Step |
Hyp |
Ref |
Expression |
1 |
|
cvmlift2.b |
|- B = U. C |
2 |
|
cvmlift2.f |
|- ( ph -> F e. ( C CovMap J ) ) |
3 |
|
cvmlift2.g |
|- ( ph -> G e. ( ( II tX II ) Cn J ) ) |
4 |
|
cvmlift2.p |
|- ( ph -> P e. B ) |
5 |
|
cvmlift2.i |
|- ( ph -> ( F ` P ) = ( 0 G 0 ) ) |
6 |
|
cvmlift2.h |
|- H = ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) /\ ( f ` 0 ) = P ) ) |
7 |
|
cvmlift2.k |
|- K = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` y ) ) |
8 |
|
cvmlift2.m |
|- M = { z e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` z ) } |
9 |
|
cvmlift2lem11.1 |
|- ( ph -> U e. II ) |
10 |
|
cvmlift2lem11.2 |
|- ( ph -> V e. II ) |
11 |
|
cvmlift2lem11.3 |
|- ( ph -> Y e. V ) |
12 |
|
cvmlift2lem11.4 |
|- ( ph -> Z e. V ) |
13 |
|
cvmlift2lem11.5 |
|- ( ph -> ( E. w e. V ( K |` ( U X. { w } ) ) e. ( ( ( II tX II ) |`t ( U X. { w } ) ) Cn C ) -> ( K |` ( U X. V ) ) e. ( ( ( II tX II ) |`t ( U X. V ) ) Cn C ) ) ) |
14 |
9
|
adantr |
|- ( ( ph /\ ( U X. { Y } ) C_ M ) -> U e. II ) |
15 |
|
elssuni |
|- ( U e. II -> U C_ U. II ) |
16 |
|
iiuni |
|- ( 0 [,] 1 ) = U. II |
17 |
15 16
|
sseqtrrdi |
|- ( U e. II -> U C_ ( 0 [,] 1 ) ) |
18 |
14 17
|
syl |
|- ( ( ph /\ ( U X. { Y } ) C_ M ) -> U C_ ( 0 [,] 1 ) ) |
19 |
|
elunii |
|- ( ( Z e. V /\ V e. II ) -> Z e. U. II ) |
20 |
19 16
|
eleqtrrdi |
|- ( ( Z e. V /\ V e. II ) -> Z e. ( 0 [,] 1 ) ) |
21 |
12 10 20
|
syl2anc |
|- ( ph -> Z e. ( 0 [,] 1 ) ) |
22 |
21
|
adantr |
|- ( ( ph /\ ( U X. { Y } ) C_ M ) -> Z e. ( 0 [,] 1 ) ) |
23 |
22
|
snssd |
|- ( ( ph /\ ( U X. { Y } ) C_ M ) -> { Z } C_ ( 0 [,] 1 ) ) |
24 |
|
xpss12 |
|- ( ( U C_ ( 0 [,] 1 ) /\ { Z } C_ ( 0 [,] 1 ) ) -> ( U X. { Z } ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) |
25 |
18 23 24
|
syl2anc |
|- ( ( ph /\ ( U X. { Y } ) C_ M ) -> ( U X. { Z } ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) |
26 |
11
|
adantr |
|- ( ( ph /\ ( U X. { Y } ) C_ M ) -> Y e. V ) |
27 |
1 2 3 4 5 6 7
|
cvmlift2lem5 |
|- ( ph -> K : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> B ) |
28 |
27
|
adantr |
|- ( ( ph /\ ( U X. { Y } ) C_ M ) -> K : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> B ) |
29 |
10
|
adantr |
|- ( ( ph /\ ( U X. { Y } ) C_ M ) -> V e. II ) |
30 |
|
elssuni |
|- ( V e. II -> V C_ U. II ) |
31 |
30 16
|
sseqtrrdi |
|- ( V e. II -> V C_ ( 0 [,] 1 ) ) |
32 |
29 31
|
syl |
|- ( ( ph /\ ( U X. { Y } ) C_ M ) -> V C_ ( 0 [,] 1 ) ) |
33 |
32 26
|
sseldd |
|- ( ( ph /\ ( U X. { Y } ) C_ M ) -> Y e. ( 0 [,] 1 ) ) |
34 |
33
|
snssd |
|- ( ( ph /\ ( U X. { Y } ) C_ M ) -> { Y } C_ ( 0 [,] 1 ) ) |
35 |
|
xpss12 |
|- ( ( U C_ ( 0 [,] 1 ) /\ { Y } C_ ( 0 [,] 1 ) ) -> ( U X. { Y } ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) |
36 |
18 34 35
|
syl2anc |
|- ( ( ph /\ ( U X. { Y } ) C_ M ) -> ( U X. { Y } ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) |
37 |
28 36
|
fssresd |
|- ( ( ph /\ ( U X. { Y } ) C_ M ) -> ( K |` ( U X. { Y } ) ) : ( U X. { Y } ) --> B ) |
38 |
36
|
adantr |
|- ( ( ( ph /\ ( U X. { Y } ) C_ M ) /\ z e. ( U X. { Y } ) ) -> ( U X. { Y } ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) |
39 |
|
simpr |
|- ( ( ( ph /\ ( U X. { Y } ) C_ M ) /\ z e. ( U X. { Y } ) ) -> z e. ( U X. { Y } ) ) |
40 |
|
simpr |
|- ( ( ph /\ ( U X. { Y } ) C_ M ) -> ( U X. { Y } ) C_ M ) |
41 |
40 8
|
sseqtrdi |
|- ( ( ph /\ ( U X. { Y } ) C_ M ) -> ( U X. { Y } ) C_ { z e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` z ) } ) |
42 |
|
ssrab |
|- ( ( U X. { Y } ) C_ { z e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` z ) } <-> ( ( U X. { Y } ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) /\ A. z e. ( U X. { Y } ) K e. ( ( ( II tX II ) CnP C ) ` z ) ) ) |
43 |
42
|
simprbi |
|- ( ( U X. { Y } ) C_ { z e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` z ) } -> A. z e. ( U X. { Y } ) K e. ( ( ( II tX II ) CnP C ) ` z ) ) |
44 |
41 43
|
syl |
|- ( ( ph /\ ( U X. { Y } ) C_ M ) -> A. z e. ( U X. { Y } ) K e. ( ( ( II tX II ) CnP C ) ` z ) ) |
45 |
44
|
r19.21bi |
|- ( ( ( ph /\ ( U X. { Y } ) C_ M ) /\ z e. ( U X. { Y } ) ) -> K e. ( ( ( II tX II ) CnP C ) ` z ) ) |
46 |
|
iitopon |
|- II e. ( TopOn ` ( 0 [,] 1 ) ) |
47 |
|
txtopon |
|- ( ( II e. ( TopOn ` ( 0 [,] 1 ) ) /\ II e. ( TopOn ` ( 0 [,] 1 ) ) ) -> ( II tX II ) e. ( TopOn ` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) |
48 |
46 46 47
|
mp2an |
|- ( II tX II ) e. ( TopOn ` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) |
49 |
48
|
toponunii |
|- ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) = U. ( II tX II ) |
50 |
49
|
cnpresti |
|- ( ( ( U X. { Y } ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) /\ z e. ( U X. { Y } ) /\ K e. ( ( ( II tX II ) CnP C ) ` z ) ) -> ( K |` ( U X. { Y } ) ) e. ( ( ( ( II tX II ) |`t ( U X. { Y } ) ) CnP C ) ` z ) ) |
51 |
38 39 45 50
|
syl3anc |
|- ( ( ( ph /\ ( U X. { Y } ) C_ M ) /\ z e. ( U X. { Y } ) ) -> ( K |` ( U X. { Y } ) ) e. ( ( ( ( II tX II ) |`t ( U X. { Y } ) ) CnP C ) ` z ) ) |
52 |
51
|
ralrimiva |
|- ( ( ph /\ ( U X. { Y } ) C_ M ) -> A. z e. ( U X. { Y } ) ( K |` ( U X. { Y } ) ) e. ( ( ( ( II tX II ) |`t ( U X. { Y } ) ) CnP C ) ` z ) ) |
53 |
|
resttopon |
|- ( ( ( II tX II ) e. ( TopOn ` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) /\ ( U X. { Y } ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) -> ( ( II tX II ) |`t ( U X. { Y } ) ) e. ( TopOn ` ( U X. { Y } ) ) ) |
54 |
48 36 53
|
sylancr |
|- ( ( ph /\ ( U X. { Y } ) C_ M ) -> ( ( II tX II ) |`t ( U X. { Y } ) ) e. ( TopOn ` ( U X. { Y } ) ) ) |
55 |
|
cvmtop1 |
|- ( F e. ( C CovMap J ) -> C e. Top ) |
56 |
2 55
|
syl |
|- ( ph -> C e. Top ) |
57 |
56
|
adantr |
|- ( ( ph /\ ( U X. { Y } ) C_ M ) -> C e. Top ) |
58 |
1
|
toptopon |
|- ( C e. Top <-> C e. ( TopOn ` B ) ) |
59 |
57 58
|
sylib |
|- ( ( ph /\ ( U X. { Y } ) C_ M ) -> C e. ( TopOn ` B ) ) |
60 |
|
cncnp |
|- ( ( ( ( II tX II ) |`t ( U X. { Y } ) ) e. ( TopOn ` ( U X. { Y } ) ) /\ C e. ( TopOn ` B ) ) -> ( ( K |` ( U X. { Y } ) ) e. ( ( ( II tX II ) |`t ( U X. { Y } ) ) Cn C ) <-> ( ( K |` ( U X. { Y } ) ) : ( U X. { Y } ) --> B /\ A. z e. ( U X. { Y } ) ( K |` ( U X. { Y } ) ) e. ( ( ( ( II tX II ) |`t ( U X. { Y } ) ) CnP C ) ` z ) ) ) ) |
61 |
54 59 60
|
syl2anc |
|- ( ( ph /\ ( U X. { Y } ) C_ M ) -> ( ( K |` ( U X. { Y } ) ) e. ( ( ( II tX II ) |`t ( U X. { Y } ) ) Cn C ) <-> ( ( K |` ( U X. { Y } ) ) : ( U X. { Y } ) --> B /\ A. z e. ( U X. { Y } ) ( K |` ( U X. { Y } ) ) e. ( ( ( ( II tX II ) |`t ( U X. { Y } ) ) CnP C ) ` z ) ) ) ) |
62 |
37 52 61
|
mpbir2and |
|- ( ( ph /\ ( U X. { Y } ) C_ M ) -> ( K |` ( U X. { Y } ) ) e. ( ( ( II tX II ) |`t ( U X. { Y } ) ) Cn C ) ) |
63 |
|
sneq |
|- ( w = Y -> { w } = { Y } ) |
64 |
63
|
xpeq2d |
|- ( w = Y -> ( U X. { w } ) = ( U X. { Y } ) ) |
65 |
64
|
reseq2d |
|- ( w = Y -> ( K |` ( U X. { w } ) ) = ( K |` ( U X. { Y } ) ) ) |
66 |
64
|
oveq2d |
|- ( w = Y -> ( ( II tX II ) |`t ( U X. { w } ) ) = ( ( II tX II ) |`t ( U X. { Y } ) ) ) |
67 |
66
|
oveq1d |
|- ( w = Y -> ( ( ( II tX II ) |`t ( U X. { w } ) ) Cn C ) = ( ( ( II tX II ) |`t ( U X. { Y } ) ) Cn C ) ) |
68 |
65 67
|
eleq12d |
|- ( w = Y -> ( ( K |` ( U X. { w } ) ) e. ( ( ( II tX II ) |`t ( U X. { w } ) ) Cn C ) <-> ( K |` ( U X. { Y } ) ) e. ( ( ( II tX II ) |`t ( U X. { Y } ) ) Cn C ) ) ) |
69 |
68
|
rspcev |
|- ( ( Y e. V /\ ( K |` ( U X. { Y } ) ) e. ( ( ( II tX II ) |`t ( U X. { Y } ) ) Cn C ) ) -> E. w e. V ( K |` ( U X. { w } ) ) e. ( ( ( II tX II ) |`t ( U X. { w } ) ) Cn C ) ) |
70 |
26 62 69
|
syl2anc |
|- ( ( ph /\ ( U X. { Y } ) C_ M ) -> E. w e. V ( K |` ( U X. { w } ) ) e. ( ( ( II tX II ) |`t ( U X. { w } ) ) Cn C ) ) |
71 |
13
|
imp |
|- ( ( ph /\ E. w e. V ( K |` ( U X. { w } ) ) e. ( ( ( II tX II ) |`t ( U X. { w } ) ) Cn C ) ) -> ( K |` ( U X. V ) ) e. ( ( ( II tX II ) |`t ( U X. V ) ) Cn C ) ) |
72 |
70 71
|
syldan |
|- ( ( ph /\ ( U X. { Y } ) C_ M ) -> ( K |` ( U X. V ) ) e. ( ( ( II tX II ) |`t ( U X. V ) ) Cn C ) ) |
73 |
72
|
adantr |
|- ( ( ( ph /\ ( U X. { Y } ) C_ M ) /\ z e. ( U X. { Z } ) ) -> ( K |` ( U X. V ) ) e. ( ( ( II tX II ) |`t ( U X. V ) ) Cn C ) ) |
74 |
12
|
adantr |
|- ( ( ph /\ ( U X. { Y } ) C_ M ) -> Z e. V ) |
75 |
74
|
snssd |
|- ( ( ph /\ ( U X. { Y } ) C_ M ) -> { Z } C_ V ) |
76 |
|
xpss2 |
|- ( { Z } C_ V -> ( U X. { Z } ) C_ ( U X. V ) ) |
77 |
75 76
|
syl |
|- ( ( ph /\ ( U X. { Y } ) C_ M ) -> ( U X. { Z } ) C_ ( U X. V ) ) |
78 |
|
iitop |
|- II e. Top |
79 |
78 78
|
txtopi |
|- ( II tX II ) e. Top |
80 |
|
xpss12 |
|- ( ( U C_ ( 0 [,] 1 ) /\ V C_ ( 0 [,] 1 ) ) -> ( U X. V ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) |
81 |
18 32 80
|
syl2anc |
|- ( ( ph /\ ( U X. { Y } ) C_ M ) -> ( U X. V ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) |
82 |
49
|
restuni |
|- ( ( ( II tX II ) e. Top /\ ( U X. V ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) -> ( U X. V ) = U. ( ( II tX II ) |`t ( U X. V ) ) ) |
83 |
79 81 82
|
sylancr |
|- ( ( ph /\ ( U X. { Y } ) C_ M ) -> ( U X. V ) = U. ( ( II tX II ) |`t ( U X. V ) ) ) |
84 |
77 83
|
sseqtrd |
|- ( ( ph /\ ( U X. { Y } ) C_ M ) -> ( U X. { Z } ) C_ U. ( ( II tX II ) |`t ( U X. V ) ) ) |
85 |
84
|
sselda |
|- ( ( ( ph /\ ( U X. { Y } ) C_ M ) /\ z e. ( U X. { Z } ) ) -> z e. U. ( ( II tX II ) |`t ( U X. V ) ) ) |
86 |
|
eqid |
|- U. ( ( II tX II ) |`t ( U X. V ) ) = U. ( ( II tX II ) |`t ( U X. V ) ) |
87 |
86
|
cncnpi |
|- ( ( ( K |` ( U X. V ) ) e. ( ( ( II tX II ) |`t ( U X. V ) ) Cn C ) /\ z e. U. ( ( II tX II ) |`t ( U X. V ) ) ) -> ( K |` ( U X. V ) ) e. ( ( ( ( II tX II ) |`t ( U X. V ) ) CnP C ) ` z ) ) |
88 |
73 85 87
|
syl2anc |
|- ( ( ( ph /\ ( U X. { Y } ) C_ M ) /\ z e. ( U X. { Z } ) ) -> ( K |` ( U X. V ) ) e. ( ( ( ( II tX II ) |`t ( U X. V ) ) CnP C ) ` z ) ) |
89 |
79
|
a1i |
|- ( ( ( ph /\ ( U X. { Y } ) C_ M ) /\ z e. ( U X. { Z } ) ) -> ( II tX II ) e. Top ) |
90 |
81
|
adantr |
|- ( ( ( ph /\ ( U X. { Y } ) C_ M ) /\ z e. ( U X. { Z } ) ) -> ( U X. V ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) |
91 |
78
|
a1i |
|- ( ( ph /\ ( U X. { Y } ) C_ M ) -> II e. Top ) |
92 |
|
txopn |
|- ( ( ( II e. Top /\ II e. Top ) /\ ( U e. II /\ V e. II ) ) -> ( U X. V ) e. ( II tX II ) ) |
93 |
91 91 14 29 92
|
syl22anc |
|- ( ( ph /\ ( U X. { Y } ) C_ M ) -> ( U X. V ) e. ( II tX II ) ) |
94 |
|
isopn3i |
|- ( ( ( II tX II ) e. Top /\ ( U X. V ) e. ( II tX II ) ) -> ( ( int ` ( II tX II ) ) ` ( U X. V ) ) = ( U X. V ) ) |
95 |
79 93 94
|
sylancr |
|- ( ( ph /\ ( U X. { Y } ) C_ M ) -> ( ( int ` ( II tX II ) ) ` ( U X. V ) ) = ( U X. V ) ) |
96 |
77 95
|
sseqtrrd |
|- ( ( ph /\ ( U X. { Y } ) C_ M ) -> ( U X. { Z } ) C_ ( ( int ` ( II tX II ) ) ` ( U X. V ) ) ) |
97 |
96
|
sselda |
|- ( ( ( ph /\ ( U X. { Y } ) C_ M ) /\ z e. ( U X. { Z } ) ) -> z e. ( ( int ` ( II tX II ) ) ` ( U X. V ) ) ) |
98 |
27
|
ad2antrr |
|- ( ( ( ph /\ ( U X. { Y } ) C_ M ) /\ z e. ( U X. { Z } ) ) -> K : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> B ) |
99 |
49 1
|
cnprest |
|- ( ( ( ( II tX II ) e. Top /\ ( U X. V ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) /\ ( z e. ( ( int ` ( II tX II ) ) ` ( U X. V ) ) /\ K : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> B ) ) -> ( K e. ( ( ( II tX II ) CnP C ) ` z ) <-> ( K |` ( U X. V ) ) e. ( ( ( ( II tX II ) |`t ( U X. V ) ) CnP C ) ` z ) ) ) |
100 |
89 90 97 98 99
|
syl22anc |
|- ( ( ( ph /\ ( U X. { Y } ) C_ M ) /\ z e. ( U X. { Z } ) ) -> ( K e. ( ( ( II tX II ) CnP C ) ` z ) <-> ( K |` ( U X. V ) ) e. ( ( ( ( II tX II ) |`t ( U X. V ) ) CnP C ) ` z ) ) ) |
101 |
88 100
|
mpbird |
|- ( ( ( ph /\ ( U X. { Y } ) C_ M ) /\ z e. ( U X. { Z } ) ) -> K e. ( ( ( II tX II ) CnP C ) ` z ) ) |
102 |
25 101
|
ssrabdv |
|- ( ( ph /\ ( U X. { Y } ) C_ M ) -> ( U X. { Z } ) C_ { z e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` z ) } ) |
103 |
102 8
|
sseqtrrdi |
|- ( ( ph /\ ( U X. { Y } ) C_ M ) -> ( U X. { Z } ) C_ M ) |
104 |
103
|
ex |
|- ( ph -> ( ( U X. { Y } ) C_ M -> ( U X. { Z } ) C_ M ) ) |