| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvmlift2.b |
⊢ 𝐵 = ∪ 𝐶 |
| 2 |
|
cvmlift2.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
| 3 |
|
cvmlift2.g |
⊢ ( 𝜑 → 𝐺 ∈ ( ( II ×t II ) Cn 𝐽 ) ) |
| 4 |
|
cvmlift2.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝐵 ) |
| 5 |
|
cvmlift2.i |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) = ( 0 𝐺 0 ) ) |
| 6 |
|
cvmlift2.h |
⊢ 𝐻 = ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑧 𝐺 0 ) ) ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) |
| 7 |
|
cvmlift2.k |
⊢ 𝐾 = ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 𝐺 𝑧 ) ) ∧ ( 𝑓 ‘ 0 ) = ( 𝐻 ‘ 𝑥 ) ) ) ‘ 𝑦 ) ) |
| 8 |
|
cvmlift2.m |
⊢ 𝑀 = { 𝑧 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ∣ 𝐾 ∈ ( ( ( II ×t II ) CnP 𝐶 ) ‘ 𝑧 ) } |
| 9 |
|
cvmlift2lem11.1 |
⊢ ( 𝜑 → 𝑈 ∈ II ) |
| 10 |
|
cvmlift2lem11.2 |
⊢ ( 𝜑 → 𝑉 ∈ II ) |
| 11 |
|
cvmlift2lem11.3 |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 12 |
|
cvmlift2lem11.4 |
⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) |
| 13 |
|
cvmlift2lem11.5 |
⊢ ( 𝜑 → ( ∃ 𝑤 ∈ 𝑉 ( 𝐾 ↾ ( 𝑈 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑈 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑈 × 𝑉 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑈 × 𝑉 ) ) Cn 𝐶 ) ) ) |
| 14 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) → 𝑈 ∈ II ) |
| 15 |
|
elssuni |
⊢ ( 𝑈 ∈ II → 𝑈 ⊆ ∪ II ) |
| 16 |
|
iiuni |
⊢ ( 0 [,] 1 ) = ∪ II |
| 17 |
15 16
|
sseqtrrdi |
⊢ ( 𝑈 ∈ II → 𝑈 ⊆ ( 0 [,] 1 ) ) |
| 18 |
14 17
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) → 𝑈 ⊆ ( 0 [,] 1 ) ) |
| 19 |
|
elunii |
⊢ ( ( 𝑍 ∈ 𝑉 ∧ 𝑉 ∈ II ) → 𝑍 ∈ ∪ II ) |
| 20 |
19 16
|
eleqtrrdi |
⊢ ( ( 𝑍 ∈ 𝑉 ∧ 𝑉 ∈ II ) → 𝑍 ∈ ( 0 [,] 1 ) ) |
| 21 |
12 10 20
|
syl2anc |
⊢ ( 𝜑 → 𝑍 ∈ ( 0 [,] 1 ) ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) → 𝑍 ∈ ( 0 [,] 1 ) ) |
| 23 |
22
|
snssd |
⊢ ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) → { 𝑍 } ⊆ ( 0 [,] 1 ) ) |
| 24 |
|
xpss12 |
⊢ ( ( 𝑈 ⊆ ( 0 [,] 1 ) ∧ { 𝑍 } ⊆ ( 0 [,] 1 ) ) → ( 𝑈 × { 𝑍 } ) ⊆ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
| 25 |
18 23 24
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) → ( 𝑈 × { 𝑍 } ) ⊆ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
| 26 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) → 𝑌 ∈ 𝑉 ) |
| 27 |
1 2 3 4 5 6 7
|
cvmlift2lem5 |
⊢ ( 𝜑 → 𝐾 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝐵 ) |
| 28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) → 𝐾 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝐵 ) |
| 29 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) → 𝑉 ∈ II ) |
| 30 |
|
elssuni |
⊢ ( 𝑉 ∈ II → 𝑉 ⊆ ∪ II ) |
| 31 |
30 16
|
sseqtrrdi |
⊢ ( 𝑉 ∈ II → 𝑉 ⊆ ( 0 [,] 1 ) ) |
| 32 |
29 31
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) → 𝑉 ⊆ ( 0 [,] 1 ) ) |
| 33 |
32 26
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) → 𝑌 ∈ ( 0 [,] 1 ) ) |
| 34 |
33
|
snssd |
⊢ ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) → { 𝑌 } ⊆ ( 0 [,] 1 ) ) |
| 35 |
|
xpss12 |
⊢ ( ( 𝑈 ⊆ ( 0 [,] 1 ) ∧ { 𝑌 } ⊆ ( 0 [,] 1 ) ) → ( 𝑈 × { 𝑌 } ) ⊆ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
| 36 |
18 34 35
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) → ( 𝑈 × { 𝑌 } ) ⊆ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
| 37 |
28 36
|
fssresd |
⊢ ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) → ( 𝐾 ↾ ( 𝑈 × { 𝑌 } ) ) : ( 𝑈 × { 𝑌 } ) ⟶ 𝐵 ) |
| 38 |
36
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) ∧ 𝑧 ∈ ( 𝑈 × { 𝑌 } ) ) → ( 𝑈 × { 𝑌 } ) ⊆ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
| 39 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) ∧ 𝑧 ∈ ( 𝑈 × { 𝑌 } ) ) → 𝑧 ∈ ( 𝑈 × { 𝑌 } ) ) |
| 40 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) → ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) |
| 41 |
40 8
|
sseqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) → ( 𝑈 × { 𝑌 } ) ⊆ { 𝑧 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ∣ 𝐾 ∈ ( ( ( II ×t II ) CnP 𝐶 ) ‘ 𝑧 ) } ) |
| 42 |
|
ssrab |
⊢ ( ( 𝑈 × { 𝑌 } ) ⊆ { 𝑧 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ∣ 𝐾 ∈ ( ( ( II ×t II ) CnP 𝐶 ) ‘ 𝑧 ) } ↔ ( ( 𝑈 × { 𝑌 } ) ⊆ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ∧ ∀ 𝑧 ∈ ( 𝑈 × { 𝑌 } ) 𝐾 ∈ ( ( ( II ×t II ) CnP 𝐶 ) ‘ 𝑧 ) ) ) |
| 43 |
42
|
simprbi |
⊢ ( ( 𝑈 × { 𝑌 } ) ⊆ { 𝑧 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ∣ 𝐾 ∈ ( ( ( II ×t II ) CnP 𝐶 ) ‘ 𝑧 ) } → ∀ 𝑧 ∈ ( 𝑈 × { 𝑌 } ) 𝐾 ∈ ( ( ( II ×t II ) CnP 𝐶 ) ‘ 𝑧 ) ) |
| 44 |
41 43
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) → ∀ 𝑧 ∈ ( 𝑈 × { 𝑌 } ) 𝐾 ∈ ( ( ( II ×t II ) CnP 𝐶 ) ‘ 𝑧 ) ) |
| 45 |
44
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) ∧ 𝑧 ∈ ( 𝑈 × { 𝑌 } ) ) → 𝐾 ∈ ( ( ( II ×t II ) CnP 𝐶 ) ‘ 𝑧 ) ) |
| 46 |
|
iitopon |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
| 47 |
|
txtopon |
⊢ ( ( II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ∧ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ) → ( II ×t II ) ∈ ( TopOn ‘ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) |
| 48 |
46 46 47
|
mp2an |
⊢ ( II ×t II ) ∈ ( TopOn ‘ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
| 49 |
48
|
toponunii |
⊢ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) = ∪ ( II ×t II ) |
| 50 |
49
|
cnpresti |
⊢ ( ( ( 𝑈 × { 𝑌 } ) ⊆ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ∧ 𝑧 ∈ ( 𝑈 × { 𝑌 } ) ∧ 𝐾 ∈ ( ( ( II ×t II ) CnP 𝐶 ) ‘ 𝑧 ) ) → ( 𝐾 ↾ ( 𝑈 × { 𝑌 } ) ) ∈ ( ( ( ( II ×t II ) ↾t ( 𝑈 × { 𝑌 } ) ) CnP 𝐶 ) ‘ 𝑧 ) ) |
| 51 |
38 39 45 50
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) ∧ 𝑧 ∈ ( 𝑈 × { 𝑌 } ) ) → ( 𝐾 ↾ ( 𝑈 × { 𝑌 } ) ) ∈ ( ( ( ( II ×t II ) ↾t ( 𝑈 × { 𝑌 } ) ) CnP 𝐶 ) ‘ 𝑧 ) ) |
| 52 |
51
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) → ∀ 𝑧 ∈ ( 𝑈 × { 𝑌 } ) ( 𝐾 ↾ ( 𝑈 × { 𝑌 } ) ) ∈ ( ( ( ( II ×t II ) ↾t ( 𝑈 × { 𝑌 } ) ) CnP 𝐶 ) ‘ 𝑧 ) ) |
| 53 |
|
resttopon |
⊢ ( ( ( II ×t II ) ∈ ( TopOn ‘ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ∧ ( 𝑈 × { 𝑌 } ) ⊆ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) → ( ( II ×t II ) ↾t ( 𝑈 × { 𝑌 } ) ) ∈ ( TopOn ‘ ( 𝑈 × { 𝑌 } ) ) ) |
| 54 |
48 36 53
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) → ( ( II ×t II ) ↾t ( 𝑈 × { 𝑌 } ) ) ∈ ( TopOn ‘ ( 𝑈 × { 𝑌 } ) ) ) |
| 55 |
|
cvmtop1 |
⊢ ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → 𝐶 ∈ Top ) |
| 56 |
2 55
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ Top ) |
| 57 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) → 𝐶 ∈ Top ) |
| 58 |
1
|
toptopon |
⊢ ( 𝐶 ∈ Top ↔ 𝐶 ∈ ( TopOn ‘ 𝐵 ) ) |
| 59 |
57 58
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) → 𝐶 ∈ ( TopOn ‘ 𝐵 ) ) |
| 60 |
|
cncnp |
⊢ ( ( ( ( II ×t II ) ↾t ( 𝑈 × { 𝑌 } ) ) ∈ ( TopOn ‘ ( 𝑈 × { 𝑌 } ) ) ∧ 𝐶 ∈ ( TopOn ‘ 𝐵 ) ) → ( ( 𝐾 ↾ ( 𝑈 × { 𝑌 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑈 × { 𝑌 } ) ) Cn 𝐶 ) ↔ ( ( 𝐾 ↾ ( 𝑈 × { 𝑌 } ) ) : ( 𝑈 × { 𝑌 } ) ⟶ 𝐵 ∧ ∀ 𝑧 ∈ ( 𝑈 × { 𝑌 } ) ( 𝐾 ↾ ( 𝑈 × { 𝑌 } ) ) ∈ ( ( ( ( II ×t II ) ↾t ( 𝑈 × { 𝑌 } ) ) CnP 𝐶 ) ‘ 𝑧 ) ) ) ) |
| 61 |
54 59 60
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) → ( ( 𝐾 ↾ ( 𝑈 × { 𝑌 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑈 × { 𝑌 } ) ) Cn 𝐶 ) ↔ ( ( 𝐾 ↾ ( 𝑈 × { 𝑌 } ) ) : ( 𝑈 × { 𝑌 } ) ⟶ 𝐵 ∧ ∀ 𝑧 ∈ ( 𝑈 × { 𝑌 } ) ( 𝐾 ↾ ( 𝑈 × { 𝑌 } ) ) ∈ ( ( ( ( II ×t II ) ↾t ( 𝑈 × { 𝑌 } ) ) CnP 𝐶 ) ‘ 𝑧 ) ) ) ) |
| 62 |
37 52 61
|
mpbir2and |
⊢ ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) → ( 𝐾 ↾ ( 𝑈 × { 𝑌 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑈 × { 𝑌 } ) ) Cn 𝐶 ) ) |
| 63 |
|
sneq |
⊢ ( 𝑤 = 𝑌 → { 𝑤 } = { 𝑌 } ) |
| 64 |
63
|
xpeq2d |
⊢ ( 𝑤 = 𝑌 → ( 𝑈 × { 𝑤 } ) = ( 𝑈 × { 𝑌 } ) ) |
| 65 |
64
|
reseq2d |
⊢ ( 𝑤 = 𝑌 → ( 𝐾 ↾ ( 𝑈 × { 𝑤 } ) ) = ( 𝐾 ↾ ( 𝑈 × { 𝑌 } ) ) ) |
| 66 |
64
|
oveq2d |
⊢ ( 𝑤 = 𝑌 → ( ( II ×t II ) ↾t ( 𝑈 × { 𝑤 } ) ) = ( ( II ×t II ) ↾t ( 𝑈 × { 𝑌 } ) ) ) |
| 67 |
66
|
oveq1d |
⊢ ( 𝑤 = 𝑌 → ( ( ( II ×t II ) ↾t ( 𝑈 × { 𝑤 } ) ) Cn 𝐶 ) = ( ( ( II ×t II ) ↾t ( 𝑈 × { 𝑌 } ) ) Cn 𝐶 ) ) |
| 68 |
65 67
|
eleq12d |
⊢ ( 𝑤 = 𝑌 → ( ( 𝐾 ↾ ( 𝑈 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑈 × { 𝑤 } ) ) Cn 𝐶 ) ↔ ( 𝐾 ↾ ( 𝑈 × { 𝑌 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑈 × { 𝑌 } ) ) Cn 𝐶 ) ) ) |
| 69 |
68
|
rspcev |
⊢ ( ( 𝑌 ∈ 𝑉 ∧ ( 𝐾 ↾ ( 𝑈 × { 𝑌 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑈 × { 𝑌 } ) ) Cn 𝐶 ) ) → ∃ 𝑤 ∈ 𝑉 ( 𝐾 ↾ ( 𝑈 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑈 × { 𝑤 } ) ) Cn 𝐶 ) ) |
| 70 |
26 62 69
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) → ∃ 𝑤 ∈ 𝑉 ( 𝐾 ↾ ( 𝑈 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑈 × { 𝑤 } ) ) Cn 𝐶 ) ) |
| 71 |
13
|
imp |
⊢ ( ( 𝜑 ∧ ∃ 𝑤 ∈ 𝑉 ( 𝐾 ↾ ( 𝑈 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑈 × { 𝑤 } ) ) Cn 𝐶 ) ) → ( 𝐾 ↾ ( 𝑈 × 𝑉 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑈 × 𝑉 ) ) Cn 𝐶 ) ) |
| 72 |
70 71
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) → ( 𝐾 ↾ ( 𝑈 × 𝑉 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑈 × 𝑉 ) ) Cn 𝐶 ) ) |
| 73 |
72
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) ∧ 𝑧 ∈ ( 𝑈 × { 𝑍 } ) ) → ( 𝐾 ↾ ( 𝑈 × 𝑉 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑈 × 𝑉 ) ) Cn 𝐶 ) ) |
| 74 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) → 𝑍 ∈ 𝑉 ) |
| 75 |
74
|
snssd |
⊢ ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) → { 𝑍 } ⊆ 𝑉 ) |
| 76 |
|
xpss2 |
⊢ ( { 𝑍 } ⊆ 𝑉 → ( 𝑈 × { 𝑍 } ) ⊆ ( 𝑈 × 𝑉 ) ) |
| 77 |
75 76
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) → ( 𝑈 × { 𝑍 } ) ⊆ ( 𝑈 × 𝑉 ) ) |
| 78 |
|
iitop |
⊢ II ∈ Top |
| 79 |
78 78
|
txtopi |
⊢ ( II ×t II ) ∈ Top |
| 80 |
|
xpss12 |
⊢ ( ( 𝑈 ⊆ ( 0 [,] 1 ) ∧ 𝑉 ⊆ ( 0 [,] 1 ) ) → ( 𝑈 × 𝑉 ) ⊆ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
| 81 |
18 32 80
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) → ( 𝑈 × 𝑉 ) ⊆ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
| 82 |
49
|
restuni |
⊢ ( ( ( II ×t II ) ∈ Top ∧ ( 𝑈 × 𝑉 ) ⊆ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) → ( 𝑈 × 𝑉 ) = ∪ ( ( II ×t II ) ↾t ( 𝑈 × 𝑉 ) ) ) |
| 83 |
79 81 82
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) → ( 𝑈 × 𝑉 ) = ∪ ( ( II ×t II ) ↾t ( 𝑈 × 𝑉 ) ) ) |
| 84 |
77 83
|
sseqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) → ( 𝑈 × { 𝑍 } ) ⊆ ∪ ( ( II ×t II ) ↾t ( 𝑈 × 𝑉 ) ) ) |
| 85 |
84
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) ∧ 𝑧 ∈ ( 𝑈 × { 𝑍 } ) ) → 𝑧 ∈ ∪ ( ( II ×t II ) ↾t ( 𝑈 × 𝑉 ) ) ) |
| 86 |
|
eqid |
⊢ ∪ ( ( II ×t II ) ↾t ( 𝑈 × 𝑉 ) ) = ∪ ( ( II ×t II ) ↾t ( 𝑈 × 𝑉 ) ) |
| 87 |
86
|
cncnpi |
⊢ ( ( ( 𝐾 ↾ ( 𝑈 × 𝑉 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑈 × 𝑉 ) ) Cn 𝐶 ) ∧ 𝑧 ∈ ∪ ( ( II ×t II ) ↾t ( 𝑈 × 𝑉 ) ) ) → ( 𝐾 ↾ ( 𝑈 × 𝑉 ) ) ∈ ( ( ( ( II ×t II ) ↾t ( 𝑈 × 𝑉 ) ) CnP 𝐶 ) ‘ 𝑧 ) ) |
| 88 |
73 85 87
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) ∧ 𝑧 ∈ ( 𝑈 × { 𝑍 } ) ) → ( 𝐾 ↾ ( 𝑈 × 𝑉 ) ) ∈ ( ( ( ( II ×t II ) ↾t ( 𝑈 × 𝑉 ) ) CnP 𝐶 ) ‘ 𝑧 ) ) |
| 89 |
79
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) ∧ 𝑧 ∈ ( 𝑈 × { 𝑍 } ) ) → ( II ×t II ) ∈ Top ) |
| 90 |
81
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) ∧ 𝑧 ∈ ( 𝑈 × { 𝑍 } ) ) → ( 𝑈 × 𝑉 ) ⊆ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
| 91 |
78
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) → II ∈ Top ) |
| 92 |
|
txopn |
⊢ ( ( ( II ∈ Top ∧ II ∈ Top ) ∧ ( 𝑈 ∈ II ∧ 𝑉 ∈ II ) ) → ( 𝑈 × 𝑉 ) ∈ ( II ×t II ) ) |
| 93 |
91 91 14 29 92
|
syl22anc |
⊢ ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) → ( 𝑈 × 𝑉 ) ∈ ( II ×t II ) ) |
| 94 |
|
isopn3i |
⊢ ( ( ( II ×t II ) ∈ Top ∧ ( 𝑈 × 𝑉 ) ∈ ( II ×t II ) ) → ( ( int ‘ ( II ×t II ) ) ‘ ( 𝑈 × 𝑉 ) ) = ( 𝑈 × 𝑉 ) ) |
| 95 |
79 93 94
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) → ( ( int ‘ ( II ×t II ) ) ‘ ( 𝑈 × 𝑉 ) ) = ( 𝑈 × 𝑉 ) ) |
| 96 |
77 95
|
sseqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) → ( 𝑈 × { 𝑍 } ) ⊆ ( ( int ‘ ( II ×t II ) ) ‘ ( 𝑈 × 𝑉 ) ) ) |
| 97 |
96
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) ∧ 𝑧 ∈ ( 𝑈 × { 𝑍 } ) ) → 𝑧 ∈ ( ( int ‘ ( II ×t II ) ) ‘ ( 𝑈 × 𝑉 ) ) ) |
| 98 |
27
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) ∧ 𝑧 ∈ ( 𝑈 × { 𝑍 } ) ) → 𝐾 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝐵 ) |
| 99 |
49 1
|
cnprest |
⊢ ( ( ( ( II ×t II ) ∈ Top ∧ ( 𝑈 × 𝑉 ) ⊆ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ∧ ( 𝑧 ∈ ( ( int ‘ ( II ×t II ) ) ‘ ( 𝑈 × 𝑉 ) ) ∧ 𝐾 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝐵 ) ) → ( 𝐾 ∈ ( ( ( II ×t II ) CnP 𝐶 ) ‘ 𝑧 ) ↔ ( 𝐾 ↾ ( 𝑈 × 𝑉 ) ) ∈ ( ( ( ( II ×t II ) ↾t ( 𝑈 × 𝑉 ) ) CnP 𝐶 ) ‘ 𝑧 ) ) ) |
| 100 |
89 90 97 98 99
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) ∧ 𝑧 ∈ ( 𝑈 × { 𝑍 } ) ) → ( 𝐾 ∈ ( ( ( II ×t II ) CnP 𝐶 ) ‘ 𝑧 ) ↔ ( 𝐾 ↾ ( 𝑈 × 𝑉 ) ) ∈ ( ( ( ( II ×t II ) ↾t ( 𝑈 × 𝑉 ) ) CnP 𝐶 ) ‘ 𝑧 ) ) ) |
| 101 |
88 100
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) ∧ 𝑧 ∈ ( 𝑈 × { 𝑍 } ) ) → 𝐾 ∈ ( ( ( II ×t II ) CnP 𝐶 ) ‘ 𝑧 ) ) |
| 102 |
25 101
|
ssrabdv |
⊢ ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) → ( 𝑈 × { 𝑍 } ) ⊆ { 𝑧 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ∣ 𝐾 ∈ ( ( ( II ×t II ) CnP 𝐶 ) ‘ 𝑧 ) } ) |
| 103 |
102 8
|
sseqtrrdi |
⊢ ( ( 𝜑 ∧ ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 ) → ( 𝑈 × { 𝑍 } ) ⊆ 𝑀 ) |
| 104 |
103
|
ex |
⊢ ( 𝜑 → ( ( 𝑈 × { 𝑌 } ) ⊆ 𝑀 → ( 𝑈 × { 𝑍 } ) ⊆ 𝑀 ) ) |