| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmlift2.b |  |-  B = U. C | 
						
							| 2 |  | cvmlift2.f |  |-  ( ph -> F e. ( C CovMap J ) ) | 
						
							| 3 |  | cvmlift2.g |  |-  ( ph -> G e. ( ( II tX II ) Cn J ) ) | 
						
							| 4 |  | cvmlift2.p |  |-  ( ph -> P e. B ) | 
						
							| 5 |  | cvmlift2.i |  |-  ( ph -> ( F ` P ) = ( 0 G 0 ) ) | 
						
							| 6 |  | cvmlift2.h |  |-  H = ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) /\ ( f ` 0 ) = P ) ) | 
						
							| 7 |  | cvmlift2.k |  |-  K = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` y ) ) | 
						
							| 8 |  | cvmlift2.m |  |-  M = { z e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` z ) } | 
						
							| 9 |  | cvmlift2lem11.1 |  |-  ( ph -> U e. II ) | 
						
							| 10 |  | cvmlift2lem11.2 |  |-  ( ph -> V e. II ) | 
						
							| 11 |  | cvmlift2lem11.3 |  |-  ( ph -> Y e. V ) | 
						
							| 12 |  | cvmlift2lem11.4 |  |-  ( ph -> Z e. V ) | 
						
							| 13 |  | cvmlift2lem11.5 |  |-  ( ph -> ( E. w e. V ( K |` ( U X. { w } ) ) e. ( ( ( II tX II ) |`t ( U X. { w } ) ) Cn C ) -> ( K |` ( U X. V ) ) e. ( ( ( II tX II ) |`t ( U X. V ) ) Cn C ) ) ) | 
						
							| 14 | 9 | adantr |  |-  ( ( ph /\ ( U X. { Y } ) C_ M ) -> U e. II ) | 
						
							| 15 |  | elssuni |  |-  ( U e. II -> U C_ U. II ) | 
						
							| 16 |  | iiuni |  |-  ( 0 [,] 1 ) = U. II | 
						
							| 17 | 15 16 | sseqtrrdi |  |-  ( U e. II -> U C_ ( 0 [,] 1 ) ) | 
						
							| 18 | 14 17 | syl |  |-  ( ( ph /\ ( U X. { Y } ) C_ M ) -> U C_ ( 0 [,] 1 ) ) | 
						
							| 19 |  | elunii |  |-  ( ( Z e. V /\ V e. II ) -> Z e. U. II ) | 
						
							| 20 | 19 16 | eleqtrrdi |  |-  ( ( Z e. V /\ V e. II ) -> Z e. ( 0 [,] 1 ) ) | 
						
							| 21 | 12 10 20 | syl2anc |  |-  ( ph -> Z e. ( 0 [,] 1 ) ) | 
						
							| 22 | 21 | adantr |  |-  ( ( ph /\ ( U X. { Y } ) C_ M ) -> Z e. ( 0 [,] 1 ) ) | 
						
							| 23 | 22 | snssd |  |-  ( ( ph /\ ( U X. { Y } ) C_ M ) -> { Z } C_ ( 0 [,] 1 ) ) | 
						
							| 24 |  | xpss12 |  |-  ( ( U C_ ( 0 [,] 1 ) /\ { Z } C_ ( 0 [,] 1 ) ) -> ( U X. { Z } ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 25 | 18 23 24 | syl2anc |  |-  ( ( ph /\ ( U X. { Y } ) C_ M ) -> ( U X. { Z } ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 26 | 11 | adantr |  |-  ( ( ph /\ ( U X. { Y } ) C_ M ) -> Y e. V ) | 
						
							| 27 | 1 2 3 4 5 6 7 | cvmlift2lem5 |  |-  ( ph -> K : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> B ) | 
						
							| 28 | 27 | adantr |  |-  ( ( ph /\ ( U X. { Y } ) C_ M ) -> K : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> B ) | 
						
							| 29 | 10 | adantr |  |-  ( ( ph /\ ( U X. { Y } ) C_ M ) -> V e. II ) | 
						
							| 30 |  | elssuni |  |-  ( V e. II -> V C_ U. II ) | 
						
							| 31 | 30 16 | sseqtrrdi |  |-  ( V e. II -> V C_ ( 0 [,] 1 ) ) | 
						
							| 32 | 29 31 | syl |  |-  ( ( ph /\ ( U X. { Y } ) C_ M ) -> V C_ ( 0 [,] 1 ) ) | 
						
							| 33 | 32 26 | sseldd |  |-  ( ( ph /\ ( U X. { Y } ) C_ M ) -> Y e. ( 0 [,] 1 ) ) | 
						
							| 34 | 33 | snssd |  |-  ( ( ph /\ ( U X. { Y } ) C_ M ) -> { Y } C_ ( 0 [,] 1 ) ) | 
						
							| 35 |  | xpss12 |  |-  ( ( U C_ ( 0 [,] 1 ) /\ { Y } C_ ( 0 [,] 1 ) ) -> ( U X. { Y } ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 36 | 18 34 35 | syl2anc |  |-  ( ( ph /\ ( U X. { Y } ) C_ M ) -> ( U X. { Y } ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 37 | 28 36 | fssresd |  |-  ( ( ph /\ ( U X. { Y } ) C_ M ) -> ( K |` ( U X. { Y } ) ) : ( U X. { Y } ) --> B ) | 
						
							| 38 | 36 | adantr |  |-  ( ( ( ph /\ ( U X. { Y } ) C_ M ) /\ z e. ( U X. { Y } ) ) -> ( U X. { Y } ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 39 |  | simpr |  |-  ( ( ( ph /\ ( U X. { Y } ) C_ M ) /\ z e. ( U X. { Y } ) ) -> z e. ( U X. { Y } ) ) | 
						
							| 40 |  | simpr |  |-  ( ( ph /\ ( U X. { Y } ) C_ M ) -> ( U X. { Y } ) C_ M ) | 
						
							| 41 | 40 8 | sseqtrdi |  |-  ( ( ph /\ ( U X. { Y } ) C_ M ) -> ( U X. { Y } ) C_ { z e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` z ) } ) | 
						
							| 42 |  | ssrab |  |-  ( ( U X. { Y } ) C_ { z e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` z ) } <-> ( ( U X. { Y } ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) /\ A. z e. ( U X. { Y } ) K e. ( ( ( II tX II ) CnP C ) ` z ) ) ) | 
						
							| 43 | 42 | simprbi |  |-  ( ( U X. { Y } ) C_ { z e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` z ) } -> A. z e. ( U X. { Y } ) K e. ( ( ( II tX II ) CnP C ) ` z ) ) | 
						
							| 44 | 41 43 | syl |  |-  ( ( ph /\ ( U X. { Y } ) C_ M ) -> A. z e. ( U X. { Y } ) K e. ( ( ( II tX II ) CnP C ) ` z ) ) | 
						
							| 45 | 44 | r19.21bi |  |-  ( ( ( ph /\ ( U X. { Y } ) C_ M ) /\ z e. ( U X. { Y } ) ) -> K e. ( ( ( II tX II ) CnP C ) ` z ) ) | 
						
							| 46 |  | iitopon |  |-  II e. ( TopOn ` ( 0 [,] 1 ) ) | 
						
							| 47 |  | txtopon |  |-  ( ( II e. ( TopOn ` ( 0 [,] 1 ) ) /\ II e. ( TopOn ` ( 0 [,] 1 ) ) ) -> ( II tX II ) e. ( TopOn ` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) | 
						
							| 48 | 46 46 47 | mp2an |  |-  ( II tX II ) e. ( TopOn ` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 49 | 48 | toponunii |  |-  ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) = U. ( II tX II ) | 
						
							| 50 | 49 | cnpresti |  |-  ( ( ( U X. { Y } ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) /\ z e. ( U X. { Y } ) /\ K e. ( ( ( II tX II ) CnP C ) ` z ) ) -> ( K |` ( U X. { Y } ) ) e. ( ( ( ( II tX II ) |`t ( U X. { Y } ) ) CnP C ) ` z ) ) | 
						
							| 51 | 38 39 45 50 | syl3anc |  |-  ( ( ( ph /\ ( U X. { Y } ) C_ M ) /\ z e. ( U X. { Y } ) ) -> ( K |` ( U X. { Y } ) ) e. ( ( ( ( II tX II ) |`t ( U X. { Y } ) ) CnP C ) ` z ) ) | 
						
							| 52 | 51 | ralrimiva |  |-  ( ( ph /\ ( U X. { Y } ) C_ M ) -> A. z e. ( U X. { Y } ) ( K |` ( U X. { Y } ) ) e. ( ( ( ( II tX II ) |`t ( U X. { Y } ) ) CnP C ) ` z ) ) | 
						
							| 53 |  | resttopon |  |-  ( ( ( II tX II ) e. ( TopOn ` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) /\ ( U X. { Y } ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) -> ( ( II tX II ) |`t ( U X. { Y } ) ) e. ( TopOn ` ( U X. { Y } ) ) ) | 
						
							| 54 | 48 36 53 | sylancr |  |-  ( ( ph /\ ( U X. { Y } ) C_ M ) -> ( ( II tX II ) |`t ( U X. { Y } ) ) e. ( TopOn ` ( U X. { Y } ) ) ) | 
						
							| 55 |  | cvmtop1 |  |-  ( F e. ( C CovMap J ) -> C e. Top ) | 
						
							| 56 | 2 55 | syl |  |-  ( ph -> C e. Top ) | 
						
							| 57 | 56 | adantr |  |-  ( ( ph /\ ( U X. { Y } ) C_ M ) -> C e. Top ) | 
						
							| 58 | 1 | toptopon |  |-  ( C e. Top <-> C e. ( TopOn ` B ) ) | 
						
							| 59 | 57 58 | sylib |  |-  ( ( ph /\ ( U X. { Y } ) C_ M ) -> C e. ( TopOn ` B ) ) | 
						
							| 60 |  | cncnp |  |-  ( ( ( ( II tX II ) |`t ( U X. { Y } ) ) e. ( TopOn ` ( U X. { Y } ) ) /\ C e. ( TopOn ` B ) ) -> ( ( K |` ( U X. { Y } ) ) e. ( ( ( II tX II ) |`t ( U X. { Y } ) ) Cn C ) <-> ( ( K |` ( U X. { Y } ) ) : ( U X. { Y } ) --> B /\ A. z e. ( U X. { Y } ) ( K |` ( U X. { Y } ) ) e. ( ( ( ( II tX II ) |`t ( U X. { Y } ) ) CnP C ) ` z ) ) ) ) | 
						
							| 61 | 54 59 60 | syl2anc |  |-  ( ( ph /\ ( U X. { Y } ) C_ M ) -> ( ( K |` ( U X. { Y } ) ) e. ( ( ( II tX II ) |`t ( U X. { Y } ) ) Cn C ) <-> ( ( K |` ( U X. { Y } ) ) : ( U X. { Y } ) --> B /\ A. z e. ( U X. { Y } ) ( K |` ( U X. { Y } ) ) e. ( ( ( ( II tX II ) |`t ( U X. { Y } ) ) CnP C ) ` z ) ) ) ) | 
						
							| 62 | 37 52 61 | mpbir2and |  |-  ( ( ph /\ ( U X. { Y } ) C_ M ) -> ( K |` ( U X. { Y } ) ) e. ( ( ( II tX II ) |`t ( U X. { Y } ) ) Cn C ) ) | 
						
							| 63 |  | sneq |  |-  ( w = Y -> { w } = { Y } ) | 
						
							| 64 | 63 | xpeq2d |  |-  ( w = Y -> ( U X. { w } ) = ( U X. { Y } ) ) | 
						
							| 65 | 64 | reseq2d |  |-  ( w = Y -> ( K |` ( U X. { w } ) ) = ( K |` ( U X. { Y } ) ) ) | 
						
							| 66 | 64 | oveq2d |  |-  ( w = Y -> ( ( II tX II ) |`t ( U X. { w } ) ) = ( ( II tX II ) |`t ( U X. { Y } ) ) ) | 
						
							| 67 | 66 | oveq1d |  |-  ( w = Y -> ( ( ( II tX II ) |`t ( U X. { w } ) ) Cn C ) = ( ( ( II tX II ) |`t ( U X. { Y } ) ) Cn C ) ) | 
						
							| 68 | 65 67 | eleq12d |  |-  ( w = Y -> ( ( K |` ( U X. { w } ) ) e. ( ( ( II tX II ) |`t ( U X. { w } ) ) Cn C ) <-> ( K |` ( U X. { Y } ) ) e. ( ( ( II tX II ) |`t ( U X. { Y } ) ) Cn C ) ) ) | 
						
							| 69 | 68 | rspcev |  |-  ( ( Y e. V /\ ( K |` ( U X. { Y } ) ) e. ( ( ( II tX II ) |`t ( U X. { Y } ) ) Cn C ) ) -> E. w e. V ( K |` ( U X. { w } ) ) e. ( ( ( II tX II ) |`t ( U X. { w } ) ) Cn C ) ) | 
						
							| 70 | 26 62 69 | syl2anc |  |-  ( ( ph /\ ( U X. { Y } ) C_ M ) -> E. w e. V ( K |` ( U X. { w } ) ) e. ( ( ( II tX II ) |`t ( U X. { w } ) ) Cn C ) ) | 
						
							| 71 | 13 | imp |  |-  ( ( ph /\ E. w e. V ( K |` ( U X. { w } ) ) e. ( ( ( II tX II ) |`t ( U X. { w } ) ) Cn C ) ) -> ( K |` ( U X. V ) ) e. ( ( ( II tX II ) |`t ( U X. V ) ) Cn C ) ) | 
						
							| 72 | 70 71 | syldan |  |-  ( ( ph /\ ( U X. { Y } ) C_ M ) -> ( K |` ( U X. V ) ) e. ( ( ( II tX II ) |`t ( U X. V ) ) Cn C ) ) | 
						
							| 73 | 72 | adantr |  |-  ( ( ( ph /\ ( U X. { Y } ) C_ M ) /\ z e. ( U X. { Z } ) ) -> ( K |` ( U X. V ) ) e. ( ( ( II tX II ) |`t ( U X. V ) ) Cn C ) ) | 
						
							| 74 | 12 | adantr |  |-  ( ( ph /\ ( U X. { Y } ) C_ M ) -> Z e. V ) | 
						
							| 75 | 74 | snssd |  |-  ( ( ph /\ ( U X. { Y } ) C_ M ) -> { Z } C_ V ) | 
						
							| 76 |  | xpss2 |  |-  ( { Z } C_ V -> ( U X. { Z } ) C_ ( U X. V ) ) | 
						
							| 77 | 75 76 | syl |  |-  ( ( ph /\ ( U X. { Y } ) C_ M ) -> ( U X. { Z } ) C_ ( U X. V ) ) | 
						
							| 78 |  | iitop |  |-  II e. Top | 
						
							| 79 | 78 78 | txtopi |  |-  ( II tX II ) e. Top | 
						
							| 80 |  | xpss12 |  |-  ( ( U C_ ( 0 [,] 1 ) /\ V C_ ( 0 [,] 1 ) ) -> ( U X. V ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 81 | 18 32 80 | syl2anc |  |-  ( ( ph /\ ( U X. { Y } ) C_ M ) -> ( U X. V ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 82 | 49 | restuni |  |-  ( ( ( II tX II ) e. Top /\ ( U X. V ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) -> ( U X. V ) = U. ( ( II tX II ) |`t ( U X. V ) ) ) | 
						
							| 83 | 79 81 82 | sylancr |  |-  ( ( ph /\ ( U X. { Y } ) C_ M ) -> ( U X. V ) = U. ( ( II tX II ) |`t ( U X. V ) ) ) | 
						
							| 84 | 77 83 | sseqtrd |  |-  ( ( ph /\ ( U X. { Y } ) C_ M ) -> ( U X. { Z } ) C_ U. ( ( II tX II ) |`t ( U X. V ) ) ) | 
						
							| 85 | 84 | sselda |  |-  ( ( ( ph /\ ( U X. { Y } ) C_ M ) /\ z e. ( U X. { Z } ) ) -> z e. U. ( ( II tX II ) |`t ( U X. V ) ) ) | 
						
							| 86 |  | eqid |  |-  U. ( ( II tX II ) |`t ( U X. V ) ) = U. ( ( II tX II ) |`t ( U X. V ) ) | 
						
							| 87 | 86 | cncnpi |  |-  ( ( ( K |` ( U X. V ) ) e. ( ( ( II tX II ) |`t ( U X. V ) ) Cn C ) /\ z e. U. ( ( II tX II ) |`t ( U X. V ) ) ) -> ( K |` ( U X. V ) ) e. ( ( ( ( II tX II ) |`t ( U X. V ) ) CnP C ) ` z ) ) | 
						
							| 88 | 73 85 87 | syl2anc |  |-  ( ( ( ph /\ ( U X. { Y } ) C_ M ) /\ z e. ( U X. { Z } ) ) -> ( K |` ( U X. V ) ) e. ( ( ( ( II tX II ) |`t ( U X. V ) ) CnP C ) ` z ) ) | 
						
							| 89 | 79 | a1i |  |-  ( ( ( ph /\ ( U X. { Y } ) C_ M ) /\ z e. ( U X. { Z } ) ) -> ( II tX II ) e. Top ) | 
						
							| 90 | 81 | adantr |  |-  ( ( ( ph /\ ( U X. { Y } ) C_ M ) /\ z e. ( U X. { Z } ) ) -> ( U X. V ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 91 | 78 | a1i |  |-  ( ( ph /\ ( U X. { Y } ) C_ M ) -> II e. Top ) | 
						
							| 92 |  | txopn |  |-  ( ( ( II e. Top /\ II e. Top ) /\ ( U e. II /\ V e. II ) ) -> ( U X. V ) e. ( II tX II ) ) | 
						
							| 93 | 91 91 14 29 92 | syl22anc |  |-  ( ( ph /\ ( U X. { Y } ) C_ M ) -> ( U X. V ) e. ( II tX II ) ) | 
						
							| 94 |  | isopn3i |  |-  ( ( ( II tX II ) e. Top /\ ( U X. V ) e. ( II tX II ) ) -> ( ( int ` ( II tX II ) ) ` ( U X. V ) ) = ( U X. V ) ) | 
						
							| 95 | 79 93 94 | sylancr |  |-  ( ( ph /\ ( U X. { Y } ) C_ M ) -> ( ( int ` ( II tX II ) ) ` ( U X. V ) ) = ( U X. V ) ) | 
						
							| 96 | 77 95 | sseqtrrd |  |-  ( ( ph /\ ( U X. { Y } ) C_ M ) -> ( U X. { Z } ) C_ ( ( int ` ( II tX II ) ) ` ( U X. V ) ) ) | 
						
							| 97 | 96 | sselda |  |-  ( ( ( ph /\ ( U X. { Y } ) C_ M ) /\ z e. ( U X. { Z } ) ) -> z e. ( ( int ` ( II tX II ) ) ` ( U X. V ) ) ) | 
						
							| 98 | 27 | ad2antrr |  |-  ( ( ( ph /\ ( U X. { Y } ) C_ M ) /\ z e. ( U X. { Z } ) ) -> K : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> B ) | 
						
							| 99 | 49 1 | cnprest |  |-  ( ( ( ( II tX II ) e. Top /\ ( U X. V ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) /\ ( z e. ( ( int ` ( II tX II ) ) ` ( U X. V ) ) /\ K : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> B ) ) -> ( K e. ( ( ( II tX II ) CnP C ) ` z ) <-> ( K |` ( U X. V ) ) e. ( ( ( ( II tX II ) |`t ( U X. V ) ) CnP C ) ` z ) ) ) | 
						
							| 100 | 89 90 97 98 99 | syl22anc |  |-  ( ( ( ph /\ ( U X. { Y } ) C_ M ) /\ z e. ( U X. { Z } ) ) -> ( K e. ( ( ( II tX II ) CnP C ) ` z ) <-> ( K |` ( U X. V ) ) e. ( ( ( ( II tX II ) |`t ( U X. V ) ) CnP C ) ` z ) ) ) | 
						
							| 101 | 88 100 | mpbird |  |-  ( ( ( ph /\ ( U X. { Y } ) C_ M ) /\ z e. ( U X. { Z } ) ) -> K e. ( ( ( II tX II ) CnP C ) ` z ) ) | 
						
							| 102 | 25 101 | ssrabdv |  |-  ( ( ph /\ ( U X. { Y } ) C_ M ) -> ( U X. { Z } ) C_ { z e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` z ) } ) | 
						
							| 103 | 102 8 | sseqtrrdi |  |-  ( ( ph /\ ( U X. { Y } ) C_ M ) -> ( U X. { Z } ) C_ M ) | 
						
							| 104 | 103 | ex |  |-  ( ph -> ( ( U X. { Y } ) C_ M -> ( U X. { Z } ) C_ M ) ) |