝑧  ∈  ( ( int ‘ ( II  ×t  II ) ) ‘ ( 𝑈  ×  𝑉 ) ) ) | 
						
							| 98 | 27 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  ∧  𝑧  ∈  ( 𝑈  ×  { 𝑍 } ) )  →  𝐾 : ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ⟶ 𝐵 ) | 
						
							| 99 | 49 1 | cnprest | ⊢ ( ( ( ( II  ×t  II )  ∈  Top  ∧  ( 𝑈  ×  𝑉 )  ⊆  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) )  ∧  ( 𝑧  ∈  ( ( int ‘ ( II  ×t  II ) ) ‘ ( 𝑈  ×  𝑉 ) )  ∧  𝐾 : ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ⟶ 𝐵 ) )  →  ( 𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑧 )  ↔  ( 𝐾  ↾  ( 𝑈  ×  𝑉 ) )  ∈  ( ( ( ( II  ×t  II )  ↾t  ( 𝑈  ×  𝑉 ) )  CnP  𝐶 ) ‘ 𝑧 ) ) ) | 
						
							| 100 | 89 90 97 98 99 | syl22anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  ∧  𝑧  ∈  ( 𝑈  ×  { 𝑍 } ) )  →  ( 𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑧 )  ↔  ( 𝐾  ↾  ( 𝑈  ×  𝑉 ) )  ∈  ( ( ( ( II  ×t  II )  ↾t  ( 𝑈  ×  𝑉 ) )  CnP  𝐶 ) ‘ 𝑧 ) ) ) | 
						
							| 101 | 88 100 | mpbird | ⊢ ( ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  ∧  𝑧  ∈  ( 𝑈  ×  { 𝑍 } ) )  →  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑧 ) ) | 
						
							| 102 | 25 101 | ssrabdv | ⊢ ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  →  ( 𝑈  ×  { 𝑍 } )  ⊆  { 𝑧  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑧 ) } ) | 
						
							| 103 | 102 8 | sseqtrrdi | ⊢ ( ( 𝜑  ∧  ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀 )  →  ( 𝑈  ×  { 𝑍 } )  ⊆  𝑀 ) | 
						
							| 104 | 103 | ex | ⊢ ( 𝜑  →  ( ( 𝑈  ×  { 𝑌 } )  ⊆  𝑀  →  ( 𝑈  ×  { 𝑍 } )  ⊆  𝑀 ) ) |