| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvmlift2.b |
|- B = U. C |
| 2 |
|
cvmlift2.f |
|- ( ph -> F e. ( C CovMap J ) ) |
| 3 |
|
cvmlift2.g |
|- ( ph -> G e. ( ( II tX II ) Cn J ) ) |
| 4 |
|
cvmlift2.p |
|- ( ph -> P e. B ) |
| 5 |
|
cvmlift2.i |
|- ( ph -> ( F ` P ) = ( 0 G 0 ) ) |
| 6 |
|
cvmlift2.h |
|- H = ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) /\ ( f ` 0 ) = P ) ) |
| 7 |
|
cvmlift2.k |
|- K = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` y ) ) |
| 8 |
|
cvmlift2.m |
|- M = { z e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` z ) } |
| 9 |
|
cvmlift2.a |
|- A = { a e. ( 0 [,] 1 ) | ( ( 0 [,] 1 ) X. { a } ) C_ M } |
| 10 |
|
cvmlift2.s |
|- S = { <. r , t >. | ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) } |
| 11 |
1 2 3 4 5 6 7
|
cvmlift2lem5 |
|- ( ph -> K : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> B ) |
| 12 |
|
iunid |
|- U_ a e. ( 0 [,] 1 ) { a } = ( 0 [,] 1 ) |
| 13 |
12
|
xpeq2i |
|- ( ( 0 [,] 1 ) X. U_ a e. ( 0 [,] 1 ) { a } ) = ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) |
| 14 |
|
xpiundi |
|- ( ( 0 [,] 1 ) X. U_ a e. ( 0 [,] 1 ) { a } ) = U_ a e. ( 0 [,] 1 ) ( ( 0 [,] 1 ) X. { a } ) |
| 15 |
13 14
|
eqtr3i |
|- ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) = U_ a e. ( 0 [,] 1 ) ( ( 0 [,] 1 ) X. { a } ) |
| 16 |
|
iiuni |
|- ( 0 [,] 1 ) = U. II |
| 17 |
|
iiconn |
|- II e. Conn |
| 18 |
17
|
a1i |
|- ( ph -> II e. Conn ) |
| 19 |
|
inss1 |
|- ( II i^i ( Clsd ` II ) ) C_ II |
| 20 |
|
iicmp |
|- II e. Comp |
| 21 |
20
|
a1i |
|- ( ( ph /\ a e. ( 0 [,] 1 ) ) -> II e. Comp ) |
| 22 |
|
iitop |
|- II e. Top |
| 23 |
22
|
a1i |
|- ( ( ph /\ a e. ( 0 [,] 1 ) ) -> II e. Top ) |
| 24 |
22 22
|
txtopi |
|- ( II tX II ) e. Top |
| 25 |
16
|
neiss2 |
|- ( ( II e. Top /\ u e. ( ( nei ` II ) ` { r } ) ) -> { r } C_ ( 0 [,] 1 ) ) |
| 26 |
22 25
|
mpan |
|- ( u e. ( ( nei ` II ) ` { r } ) -> { r } C_ ( 0 [,] 1 ) ) |
| 27 |
|
vex |
|- r e. _V |
| 28 |
27
|
snss |
|- ( r e. ( 0 [,] 1 ) <-> { r } C_ ( 0 [,] 1 ) ) |
| 29 |
26 28
|
sylibr |
|- ( u e. ( ( nei ` II ) ` { r } ) -> r e. ( 0 [,] 1 ) ) |
| 30 |
29
|
a1d |
|- ( u e. ( ( nei ` II ) ` { r } ) -> ( ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) -> r e. ( 0 [,] 1 ) ) ) |
| 31 |
30
|
rexlimiv |
|- ( E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) -> r e. ( 0 [,] 1 ) ) |
| 32 |
31
|
adantl |
|- ( ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) -> r e. ( 0 [,] 1 ) ) |
| 33 |
|
simpl |
|- ( ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) -> t e. ( 0 [,] 1 ) ) |
| 34 |
32 33
|
jca |
|- ( ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) -> ( r e. ( 0 [,] 1 ) /\ t e. ( 0 [,] 1 ) ) ) |
| 35 |
34
|
ssopab2i |
|- { <. r , t >. | ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) } C_ { <. r , t >. | ( r e. ( 0 [,] 1 ) /\ t e. ( 0 [,] 1 ) ) } |
| 36 |
|
df-xp |
|- ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) = { <. r , t >. | ( r e. ( 0 [,] 1 ) /\ t e. ( 0 [,] 1 ) ) } |
| 37 |
35 10 36
|
3sstr4i |
|- S C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) |
| 38 |
22 22 16 16
|
txunii |
|- ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) = U. ( II tX II ) |
| 39 |
38
|
ntropn |
|- ( ( ( II tX II ) e. Top /\ S C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) -> ( ( int ` ( II tX II ) ) ` S ) e. ( II tX II ) ) |
| 40 |
24 37 39
|
mp2an |
|- ( ( int ` ( II tX II ) ) ` S ) e. ( II tX II ) |
| 41 |
40
|
a1i |
|- ( ( ph /\ a e. ( 0 [,] 1 ) ) -> ( ( int ` ( II tX II ) ) ` S ) e. ( II tX II ) ) |
| 42 |
2
|
adantr |
|- ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) -> F e. ( C CovMap J ) ) |
| 43 |
3
|
adantr |
|- ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) -> G e. ( ( II tX II ) Cn J ) ) |
| 44 |
4
|
adantr |
|- ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) -> P e. B ) |
| 45 |
5
|
adantr |
|- ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) -> ( F ` P ) = ( 0 G 0 ) ) |
| 46 |
|
eqid |
|- ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. c e. s ( A. d e. ( s \ { c } ) ( c i^i d ) = (/) /\ ( F |` c ) e. ( ( C |`t c ) Homeo ( J |`t k ) ) ) ) } ) = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. c e. s ( A. d e. ( s \ { c } ) ( c i^i d ) = (/) /\ ( F |` c ) e. ( ( C |`t c ) Homeo ( J |`t k ) ) ) ) } ) |
| 47 |
|
simprr |
|- ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) -> b e. ( 0 [,] 1 ) ) |
| 48 |
|
simprl |
|- ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) -> a e. ( 0 [,] 1 ) ) |
| 49 |
1 42 43 44 45 6 7 46 47 48
|
cvmlift2lem10 |
|- ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) -> E. u e. II E. v e. II ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) |
| 50 |
24
|
a1i |
|- ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) -> ( II tX II ) e. Top ) |
| 51 |
37
|
a1i |
|- ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) -> S C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) |
| 52 |
22
|
a1i |
|- ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) -> II e. Top ) |
| 53 |
|
simplrl |
|- ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) -> u e. II ) |
| 54 |
|
simplrr |
|- ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) -> v e. II ) |
| 55 |
|
txopn |
|- ( ( ( II e. Top /\ II e. Top ) /\ ( u e. II /\ v e. II ) ) -> ( u X. v ) e. ( II tX II ) ) |
| 56 |
52 52 53 54 55
|
syl22anc |
|- ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) -> ( u X. v ) e. ( II tX II ) ) |
| 57 |
|
simpr |
|- ( ( r e. u /\ t e. v ) -> t e. v ) |
| 58 |
|
elunii |
|- ( ( t e. v /\ v e. II ) -> t e. U. II ) |
| 59 |
58 16
|
eleqtrrdi |
|- ( ( t e. v /\ v e. II ) -> t e. ( 0 [,] 1 ) ) |
| 60 |
57 54 59
|
syl2anr |
|- ( ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) /\ ( r e. u /\ t e. v ) ) -> t e. ( 0 [,] 1 ) ) |
| 61 |
22
|
a1i |
|- ( ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) /\ ( r e. u /\ t e. v ) ) -> II e. Top ) |
| 62 |
53
|
adantr |
|- ( ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) /\ ( r e. u /\ t e. v ) ) -> u e. II ) |
| 63 |
|
simprl |
|- ( ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) /\ ( r e. u /\ t e. v ) ) -> r e. u ) |
| 64 |
|
opnneip |
|- ( ( II e. Top /\ u e. II /\ r e. u ) -> u e. ( ( nei ` II ) ` { r } ) ) |
| 65 |
61 62 63 64
|
syl3anc |
|- ( ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) /\ ( r e. u /\ t e. v ) ) -> u e. ( ( nei ` II ) ` { r } ) ) |
| 66 |
42
|
ad3antrrr |
|- ( ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) /\ ( r e. u /\ t e. v ) ) -> F e. ( C CovMap J ) ) |
| 67 |
43
|
ad3antrrr |
|- ( ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) /\ ( r e. u /\ t e. v ) ) -> G e. ( ( II tX II ) Cn J ) ) |
| 68 |
44
|
ad3antrrr |
|- ( ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) /\ ( r e. u /\ t e. v ) ) -> P e. B ) |
| 69 |
45
|
ad3antrrr |
|- ( ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) /\ ( r e. u /\ t e. v ) ) -> ( F ` P ) = ( 0 G 0 ) ) |
| 70 |
54
|
adantr |
|- ( ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) /\ ( r e. u /\ t e. v ) ) -> v e. II ) |
| 71 |
|
simplr2 |
|- ( ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) /\ ( r e. u /\ t e. v ) ) -> a e. v ) |
| 72 |
|
simprr |
|- ( ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) /\ ( r e. u /\ t e. v ) ) -> t e. v ) |
| 73 |
|
sneq |
|- ( c = w -> { c } = { w } ) |
| 74 |
73
|
xpeq2d |
|- ( c = w -> ( u X. { c } ) = ( u X. { w } ) ) |
| 75 |
74
|
reseq2d |
|- ( c = w -> ( K |` ( u X. { c } ) ) = ( K |` ( u X. { w } ) ) ) |
| 76 |
74
|
oveq2d |
|- ( c = w -> ( ( II tX II ) |`t ( u X. { c } ) ) = ( ( II tX II ) |`t ( u X. { w } ) ) ) |
| 77 |
76
|
oveq1d |
|- ( c = w -> ( ( ( II tX II ) |`t ( u X. { c } ) ) Cn C ) = ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) ) |
| 78 |
75 77
|
eleq12d |
|- ( c = w -> ( ( K |` ( u X. { c } ) ) e. ( ( ( II tX II ) |`t ( u X. { c } ) ) Cn C ) <-> ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) ) ) |
| 79 |
78
|
cbvrexvw |
|- ( E. c e. v ( K |` ( u X. { c } ) ) e. ( ( ( II tX II ) |`t ( u X. { c } ) ) Cn C ) <-> E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) ) |
| 80 |
|
simplr3 |
|- ( ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) /\ ( r e. u /\ t e. v ) ) -> ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) |
| 81 |
79 80
|
biimtrid |
|- ( ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) /\ ( r e. u /\ t e. v ) ) -> ( E. c e. v ( K |` ( u X. { c } ) ) e. ( ( ( II tX II ) |`t ( u X. { c } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) |
| 82 |
1 66 67 68 69 6 7 8 62 70 71 72 81
|
cvmlift2lem11 |
|- ( ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) /\ ( r e. u /\ t e. v ) ) -> ( ( u X. { a } ) C_ M -> ( u X. { t } ) C_ M ) ) |
| 83 |
1 66 67 68 69 6 7 8 62 70 72 71 81
|
cvmlift2lem11 |
|- ( ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) /\ ( r e. u /\ t e. v ) ) -> ( ( u X. { t } ) C_ M -> ( u X. { a } ) C_ M ) ) |
| 84 |
82 83
|
impbid |
|- ( ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) /\ ( r e. u /\ t e. v ) ) -> ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) |
| 85 |
|
rspe |
|- ( ( u e. ( ( nei ` II ) ` { r } ) /\ ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) -> E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) |
| 86 |
65 84 85
|
syl2anc |
|- ( ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) /\ ( r e. u /\ t e. v ) ) -> E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) |
| 87 |
60 86
|
jca |
|- ( ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) /\ ( r e. u /\ t e. v ) ) -> ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) ) |
| 88 |
87
|
ex |
|- ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) -> ( ( r e. u /\ t e. v ) -> ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) ) ) |
| 89 |
88
|
alrimivv |
|- ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) -> A. r A. t ( ( r e. u /\ t e. v ) -> ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) ) ) |
| 90 |
|
df-xp |
|- ( u X. v ) = { <. r , t >. | ( r e. u /\ t e. v ) } |
| 91 |
90 10
|
sseq12i |
|- ( ( u X. v ) C_ S <-> { <. r , t >. | ( r e. u /\ t e. v ) } C_ { <. r , t >. | ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) } ) |
| 92 |
|
ssopab2bw |
|- ( { <. r , t >. | ( r e. u /\ t e. v ) } C_ { <. r , t >. | ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) } <-> A. r A. t ( ( r e. u /\ t e. v ) -> ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) ) ) |
| 93 |
91 92
|
bitri |
|- ( ( u X. v ) C_ S <-> A. r A. t ( ( r e. u /\ t e. v ) -> ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) ) ) |
| 94 |
89 93
|
sylibr |
|- ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) -> ( u X. v ) C_ S ) |
| 95 |
38
|
ssntr |
|- ( ( ( ( II tX II ) e. Top /\ S C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) /\ ( ( u X. v ) e. ( II tX II ) /\ ( u X. v ) C_ S ) ) -> ( u X. v ) C_ ( ( int ` ( II tX II ) ) ` S ) ) |
| 96 |
50 51 56 94 95
|
syl22anc |
|- ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) -> ( u X. v ) C_ ( ( int ` ( II tX II ) ) ` S ) ) |
| 97 |
|
simpr1 |
|- ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) -> b e. u ) |
| 98 |
|
simpr2 |
|- ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) -> a e. v ) |
| 99 |
|
opelxpi |
|- ( ( b e. u /\ a e. v ) -> <. b , a >. e. ( u X. v ) ) |
| 100 |
97 98 99
|
syl2anc |
|- ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) -> <. b , a >. e. ( u X. v ) ) |
| 101 |
96 100
|
sseldd |
|- ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) -> <. b , a >. e. ( ( int ` ( II tX II ) ) ` S ) ) |
| 102 |
101
|
ex |
|- ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) -> ( ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) -> <. b , a >. e. ( ( int ` ( II tX II ) ) ` S ) ) ) |
| 103 |
102
|
rexlimdvva |
|- ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) -> ( E. u e. II E. v e. II ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) -> <. b , a >. e. ( ( int ` ( II tX II ) ) ` S ) ) ) |
| 104 |
49 103
|
mpd |
|- ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) -> <. b , a >. e. ( ( int ` ( II tX II ) ) ` S ) ) |
| 105 |
|
vex |
|- a e. _V |
| 106 |
|
opeq2 |
|- ( w = a -> <. b , w >. = <. b , a >. ) |
| 107 |
106
|
eleq1d |
|- ( w = a -> ( <. b , w >. e. ( ( int ` ( II tX II ) ) ` S ) <-> <. b , a >. e. ( ( int ` ( II tX II ) ) ` S ) ) ) |
| 108 |
105 107
|
ralsn |
|- ( A. w e. { a } <. b , w >. e. ( ( int ` ( II tX II ) ) ` S ) <-> <. b , a >. e. ( ( int ` ( II tX II ) ) ` S ) ) |
| 109 |
104 108
|
sylibr |
|- ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) -> A. w e. { a } <. b , w >. e. ( ( int ` ( II tX II ) ) ` S ) ) |
| 110 |
109
|
anassrs |
|- ( ( ( ph /\ a e. ( 0 [,] 1 ) ) /\ b e. ( 0 [,] 1 ) ) -> A. w e. { a } <. b , w >. e. ( ( int ` ( II tX II ) ) ` S ) ) |
| 111 |
110
|
ralrimiva |
|- ( ( ph /\ a e. ( 0 [,] 1 ) ) -> A. b e. ( 0 [,] 1 ) A. w e. { a } <. b , w >. e. ( ( int ` ( II tX II ) ) ` S ) ) |
| 112 |
|
dfss3 |
|- ( ( ( 0 [,] 1 ) X. { a } ) C_ ( ( int ` ( II tX II ) ) ` S ) <-> A. u e. ( ( 0 [,] 1 ) X. { a } ) u e. ( ( int ` ( II tX II ) ) ` S ) ) |
| 113 |
|
eleq1 |
|- ( u = <. b , w >. -> ( u e. ( ( int ` ( II tX II ) ) ` S ) <-> <. b , w >. e. ( ( int ` ( II tX II ) ) ` S ) ) ) |
| 114 |
113
|
ralxp |
|- ( A. u e. ( ( 0 [,] 1 ) X. { a } ) u e. ( ( int ` ( II tX II ) ) ` S ) <-> A. b e. ( 0 [,] 1 ) A. w e. { a } <. b , w >. e. ( ( int ` ( II tX II ) ) ` S ) ) |
| 115 |
112 114
|
bitri |
|- ( ( ( 0 [,] 1 ) X. { a } ) C_ ( ( int ` ( II tX II ) ) ` S ) <-> A. b e. ( 0 [,] 1 ) A. w e. { a } <. b , w >. e. ( ( int ` ( II tX II ) ) ` S ) ) |
| 116 |
111 115
|
sylibr |
|- ( ( ph /\ a e. ( 0 [,] 1 ) ) -> ( ( 0 [,] 1 ) X. { a } ) C_ ( ( int ` ( II tX II ) ) ` S ) ) |
| 117 |
|
simpr |
|- ( ( ph /\ a e. ( 0 [,] 1 ) ) -> a e. ( 0 [,] 1 ) ) |
| 118 |
16 16 21 23 41 116 117
|
txtube |
|- ( ( ph /\ a e. ( 0 [,] 1 ) ) -> E. v e. II ( a e. v /\ ( ( 0 [,] 1 ) X. v ) C_ ( ( int ` ( II tX II ) ) ` S ) ) ) |
| 119 |
38
|
ntrss2 |
|- ( ( ( II tX II ) e. Top /\ S C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) -> ( ( int ` ( II tX II ) ) ` S ) C_ S ) |
| 120 |
24 37 119
|
mp2an |
|- ( ( int ` ( II tX II ) ) ` S ) C_ S |
| 121 |
|
sstr |
|- ( ( ( ( 0 [,] 1 ) X. v ) C_ ( ( int ` ( II tX II ) ) ` S ) /\ ( ( int ` ( II tX II ) ) ` S ) C_ S ) -> ( ( 0 [,] 1 ) X. v ) C_ S ) |
| 122 |
120 121
|
mpan2 |
|- ( ( ( 0 [,] 1 ) X. v ) C_ ( ( int ` ( II tX II ) ) ` S ) -> ( ( 0 [,] 1 ) X. v ) C_ S ) |
| 123 |
|
df-xp |
|- ( ( 0 [,] 1 ) X. v ) = { <. r , t >. | ( r e. ( 0 [,] 1 ) /\ t e. v ) } |
| 124 |
123 10
|
sseq12i |
|- ( ( ( 0 [,] 1 ) X. v ) C_ S <-> { <. r , t >. | ( r e. ( 0 [,] 1 ) /\ t e. v ) } C_ { <. r , t >. | ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) } ) |
| 125 |
|
ssopab2bw |
|- ( { <. r , t >. | ( r e. ( 0 [,] 1 ) /\ t e. v ) } C_ { <. r , t >. | ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) } <-> A. r A. t ( ( r e. ( 0 [,] 1 ) /\ t e. v ) -> ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) ) ) |
| 126 |
|
r2al |
|- ( A. r e. ( 0 [,] 1 ) A. t e. v ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) <-> A. r A. t ( ( r e. ( 0 [,] 1 ) /\ t e. v ) -> ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) ) ) |
| 127 |
|
ralcom |
|- ( A. r e. ( 0 [,] 1 ) A. t e. v ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) <-> A. t e. v A. r e. ( 0 [,] 1 ) ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) ) |
| 128 |
125 126 127
|
3bitr2i |
|- ( { <. r , t >. | ( r e. ( 0 [,] 1 ) /\ t e. v ) } C_ { <. r , t >. | ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) } <-> A. t e. v A. r e. ( 0 [,] 1 ) ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) ) |
| 129 |
124 128
|
bitri |
|- ( ( ( 0 [,] 1 ) X. v ) C_ S <-> A. t e. v A. r e. ( 0 [,] 1 ) ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) ) |
| 130 |
122 129
|
sylib |
|- ( ( ( 0 [,] 1 ) X. v ) C_ ( ( int ` ( II tX II ) ) ` S ) -> A. t e. v A. r e. ( 0 [,] 1 ) ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) ) |
| 131 |
|
simpr |
|- ( ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) -> E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) |
| 132 |
131
|
ralimi |
|- ( A. r e. ( 0 [,] 1 ) ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) -> A. r e. ( 0 [,] 1 ) E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) |
| 133 |
|
cvmlift2lem1 |
|- ( A. r e. ( 0 [,] 1 ) E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) -> ( ( ( 0 [,] 1 ) X. { a } ) C_ M -> ( ( 0 [,] 1 ) X. { t } ) C_ M ) ) |
| 134 |
|
bicom |
|- ( ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) <-> ( ( u X. { t } ) C_ M <-> ( u X. { a } ) C_ M ) ) |
| 135 |
134
|
rexbii |
|- ( E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) <-> E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { t } ) C_ M <-> ( u X. { a } ) C_ M ) ) |
| 136 |
135
|
ralbii |
|- ( A. r e. ( 0 [,] 1 ) E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) <-> A. r e. ( 0 [,] 1 ) E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { t } ) C_ M <-> ( u X. { a } ) C_ M ) ) |
| 137 |
|
cvmlift2lem1 |
|- ( A. r e. ( 0 [,] 1 ) E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { t } ) C_ M <-> ( u X. { a } ) C_ M ) -> ( ( ( 0 [,] 1 ) X. { t } ) C_ M -> ( ( 0 [,] 1 ) X. { a } ) C_ M ) ) |
| 138 |
136 137
|
sylbi |
|- ( A. r e. ( 0 [,] 1 ) E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) -> ( ( ( 0 [,] 1 ) X. { t } ) C_ M -> ( ( 0 [,] 1 ) X. { a } ) C_ M ) ) |
| 139 |
133 138
|
impbid |
|- ( A. r e. ( 0 [,] 1 ) E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) -> ( ( ( 0 [,] 1 ) X. { a } ) C_ M <-> ( ( 0 [,] 1 ) X. { t } ) C_ M ) ) |
| 140 |
132 139
|
syl |
|- ( A. r e. ( 0 [,] 1 ) ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) -> ( ( ( 0 [,] 1 ) X. { a } ) C_ M <-> ( ( 0 [,] 1 ) X. { t } ) C_ M ) ) |
| 141 |
9
|
reqabi |
|- ( a e. A <-> ( a e. ( 0 [,] 1 ) /\ ( ( 0 [,] 1 ) X. { a } ) C_ M ) ) |
| 142 |
141
|
baib |
|- ( a e. ( 0 [,] 1 ) -> ( a e. A <-> ( ( 0 [,] 1 ) X. { a } ) C_ M ) ) |
| 143 |
142
|
ad3antlr |
|- ( ( ( ( ph /\ a e. ( 0 [,] 1 ) ) /\ v e. II ) /\ t e. v ) -> ( a e. A <-> ( ( 0 [,] 1 ) X. { a } ) C_ M ) ) |
| 144 |
|
elssuni |
|- ( v e. II -> v C_ U. II ) |
| 145 |
144 16
|
sseqtrrdi |
|- ( v e. II -> v C_ ( 0 [,] 1 ) ) |
| 146 |
145
|
adantl |
|- ( ( ( ph /\ a e. ( 0 [,] 1 ) ) /\ v e. II ) -> v C_ ( 0 [,] 1 ) ) |
| 147 |
146
|
sselda |
|- ( ( ( ( ph /\ a e. ( 0 [,] 1 ) ) /\ v e. II ) /\ t e. v ) -> t e. ( 0 [,] 1 ) ) |
| 148 |
|
sneq |
|- ( a = t -> { a } = { t } ) |
| 149 |
148
|
xpeq2d |
|- ( a = t -> ( ( 0 [,] 1 ) X. { a } ) = ( ( 0 [,] 1 ) X. { t } ) ) |
| 150 |
149
|
sseq1d |
|- ( a = t -> ( ( ( 0 [,] 1 ) X. { a } ) C_ M <-> ( ( 0 [,] 1 ) X. { t } ) C_ M ) ) |
| 151 |
150 9
|
elrab2 |
|- ( t e. A <-> ( t e. ( 0 [,] 1 ) /\ ( ( 0 [,] 1 ) X. { t } ) C_ M ) ) |
| 152 |
151
|
baib |
|- ( t e. ( 0 [,] 1 ) -> ( t e. A <-> ( ( 0 [,] 1 ) X. { t } ) C_ M ) ) |
| 153 |
147 152
|
syl |
|- ( ( ( ( ph /\ a e. ( 0 [,] 1 ) ) /\ v e. II ) /\ t e. v ) -> ( t e. A <-> ( ( 0 [,] 1 ) X. { t } ) C_ M ) ) |
| 154 |
143 153
|
bibi12d |
|- ( ( ( ( ph /\ a e. ( 0 [,] 1 ) ) /\ v e. II ) /\ t e. v ) -> ( ( a e. A <-> t e. A ) <-> ( ( ( 0 [,] 1 ) X. { a } ) C_ M <-> ( ( 0 [,] 1 ) X. { t } ) C_ M ) ) ) |
| 155 |
140 154
|
imbitrrid |
|- ( ( ( ( ph /\ a e. ( 0 [,] 1 ) ) /\ v e. II ) /\ t e. v ) -> ( A. r e. ( 0 [,] 1 ) ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) -> ( a e. A <-> t e. A ) ) ) |
| 156 |
155
|
ralimdva |
|- ( ( ( ph /\ a e. ( 0 [,] 1 ) ) /\ v e. II ) -> ( A. t e. v A. r e. ( 0 [,] 1 ) ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) -> A. t e. v ( a e. A <-> t e. A ) ) ) |
| 157 |
130 156
|
syl5 |
|- ( ( ( ph /\ a e. ( 0 [,] 1 ) ) /\ v e. II ) -> ( ( ( 0 [,] 1 ) X. v ) C_ ( ( int ` ( II tX II ) ) ` S ) -> A. t e. v ( a e. A <-> t e. A ) ) ) |
| 158 |
157
|
anim2d |
|- ( ( ( ph /\ a e. ( 0 [,] 1 ) ) /\ v e. II ) -> ( ( a e. v /\ ( ( 0 [,] 1 ) X. v ) C_ ( ( int ` ( II tX II ) ) ` S ) ) -> ( a e. v /\ A. t e. v ( a e. A <-> t e. A ) ) ) ) |
| 159 |
158
|
reximdva |
|- ( ( ph /\ a e. ( 0 [,] 1 ) ) -> ( E. v e. II ( a e. v /\ ( ( 0 [,] 1 ) X. v ) C_ ( ( int ` ( II tX II ) ) ` S ) ) -> E. v e. II ( a e. v /\ A. t e. v ( a e. A <-> t e. A ) ) ) ) |
| 160 |
118 159
|
mpd |
|- ( ( ph /\ a e. ( 0 [,] 1 ) ) -> E. v e. II ( a e. v /\ A. t e. v ( a e. A <-> t e. A ) ) ) |
| 161 |
160
|
ralrimiva |
|- ( ph -> A. a e. ( 0 [,] 1 ) E. v e. II ( a e. v /\ A. t e. v ( a e. A <-> t e. A ) ) ) |
| 162 |
|
ssrab2 |
|- { a e. ( 0 [,] 1 ) | ( ( 0 [,] 1 ) X. { a } ) C_ M } C_ ( 0 [,] 1 ) |
| 163 |
9 162
|
eqsstri |
|- A C_ ( 0 [,] 1 ) |
| 164 |
16
|
isclo |
|- ( ( II e. Top /\ A C_ ( 0 [,] 1 ) ) -> ( A e. ( II i^i ( Clsd ` II ) ) <-> A. a e. ( 0 [,] 1 ) E. v e. II ( a e. v /\ A. t e. v ( a e. A <-> t e. A ) ) ) ) |
| 165 |
22 163 164
|
mp2an |
|- ( A e. ( II i^i ( Clsd ` II ) ) <-> A. a e. ( 0 [,] 1 ) E. v e. II ( a e. v /\ A. t e. v ( a e. A <-> t e. A ) ) ) |
| 166 |
161 165
|
sylibr |
|- ( ph -> A e. ( II i^i ( Clsd ` II ) ) ) |
| 167 |
19 166
|
sselid |
|- ( ph -> A e. II ) |
| 168 |
|
0elunit |
|- 0 e. ( 0 [,] 1 ) |
| 169 |
168
|
a1i |
|- ( ph -> 0 e. ( 0 [,] 1 ) ) |
| 170 |
|
relxp |
|- Rel ( ( 0 [,] 1 ) X. { 0 } ) |
| 171 |
170
|
a1i |
|- ( ph -> Rel ( ( 0 [,] 1 ) X. { 0 } ) ) |
| 172 |
|
opelxp |
|- ( <. r , a >. e. ( ( 0 [,] 1 ) X. { 0 } ) <-> ( r e. ( 0 [,] 1 ) /\ a e. { 0 } ) ) |
| 173 |
|
id |
|- ( r e. ( 0 [,] 1 ) -> r e. ( 0 [,] 1 ) ) |
| 174 |
|
opelxpi |
|- ( ( r e. ( 0 [,] 1 ) /\ 0 e. ( 0 [,] 1 ) ) -> <. r , 0 >. e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) |
| 175 |
173 169 174
|
syl2anr |
|- ( ( ph /\ r e. ( 0 [,] 1 ) ) -> <. r , 0 >. e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) |
| 176 |
2
|
adantr |
|- ( ( ph /\ r e. ( 0 [,] 1 ) ) -> F e. ( C CovMap J ) ) |
| 177 |
3
|
adantr |
|- ( ( ph /\ r e. ( 0 [,] 1 ) ) -> G e. ( ( II tX II ) Cn J ) ) |
| 178 |
4
|
adantr |
|- ( ( ph /\ r e. ( 0 [,] 1 ) ) -> P e. B ) |
| 179 |
5
|
adantr |
|- ( ( ph /\ r e. ( 0 [,] 1 ) ) -> ( F ` P ) = ( 0 G 0 ) ) |
| 180 |
|
simpr |
|- ( ( ph /\ r e. ( 0 [,] 1 ) ) -> r e. ( 0 [,] 1 ) ) |
| 181 |
168
|
a1i |
|- ( ( ph /\ r e. ( 0 [,] 1 ) ) -> 0 e. ( 0 [,] 1 ) ) |
| 182 |
1 176 177 178 179 6 7 46 180 181
|
cvmlift2lem10 |
|- ( ( ph /\ r e. ( 0 [,] 1 ) ) -> E. u e. II E. v e. II ( r e. u /\ 0 e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) |
| 183 |
|
df-3an |
|- ( ( r e. u /\ 0 e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) <-> ( ( r e. u /\ 0 e. v ) /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) |
| 184 |
|
simprr |
|- ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> 0 e. v ) |
| 185 |
11
|
ad3antrrr |
|- ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> K : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> B ) |
| 186 |
185
|
ffnd |
|- ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> K Fn ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) |
| 187 |
|
fnov |
|- ( K Fn ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) <-> K = ( b e. ( 0 [,] 1 ) , w e. ( 0 [,] 1 ) |-> ( b K w ) ) ) |
| 188 |
186 187
|
sylib |
|- ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> K = ( b e. ( 0 [,] 1 ) , w e. ( 0 [,] 1 ) |-> ( b K w ) ) ) |
| 189 |
188
|
reseq1d |
|- ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> ( K |` ( u X. { 0 } ) ) = ( ( b e. ( 0 [,] 1 ) , w e. ( 0 [,] 1 ) |-> ( b K w ) ) |` ( u X. { 0 } ) ) ) |
| 190 |
|
simplrl |
|- ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> u e. II ) |
| 191 |
|
elssuni |
|- ( u e. II -> u C_ U. II ) |
| 192 |
191 16
|
sseqtrrdi |
|- ( u e. II -> u C_ ( 0 [,] 1 ) ) |
| 193 |
190 192
|
syl |
|- ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> u C_ ( 0 [,] 1 ) ) |
| 194 |
169
|
snssd |
|- ( ph -> { 0 } C_ ( 0 [,] 1 ) ) |
| 195 |
194
|
ad3antrrr |
|- ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> { 0 } C_ ( 0 [,] 1 ) ) |
| 196 |
|
resmpo |
|- ( ( u C_ ( 0 [,] 1 ) /\ { 0 } C_ ( 0 [,] 1 ) ) -> ( ( b e. ( 0 [,] 1 ) , w e. ( 0 [,] 1 ) |-> ( b K w ) ) |` ( u X. { 0 } ) ) = ( b e. u , w e. { 0 } |-> ( b K w ) ) ) |
| 197 |
193 195 196
|
syl2anc |
|- ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> ( ( b e. ( 0 [,] 1 ) , w e. ( 0 [,] 1 ) |-> ( b K w ) ) |` ( u X. { 0 } ) ) = ( b e. u , w e. { 0 } |-> ( b K w ) ) ) |
| 198 |
193
|
sselda |
|- ( ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) /\ b e. u ) -> b e. ( 0 [,] 1 ) ) |
| 199 |
|
simplll |
|- ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> ph ) |
| 200 |
1 2 3 4 5 6 7
|
cvmlift2lem8 |
|- ( ( ph /\ b e. ( 0 [,] 1 ) ) -> ( b K 0 ) = ( H ` b ) ) |
| 201 |
199 200
|
sylan |
|- ( ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) /\ b e. ( 0 [,] 1 ) ) -> ( b K 0 ) = ( H ` b ) ) |
| 202 |
198 201
|
syldan |
|- ( ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) /\ b e. u ) -> ( b K 0 ) = ( H ` b ) ) |
| 203 |
|
elsni |
|- ( w e. { 0 } -> w = 0 ) |
| 204 |
203
|
oveq2d |
|- ( w e. { 0 } -> ( b K w ) = ( b K 0 ) ) |
| 205 |
204
|
eqeq1d |
|- ( w e. { 0 } -> ( ( b K w ) = ( H ` b ) <-> ( b K 0 ) = ( H ` b ) ) ) |
| 206 |
202 205
|
syl5ibrcom |
|- ( ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) /\ b e. u ) -> ( w e. { 0 } -> ( b K w ) = ( H ` b ) ) ) |
| 207 |
206
|
3impia |
|- ( ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) /\ b e. u /\ w e. { 0 } ) -> ( b K w ) = ( H ` b ) ) |
| 208 |
207
|
mpoeq3dva |
|- ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> ( b e. u , w e. { 0 } |-> ( b K w ) ) = ( b e. u , w e. { 0 } |-> ( H ` b ) ) ) |
| 209 |
189 197 208
|
3eqtrd |
|- ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> ( K |` ( u X. { 0 } ) ) = ( b e. u , w e. { 0 } |-> ( H ` b ) ) ) |
| 210 |
|
eqid |
|- ( II |`t u ) = ( II |`t u ) |
| 211 |
|
iitopon |
|- II e. ( TopOn ` ( 0 [,] 1 ) ) |
| 212 |
211
|
a1i |
|- ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) |
| 213 |
|
eqid |
|- ( II |`t { 0 } ) = ( II |`t { 0 } ) |
| 214 |
212 212
|
cnmpt1st |
|- ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> ( b e. ( 0 [,] 1 ) , w e. ( 0 [,] 1 ) |-> b ) e. ( ( II tX II ) Cn II ) ) |
| 215 |
1 2 3 4 5 6
|
cvmlift2lem2 |
|- ( ph -> ( H e. ( II Cn C ) /\ ( F o. H ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) /\ ( H ` 0 ) = P ) ) |
| 216 |
215
|
simp1d |
|- ( ph -> H e. ( II Cn C ) ) |
| 217 |
199 216
|
syl |
|- ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> H e. ( II Cn C ) ) |
| 218 |
212 212 214 217
|
cnmpt21f |
|- ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> ( b e. ( 0 [,] 1 ) , w e. ( 0 [,] 1 ) |-> ( H ` b ) ) e. ( ( II tX II ) Cn C ) ) |
| 219 |
210 212 193 213 212 195 218
|
cnmpt2res |
|- ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> ( b e. u , w e. { 0 } |-> ( H ` b ) ) e. ( ( ( II |`t u ) tX ( II |`t { 0 } ) ) Cn C ) ) |
| 220 |
|
vex |
|- u e. _V |
| 221 |
|
snex |
|- { 0 } e. _V |
| 222 |
|
txrest |
|- ( ( ( II e. Top /\ II e. Top ) /\ ( u e. _V /\ { 0 } e. _V ) ) -> ( ( II tX II ) |`t ( u X. { 0 } ) ) = ( ( II |`t u ) tX ( II |`t { 0 } ) ) ) |
| 223 |
22 22 220 221 222
|
mp4an |
|- ( ( II tX II ) |`t ( u X. { 0 } ) ) = ( ( II |`t u ) tX ( II |`t { 0 } ) ) |
| 224 |
223
|
oveq1i |
|- ( ( ( II tX II ) |`t ( u X. { 0 } ) ) Cn C ) = ( ( ( II |`t u ) tX ( II |`t { 0 } ) ) Cn C ) |
| 225 |
219 224
|
eleqtrrdi |
|- ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> ( b e. u , w e. { 0 } |-> ( H ` b ) ) e. ( ( ( II tX II ) |`t ( u X. { 0 } ) ) Cn C ) ) |
| 226 |
209 225
|
eqeltrd |
|- ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> ( K |` ( u X. { 0 } ) ) e. ( ( ( II tX II ) |`t ( u X. { 0 } ) ) Cn C ) ) |
| 227 |
|
sneq |
|- ( w = 0 -> { w } = { 0 } ) |
| 228 |
227
|
xpeq2d |
|- ( w = 0 -> ( u X. { w } ) = ( u X. { 0 } ) ) |
| 229 |
228
|
reseq2d |
|- ( w = 0 -> ( K |` ( u X. { w } ) ) = ( K |` ( u X. { 0 } ) ) ) |
| 230 |
228
|
oveq2d |
|- ( w = 0 -> ( ( II tX II ) |`t ( u X. { w } ) ) = ( ( II tX II ) |`t ( u X. { 0 } ) ) ) |
| 231 |
230
|
oveq1d |
|- ( w = 0 -> ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) = ( ( ( II tX II ) |`t ( u X. { 0 } ) ) Cn C ) ) |
| 232 |
229 231
|
eleq12d |
|- ( w = 0 -> ( ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) <-> ( K |` ( u X. { 0 } ) ) e. ( ( ( II tX II ) |`t ( u X. { 0 } ) ) Cn C ) ) ) |
| 233 |
232
|
rspcev |
|- ( ( 0 e. v /\ ( K |` ( u X. { 0 } ) ) e. ( ( ( II tX II ) |`t ( u X. { 0 } ) ) Cn C ) ) -> E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) ) |
| 234 |
184 226 233
|
syl2anc |
|- ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) ) |
| 235 |
|
opelxpi |
|- ( ( r e. u /\ 0 e. v ) -> <. r , 0 >. e. ( u X. v ) ) |
| 236 |
235
|
adantl |
|- ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> <. r , 0 >. e. ( u X. v ) ) |
| 237 |
|
simplrr |
|- ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> v e. II ) |
| 238 |
237 145
|
syl |
|- ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> v C_ ( 0 [,] 1 ) ) |
| 239 |
|
xpss12 |
|- ( ( u C_ ( 0 [,] 1 ) /\ v C_ ( 0 [,] 1 ) ) -> ( u X. v ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) |
| 240 |
193 238 239
|
syl2anc |
|- ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> ( u X. v ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) |
| 241 |
38
|
restuni |
|- ( ( ( II tX II ) e. Top /\ ( u X. v ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) -> ( u X. v ) = U. ( ( II tX II ) |`t ( u X. v ) ) ) |
| 242 |
24 240 241
|
sylancr |
|- ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> ( u X. v ) = U. ( ( II tX II ) |`t ( u X. v ) ) ) |
| 243 |
236 242
|
eleqtrd |
|- ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> <. r , 0 >. e. U. ( ( II tX II ) |`t ( u X. v ) ) ) |
| 244 |
|
eqid |
|- U. ( ( II tX II ) |`t ( u X. v ) ) = U. ( ( II tX II ) |`t ( u X. v ) ) |
| 245 |
244
|
cncnpi |
|- ( ( ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) /\ <. r , 0 >. e. U. ( ( II tX II ) |`t ( u X. v ) ) ) -> ( K |` ( u X. v ) ) e. ( ( ( ( II tX II ) |`t ( u X. v ) ) CnP C ) ` <. r , 0 >. ) ) |
| 246 |
245
|
expcom |
|- ( <. r , 0 >. e. U. ( ( II tX II ) |`t ( u X. v ) ) -> ( ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( ( II tX II ) |`t ( u X. v ) ) CnP C ) ` <. r , 0 >. ) ) ) |
| 247 |
243 246
|
syl |
|- ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> ( ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( ( II tX II ) |`t ( u X. v ) ) CnP C ) ` <. r , 0 >. ) ) ) |
| 248 |
24
|
a1i |
|- ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> ( II tX II ) e. Top ) |
| 249 |
22
|
a1i |
|- ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> II e. Top ) |
| 250 |
249 249 190 237 55
|
syl22anc |
|- ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> ( u X. v ) e. ( II tX II ) ) |
| 251 |
|
isopn3i |
|- ( ( ( II tX II ) e. Top /\ ( u X. v ) e. ( II tX II ) ) -> ( ( int ` ( II tX II ) ) ` ( u X. v ) ) = ( u X. v ) ) |
| 252 |
24 250 251
|
sylancr |
|- ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> ( ( int ` ( II tX II ) ) ` ( u X. v ) ) = ( u X. v ) ) |
| 253 |
236 252
|
eleqtrrd |
|- ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> <. r , 0 >. e. ( ( int ` ( II tX II ) ) ` ( u X. v ) ) ) |
| 254 |
38 1
|
cnprest |
|- ( ( ( ( II tX II ) e. Top /\ ( u X. v ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) /\ ( <. r , 0 >. e. ( ( int ` ( II tX II ) ) ` ( u X. v ) ) /\ K : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> B ) ) -> ( K e. ( ( ( II tX II ) CnP C ) ` <. r , 0 >. ) <-> ( K |` ( u X. v ) ) e. ( ( ( ( II tX II ) |`t ( u X. v ) ) CnP C ) ` <. r , 0 >. ) ) ) |
| 255 |
248 240 253 185 254
|
syl22anc |
|- ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> ( K e. ( ( ( II tX II ) CnP C ) ` <. r , 0 >. ) <-> ( K |` ( u X. v ) ) e. ( ( ( ( II tX II ) |`t ( u X. v ) ) CnP C ) ` <. r , 0 >. ) ) ) |
| 256 |
247 255
|
sylibrd |
|- ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> ( ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) -> K e. ( ( ( II tX II ) CnP C ) ` <. r , 0 >. ) ) ) |
| 257 |
234 256
|
embantd |
|- ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> ( ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) -> K e. ( ( ( II tX II ) CnP C ) ` <. r , 0 >. ) ) ) |
| 258 |
257
|
expimpd |
|- ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) -> ( ( ( r e. u /\ 0 e. v ) /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) -> K e. ( ( ( II tX II ) CnP C ) ` <. r , 0 >. ) ) ) |
| 259 |
183 258
|
biimtrid |
|- ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) -> ( ( r e. u /\ 0 e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) -> K e. ( ( ( II tX II ) CnP C ) ` <. r , 0 >. ) ) ) |
| 260 |
259
|
rexlimdvva |
|- ( ( ph /\ r e. ( 0 [,] 1 ) ) -> ( E. u e. II E. v e. II ( r e. u /\ 0 e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) -> K e. ( ( ( II tX II ) CnP C ) ` <. r , 0 >. ) ) ) |
| 261 |
182 260
|
mpd |
|- ( ( ph /\ r e. ( 0 [,] 1 ) ) -> K e. ( ( ( II tX II ) CnP C ) ` <. r , 0 >. ) ) |
| 262 |
|
fveq2 |
|- ( z = <. r , 0 >. -> ( ( ( II tX II ) CnP C ) ` z ) = ( ( ( II tX II ) CnP C ) ` <. r , 0 >. ) ) |
| 263 |
262
|
eleq2d |
|- ( z = <. r , 0 >. -> ( K e. ( ( ( II tX II ) CnP C ) ` z ) <-> K e. ( ( ( II tX II ) CnP C ) ` <. r , 0 >. ) ) ) |
| 264 |
263 8
|
elrab2 |
|- ( <. r , 0 >. e. M <-> ( <. r , 0 >. e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) /\ K e. ( ( ( II tX II ) CnP C ) ` <. r , 0 >. ) ) ) |
| 265 |
175 261 264
|
sylanbrc |
|- ( ( ph /\ r e. ( 0 [,] 1 ) ) -> <. r , 0 >. e. M ) |
| 266 |
|
elsni |
|- ( a e. { 0 } -> a = 0 ) |
| 267 |
266
|
opeq2d |
|- ( a e. { 0 } -> <. r , a >. = <. r , 0 >. ) |
| 268 |
267
|
eleq1d |
|- ( a e. { 0 } -> ( <. r , a >. e. M <-> <. r , 0 >. e. M ) ) |
| 269 |
265 268
|
syl5ibrcom |
|- ( ( ph /\ r e. ( 0 [,] 1 ) ) -> ( a e. { 0 } -> <. r , a >. e. M ) ) |
| 270 |
269
|
expimpd |
|- ( ph -> ( ( r e. ( 0 [,] 1 ) /\ a e. { 0 } ) -> <. r , a >. e. M ) ) |
| 271 |
172 270
|
biimtrid |
|- ( ph -> ( <. r , a >. e. ( ( 0 [,] 1 ) X. { 0 } ) -> <. r , a >. e. M ) ) |
| 272 |
171 271
|
relssdv |
|- ( ph -> ( ( 0 [,] 1 ) X. { 0 } ) C_ M ) |
| 273 |
|
sneq |
|- ( a = 0 -> { a } = { 0 } ) |
| 274 |
273
|
xpeq2d |
|- ( a = 0 -> ( ( 0 [,] 1 ) X. { a } ) = ( ( 0 [,] 1 ) X. { 0 } ) ) |
| 275 |
274
|
sseq1d |
|- ( a = 0 -> ( ( ( 0 [,] 1 ) X. { a } ) C_ M <-> ( ( 0 [,] 1 ) X. { 0 } ) C_ M ) ) |
| 276 |
275 9
|
elrab2 |
|- ( 0 e. A <-> ( 0 e. ( 0 [,] 1 ) /\ ( ( 0 [,] 1 ) X. { 0 } ) C_ M ) ) |
| 277 |
169 272 276
|
sylanbrc |
|- ( ph -> 0 e. A ) |
| 278 |
277
|
ne0d |
|- ( ph -> A =/= (/) ) |
| 279 |
|
inss2 |
|- ( II i^i ( Clsd ` II ) ) C_ ( Clsd ` II ) |
| 280 |
279 166
|
sselid |
|- ( ph -> A e. ( Clsd ` II ) ) |
| 281 |
16 18 167 278 280
|
connclo |
|- ( ph -> A = ( 0 [,] 1 ) ) |
| 282 |
281 9
|
eqtr3di |
|- ( ph -> ( 0 [,] 1 ) = { a e. ( 0 [,] 1 ) | ( ( 0 [,] 1 ) X. { a } ) C_ M } ) |
| 283 |
|
rabid2 |
|- ( ( 0 [,] 1 ) = { a e. ( 0 [,] 1 ) | ( ( 0 [,] 1 ) X. { a } ) C_ M } <-> A. a e. ( 0 [,] 1 ) ( ( 0 [,] 1 ) X. { a } ) C_ M ) |
| 284 |
282 283
|
sylib |
|- ( ph -> A. a e. ( 0 [,] 1 ) ( ( 0 [,] 1 ) X. { a } ) C_ M ) |
| 285 |
|
iunss |
|- ( U_ a e. ( 0 [,] 1 ) ( ( 0 [,] 1 ) X. { a } ) C_ M <-> A. a e. ( 0 [,] 1 ) ( ( 0 [,] 1 ) X. { a } ) C_ M ) |
| 286 |
284 285
|
sylibr |
|- ( ph -> U_ a e. ( 0 [,] 1 ) ( ( 0 [,] 1 ) X. { a } ) C_ M ) |
| 287 |
15 286
|
eqsstrid |
|- ( ph -> ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) C_ M ) |
| 288 |
287 8
|
sseqtrdi |
|- ( ph -> ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) C_ { z e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` z ) } ) |
| 289 |
|
ssrab |
|- ( ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) C_ { z e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` z ) } <-> ( ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) /\ A. z e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) K e. ( ( ( II tX II ) CnP C ) ` z ) ) ) |
| 290 |
289
|
simprbi |
|- ( ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) C_ { z e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` z ) } -> A. z e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) K e. ( ( ( II tX II ) CnP C ) ` z ) ) |
| 291 |
288 290
|
syl |
|- ( ph -> A. z e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) K e. ( ( ( II tX II ) CnP C ) ` z ) ) |
| 292 |
|
txtopon |
|- ( ( II e. ( TopOn ` ( 0 [,] 1 ) ) /\ II e. ( TopOn ` ( 0 [,] 1 ) ) ) -> ( II tX II ) e. ( TopOn ` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) |
| 293 |
211 211 292
|
mp2an |
|- ( II tX II ) e. ( TopOn ` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) |
| 294 |
|
cvmtop1 |
|- ( F e. ( C CovMap J ) -> C e. Top ) |
| 295 |
2 294
|
syl |
|- ( ph -> C e. Top ) |
| 296 |
1
|
toptopon |
|- ( C e. Top <-> C e. ( TopOn ` B ) ) |
| 297 |
295 296
|
sylib |
|- ( ph -> C e. ( TopOn ` B ) ) |
| 298 |
|
cncnp |
|- ( ( ( II tX II ) e. ( TopOn ` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) /\ C e. ( TopOn ` B ) ) -> ( K e. ( ( II tX II ) Cn C ) <-> ( K : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> B /\ A. z e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) K e. ( ( ( II tX II ) CnP C ) ` z ) ) ) ) |
| 299 |
293 297 298
|
sylancr |
|- ( ph -> ( K e. ( ( II tX II ) Cn C ) <-> ( K : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> B /\ A. z e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) K e. ( ( ( II tX II ) CnP C ) ` z ) ) ) ) |
| 300 |
11 291 299
|
mpbir2and |
|- ( ph -> K e. ( ( II tX II ) Cn C ) ) |