| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmlift2.b |  |-  B = U. C | 
						
							| 2 |  | cvmlift2.f |  |-  ( ph -> F e. ( C CovMap J ) ) | 
						
							| 3 |  | cvmlift2.g |  |-  ( ph -> G e. ( ( II tX II ) Cn J ) ) | 
						
							| 4 |  | cvmlift2.p |  |-  ( ph -> P e. B ) | 
						
							| 5 |  | cvmlift2.i |  |-  ( ph -> ( F ` P ) = ( 0 G 0 ) ) | 
						
							| 6 |  | cvmlift2.h |  |-  H = ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) /\ ( f ` 0 ) = P ) ) | 
						
							| 7 |  | cvmlift2.k |  |-  K = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` y ) ) | 
						
							| 8 |  | cvmlift2.m |  |-  M = { z e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` z ) } | 
						
							| 9 |  | cvmlift2.a |  |-  A = { a e. ( 0 [,] 1 ) | ( ( 0 [,] 1 ) X. { a } ) C_ M } | 
						
							| 10 |  | cvmlift2.s |  |-  S = { <. r , t >. | ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) } | 
						
							| 11 | 1 2 3 4 5 6 7 | cvmlift2lem5 |  |-  ( ph -> K : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> B ) | 
						
							| 12 |  | iunid |  |-  U_ a e. ( 0 [,] 1 ) { a } = ( 0 [,] 1 ) | 
						
							| 13 | 12 | xpeq2i |  |-  ( ( 0 [,] 1 ) X. U_ a e. ( 0 [,] 1 ) { a } ) = ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | 
						
							| 14 |  | xpiundi |  |-  ( ( 0 [,] 1 ) X. U_ a e. ( 0 [,] 1 ) { a } ) = U_ a e. ( 0 [,] 1 ) ( ( 0 [,] 1 ) X. { a } ) | 
						
							| 15 | 13 14 | eqtr3i |  |-  ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) = U_ a e. ( 0 [,] 1 ) ( ( 0 [,] 1 ) X. { a } ) | 
						
							| 16 |  | iiuni |  |-  ( 0 [,] 1 ) = U. II | 
						
							| 17 |  | iiconn |  |-  II e. Conn | 
						
							| 18 | 17 | a1i |  |-  ( ph -> II e. Conn ) | 
						
							| 19 |  | inss1 |  |-  ( II i^i ( Clsd ` II ) ) C_ II | 
						
							| 20 |  | iicmp |  |-  II e. Comp | 
						
							| 21 | 20 | a1i |  |-  ( ( ph /\ a e. ( 0 [,] 1 ) ) -> II e. Comp ) | 
						
							| 22 |  | iitop |  |-  II e. Top | 
						
							| 23 | 22 | a1i |  |-  ( ( ph /\ a e. ( 0 [,] 1 ) ) -> II e. Top ) | 
						
							| 24 | 22 22 | txtopi |  |-  ( II tX II ) e. Top | 
						
							| 25 | 16 | neiss2 |  |-  ( ( II e. Top /\ u e. ( ( nei ` II ) ` { r } ) ) -> { r } C_ ( 0 [,] 1 ) ) | 
						
							| 26 | 22 25 | mpan |  |-  ( u e. ( ( nei ` II ) ` { r } ) -> { r } C_ ( 0 [,] 1 ) ) | 
						
							| 27 |  | vex |  |-  r e. _V | 
						
							| 28 | 27 | snss |  |-  ( r e. ( 0 [,] 1 ) <-> { r } C_ ( 0 [,] 1 ) ) | 
						
							| 29 | 26 28 | sylibr |  |-  ( u e. ( ( nei ` II ) ` { r } ) -> r e. ( 0 [,] 1 ) ) | 
						
							| 30 | 29 | a1d |  |-  ( u e. ( ( nei ` II ) ` { r } ) -> ( ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) -> r e. ( 0 [,] 1 ) ) ) | 
						
							| 31 | 30 | rexlimiv |  |-  ( E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) -> r e. ( 0 [,] 1 ) ) | 
						
							| 32 | 31 | adantl |  |-  ( ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) -> r e. ( 0 [,] 1 ) ) | 
						
							| 33 |  | simpl |  |-  ( ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) -> t e. ( 0 [,] 1 ) ) | 
						
							| 34 | 32 33 | jca |  |-  ( ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) -> ( r e. ( 0 [,] 1 ) /\ t e. ( 0 [,] 1 ) ) ) | 
						
							| 35 | 34 | ssopab2i |  |-  { <. r , t >. | ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) } C_ { <. r , t >. | ( r e. ( 0 [,] 1 ) /\ t e. ( 0 [,] 1 ) ) } | 
						
							| 36 |  | df-xp |  |-  ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) = { <. r , t >. | ( r e. ( 0 [,] 1 ) /\ t e. ( 0 [,] 1 ) ) } | 
						
							| 37 | 35 10 36 | 3sstr4i |  |-  S C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | 
						
							| 38 | 22 22 16 16 | txunii |  |-  ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) = U. ( II tX II ) | 
						
							| 39 | 38 | ntropn |  |-  ( ( ( II tX II ) e. Top /\ S C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) -> ( ( int ` ( II tX II ) ) ` S ) e. ( II tX II ) ) | 
						
							| 40 | 24 37 39 | mp2an |  |-  ( ( int ` ( II tX II ) ) ` S ) e. ( II tX II ) | 
						
							| 41 | 40 | a1i |  |-  ( ( ph /\ a e. ( 0 [,] 1 ) ) -> ( ( int ` ( II tX II ) ) ` S ) e. ( II tX II ) ) | 
						
							| 42 | 2 | adantr |  |-  ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) -> F e. ( C CovMap J ) ) | 
						
							| 43 | 3 | adantr |  |-  ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) -> G e. ( ( II tX II ) Cn J ) ) | 
						
							| 44 | 4 | adantr |  |-  ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) -> P e. B ) | 
						
							| 45 | 5 | adantr |  |-  ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) -> ( F ` P ) = ( 0 G 0 ) ) | 
						
							| 46 |  | eqid |  |-  ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. c e. s ( A. d e. ( s \ { c } ) ( c i^i d ) = (/) /\ ( F |` c ) e. ( ( C |`t c ) Homeo ( J |`t k ) ) ) ) } ) = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. c e. s ( A. d e. ( s \ { c } ) ( c i^i d ) = (/) /\ ( F |` c ) e. ( ( C |`t c ) Homeo ( J |`t k ) ) ) ) } ) | 
						
							| 47 |  | simprr |  |-  ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) -> b e. ( 0 [,] 1 ) ) | 
						
							| 48 |  | simprl |  |-  ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) -> a e. ( 0 [,] 1 ) ) | 
						
							| 49 | 1 42 43 44 45 6 7 46 47 48 | cvmlift2lem10 |  |-  ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) -> E. u e. II E. v e. II ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) | 
						
							| 50 | 24 | a1i |  |-  ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) -> ( II tX II ) e. Top ) | 
						
							| 51 | 37 | a1i |  |-  ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) -> S C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 52 | 22 | a1i |  |-  ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) -> II e. Top ) | 
						
							| 53 |  | simplrl |  |-  ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) -> u e. II ) | 
						
							| 54 |  | simplrr |  |-  ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) -> v e. II ) | 
						
							| 55 |  | txopn |  |-  ( ( ( II e. Top /\ II e. Top ) /\ ( u e. II /\ v e. II ) ) -> ( u X. v ) e. ( II tX II ) ) | 
						
							| 56 | 52 52 53 54 55 | syl22anc |  |-  ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) -> ( u X. v ) e. ( II tX II ) ) | 
						
							| 57 |  | simpr |  |-  ( ( r e. u /\ t e. v ) -> t e. v ) | 
						
							| 58 |  | elunii |  |-  ( ( t e. v /\ v e. II ) -> t e. U. II ) | 
						
							| 59 | 58 16 | eleqtrrdi |  |-  ( ( t e. v /\ v e. II ) -> t e. ( 0 [,] 1 ) ) | 
						
							| 60 | 57 54 59 | syl2anr |  |-  ( ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) /\ ( r e. u /\ t e. v ) ) -> t e. ( 0 [,] 1 ) ) | 
						
							| 61 | 22 | a1i |  |-  ( ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) /\ ( r e. u /\ t e. v ) ) -> II e. Top ) | 
						
							| 62 | 53 | adantr |  |-  ( ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) /\ ( r e. u /\ t e. v ) ) -> u e. II ) | 
						
							| 63 |  | simprl |  |-  ( ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) /\ ( r e. u /\ t e. v ) ) -> r e. u ) | 
						
							| 64 |  | opnneip |  |-  ( ( II e. Top /\ u e. II /\ r e. u ) -> u e. ( ( nei ` II ) ` { r } ) ) | 
						
							| 65 | 61 62 63 64 | syl3anc |  |-  ( ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) /\ ( r e. u /\ t e. v ) ) -> u e. ( ( nei ` II ) ` { r } ) ) | 
						
							| 66 | 42 | ad3antrrr |  |-  ( ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) /\ ( r e. u /\ t e. v ) ) -> F e. ( C CovMap J ) ) | 
						
							| 67 | 43 | ad3antrrr |  |-  ( ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) /\ ( r e. u /\ t e. v ) ) -> G e. ( ( II tX II ) Cn J ) ) | 
						
							| 68 | 44 | ad3antrrr |  |-  ( ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) /\ ( r e. u /\ t e. v ) ) -> P e. B ) | 
						
							| 69 | 45 | ad3antrrr |  |-  ( ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) /\ ( r e. u /\ t e. v ) ) -> ( F ` P ) = ( 0 G 0 ) ) | 
						
							| 70 | 54 | adantr |  |-  ( ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) /\ ( r e. u /\ t e. v ) ) -> v e. II ) | 
						
							| 71 |  | simplr2 |  |-  ( ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) /\ ( r e. u /\ t e. v ) ) -> a e. v ) | 
						
							| 72 |  | simprr |  |-  ( ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) /\ ( r e. u /\ t e. v ) ) -> t e. v ) | 
						
							| 73 |  | sneq |  |-  ( c = w -> { c } = { w } ) | 
						
							| 74 | 73 | xpeq2d |  |-  ( c = w -> ( u X. { c } ) = ( u X. { w } ) ) | 
						
							| 75 | 74 | reseq2d |  |-  ( c = w -> ( K |` ( u X. { c } ) ) = ( K |` ( u X. { w } ) ) ) | 
						
							| 76 | 74 | oveq2d |  |-  ( c = w -> ( ( II tX II ) |`t ( u X. { c } ) ) = ( ( II tX II ) |`t ( u X. { w } ) ) ) | 
						
							| 77 | 76 | oveq1d |  |-  ( c = w -> ( ( ( II tX II ) |`t ( u X. { c } ) ) Cn C ) = ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) ) | 
						
							| 78 | 75 77 | eleq12d |  |-  ( c = w -> ( ( K |` ( u X. { c } ) ) e. ( ( ( II tX II ) |`t ( u X. { c } ) ) Cn C ) <-> ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) ) ) | 
						
							| 79 | 78 | cbvrexvw |  |-  ( E. c e. v ( K |` ( u X. { c } ) ) e. ( ( ( II tX II ) |`t ( u X. { c } ) ) Cn C ) <-> E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) ) | 
						
							| 80 |  | simplr3 |  |-  ( ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) /\ ( r e. u /\ t e. v ) ) -> ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) | 
						
							| 81 | 79 80 | biimtrid |  |-  ( ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) /\ ( r e. u /\ t e. v ) ) -> ( E. c e. v ( K |` ( u X. { c } ) ) e. ( ( ( II tX II ) |`t ( u X. { c } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) | 
						
							| 82 | 1 66 67 68 69 6 7 8 62 70 71 72 81 | cvmlift2lem11 |  |-  ( ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) /\ ( r e. u /\ t e. v ) ) -> ( ( u X. { a } ) C_ M -> ( u X. { t } ) C_ M ) ) | 
						
							| 83 | 1 66 67 68 69 6 7 8 62 70 72 71 81 | cvmlift2lem11 |  |-  ( ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) /\ ( r e. u /\ t e. v ) ) -> ( ( u X. { t } ) C_ M -> ( u X. { a } ) C_ M ) ) | 
						
							| 84 | 82 83 | impbid |  |-  ( ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) /\ ( r e. u /\ t e. v ) ) -> ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) | 
						
							| 85 |  | rspe |  |-  ( ( u e. ( ( nei ` II ) ` { r } ) /\ ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) -> E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) | 
						
							| 86 | 65 84 85 | syl2anc |  |-  ( ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) /\ ( r e. u /\ t e. v ) ) -> E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) | 
						
							| 87 | 60 86 | jca |  |-  ( ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) /\ ( r e. u /\ t e. v ) ) -> ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) ) | 
						
							| 88 | 87 | ex |  |-  ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) -> ( ( r e. u /\ t e. v ) -> ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) ) ) | 
						
							| 89 | 88 | alrimivv |  |-  ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) -> A. r A. t ( ( r e. u /\ t e. v ) -> ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) ) ) | 
						
							| 90 |  | df-xp |  |-  ( u X. v ) = { <. r , t >. | ( r e. u /\ t e. v ) } | 
						
							| 91 | 90 10 | sseq12i |  |-  ( ( u X. v ) C_ S <-> { <. r , t >. | ( r e. u /\ t e. v ) } C_ { <. r , t >. | ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) } ) | 
						
							| 92 |  | ssopab2bw |  |-  ( { <. r , t >. | ( r e. u /\ t e. v ) } C_ { <. r , t >. | ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) } <-> A. r A. t ( ( r e. u /\ t e. v ) -> ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) ) ) | 
						
							| 93 | 91 92 | bitri |  |-  ( ( u X. v ) C_ S <-> A. r A. t ( ( r e. u /\ t e. v ) -> ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) ) ) | 
						
							| 94 | 89 93 | sylibr |  |-  ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) -> ( u X. v ) C_ S ) | 
						
							| 95 | 38 | ssntr |  |-  ( ( ( ( II tX II ) e. Top /\ S C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) /\ ( ( u X. v ) e. ( II tX II ) /\ ( u X. v ) C_ S ) ) -> ( u X. v ) C_ ( ( int ` ( II tX II ) ) ` S ) ) | 
						
							| 96 | 50 51 56 94 95 | syl22anc |  |-  ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) -> ( u X. v ) C_ ( ( int ` ( II tX II ) ) ` S ) ) | 
						
							| 97 |  | simpr1 |  |-  ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) -> b e. u ) | 
						
							| 98 |  | simpr2 |  |-  ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) -> a e. v ) | 
						
							| 99 |  | opelxpi |  |-  ( ( b e. u /\ a e. v ) -> <. b , a >. e. ( u X. v ) ) | 
						
							| 100 | 97 98 99 | syl2anc |  |-  ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) -> <. b , a >. e. ( u X. v ) ) | 
						
							| 101 | 96 100 | sseldd |  |-  ( ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) /\ ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) -> <. b , a >. e. ( ( int ` ( II tX II ) ) ` S ) ) | 
						
							| 102 | 101 | ex |  |-  ( ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) /\ ( u e. II /\ v e. II ) ) -> ( ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) -> <. b , a >. e. ( ( int ` ( II tX II ) ) ` S ) ) ) | 
						
							| 103 | 102 | rexlimdvva |  |-  ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) -> ( E. u e. II E. v e. II ( b e. u /\ a e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) -> <. b , a >. e. ( ( int ` ( II tX II ) ) ` S ) ) ) | 
						
							| 104 | 49 103 | mpd |  |-  ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) -> <. b , a >. e. ( ( int ` ( II tX II ) ) ` S ) ) | 
						
							| 105 |  | vex |  |-  a e. _V | 
						
							| 106 |  | opeq2 |  |-  ( w = a -> <. b , w >. = <. b , a >. ) | 
						
							| 107 | 106 | eleq1d |  |-  ( w = a -> ( <. b , w >. e. ( ( int ` ( II tX II ) ) ` S ) <-> <. b , a >. e. ( ( int ` ( II tX II ) ) ` S ) ) ) | 
						
							| 108 | 105 107 | ralsn |  |-  ( A. w e. { a } <. b , w >. e. ( ( int ` ( II tX II ) ) ` S ) <-> <. b , a >. e. ( ( int ` ( II tX II ) ) ` S ) ) | 
						
							| 109 | 104 108 | sylibr |  |-  ( ( ph /\ ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) ) -> A. w e. { a } <. b , w >. e. ( ( int ` ( II tX II ) ) ` S ) ) | 
						
							| 110 | 109 | anassrs |  |-  ( ( ( ph /\ a e. ( 0 [,] 1 ) ) /\ b e. ( 0 [,] 1 ) ) -> A. w e. { a } <. b , w >. e. ( ( int ` ( II tX II ) ) ` S ) ) | 
						
							| 111 | 110 | ralrimiva |  |-  ( ( ph /\ a e. ( 0 [,] 1 ) ) -> A. b e. ( 0 [,] 1 ) A. w e. { a } <. b , w >. e. ( ( int ` ( II tX II ) ) ` S ) ) | 
						
							| 112 |  | dfss3 |  |-  ( ( ( 0 [,] 1 ) X. { a } ) C_ ( ( int ` ( II tX II ) ) ` S ) <-> A. u e. ( ( 0 [,] 1 ) X. { a } ) u e. ( ( int ` ( II tX II ) ) ` S ) ) | 
						
							| 113 |  | eleq1 |  |-  ( u = <. b , w >. -> ( u e. ( ( int ` ( II tX II ) ) ` S ) <-> <. b , w >. e. ( ( int ` ( II tX II ) ) ` S ) ) ) | 
						
							| 114 | 113 | ralxp |  |-  ( A. u e. ( ( 0 [,] 1 ) X. { a } ) u e. ( ( int ` ( II tX II ) ) ` S ) <-> A. b e. ( 0 [,] 1 ) A. w e. { a } <. b , w >. e. ( ( int ` ( II tX II ) ) ` S ) ) | 
						
							| 115 | 112 114 | bitri |  |-  ( ( ( 0 [,] 1 ) X. { a } ) C_ ( ( int ` ( II tX II ) ) ` S ) <-> A. b e. ( 0 [,] 1 ) A. w e. { a } <. b , w >. e. ( ( int ` ( II tX II ) ) ` S ) ) | 
						
							| 116 | 111 115 | sylibr |  |-  ( ( ph /\ a e. ( 0 [,] 1 ) ) -> ( ( 0 [,] 1 ) X. { a } ) C_ ( ( int ` ( II tX II ) ) ` S ) ) | 
						
							| 117 |  | simpr |  |-  ( ( ph /\ a e. ( 0 [,] 1 ) ) -> a e. ( 0 [,] 1 ) ) | 
						
							| 118 | 16 16 21 23 41 116 117 | txtube |  |-  ( ( ph /\ a e. ( 0 [,] 1 ) ) -> E. v e. II ( a e. v /\ ( ( 0 [,] 1 ) X. v ) C_ ( ( int ` ( II tX II ) ) ` S ) ) ) | 
						
							| 119 | 38 | ntrss2 |  |-  ( ( ( II tX II ) e. Top /\ S C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) -> ( ( int ` ( II tX II ) ) ` S ) C_ S ) | 
						
							| 120 | 24 37 119 | mp2an |  |-  ( ( int ` ( II tX II ) ) ` S ) C_ S | 
						
							| 121 |  | sstr |  |-  ( ( ( ( 0 [,] 1 ) X. v ) C_ ( ( int ` ( II tX II ) ) ` S ) /\ ( ( int ` ( II tX II ) ) ` S ) C_ S ) -> ( ( 0 [,] 1 ) X. v ) C_ S ) | 
						
							| 122 | 120 121 | mpan2 |  |-  ( ( ( 0 [,] 1 ) X. v ) C_ ( ( int ` ( II tX II ) ) ` S ) -> ( ( 0 [,] 1 ) X. v ) C_ S ) | 
						
							| 123 |  | df-xp |  |-  ( ( 0 [,] 1 ) X. v ) = { <. r , t >. | ( r e. ( 0 [,] 1 ) /\ t e. v ) } | 
						
							| 124 | 123 10 | sseq12i |  |-  ( ( ( 0 [,] 1 ) X. v ) C_ S <-> { <. r , t >. | ( r e. ( 0 [,] 1 ) /\ t e. v ) } C_ { <. r , t >. | ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) } ) | 
						
							| 125 |  | ssopab2bw |  |-  ( { <. r , t >. | ( r e. ( 0 [,] 1 ) /\ t e. v ) } C_ { <. r , t >. | ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) } <-> A. r A. t ( ( r e. ( 0 [,] 1 ) /\ t e. v ) -> ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) ) ) | 
						
							| 126 |  | r2al |  |-  ( A. r e. ( 0 [,] 1 ) A. t e. v ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) <-> A. r A. t ( ( r e. ( 0 [,] 1 ) /\ t e. v ) -> ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) ) ) | 
						
							| 127 |  | ralcom |  |-  ( A. r e. ( 0 [,] 1 ) A. t e. v ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) <-> A. t e. v A. r e. ( 0 [,] 1 ) ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) ) | 
						
							| 128 | 125 126 127 | 3bitr2i |  |-  ( { <. r , t >. | ( r e. ( 0 [,] 1 ) /\ t e. v ) } C_ { <. r , t >. | ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) } <-> A. t e. v A. r e. ( 0 [,] 1 ) ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) ) | 
						
							| 129 | 124 128 | bitri |  |-  ( ( ( 0 [,] 1 ) X. v ) C_ S <-> A. t e. v A. r e. ( 0 [,] 1 ) ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) ) | 
						
							| 130 | 122 129 | sylib |  |-  ( ( ( 0 [,] 1 ) X. v ) C_ ( ( int ` ( II tX II ) ) ` S ) -> A. t e. v A. r e. ( 0 [,] 1 ) ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) ) | 
						
							| 131 |  | simpr |  |-  ( ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) -> E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) | 
						
							| 132 | 131 | ralimi |  |-  ( A. r e. ( 0 [,] 1 ) ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) -> A. r e. ( 0 [,] 1 ) E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) | 
						
							| 133 |  | cvmlift2lem1 |  |-  ( A. r e. ( 0 [,] 1 ) E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) -> ( ( ( 0 [,] 1 ) X. { a } ) C_ M -> ( ( 0 [,] 1 ) X. { t } ) C_ M ) ) | 
						
							| 134 |  | bicom |  |-  ( ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) <-> ( ( u X. { t } ) C_ M <-> ( u X. { a } ) C_ M ) ) | 
						
							| 135 | 134 | rexbii |  |-  ( E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) <-> E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { t } ) C_ M <-> ( u X. { a } ) C_ M ) ) | 
						
							| 136 | 135 | ralbii |  |-  ( A. r e. ( 0 [,] 1 ) E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) <-> A. r e. ( 0 [,] 1 ) E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { t } ) C_ M <-> ( u X. { a } ) C_ M ) ) | 
						
							| 137 |  | cvmlift2lem1 |  |-  ( A. r e. ( 0 [,] 1 ) E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { t } ) C_ M <-> ( u X. { a } ) C_ M ) -> ( ( ( 0 [,] 1 ) X. { t } ) C_ M -> ( ( 0 [,] 1 ) X. { a } ) C_ M ) ) | 
						
							| 138 | 136 137 | sylbi |  |-  ( A. r e. ( 0 [,] 1 ) E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) -> ( ( ( 0 [,] 1 ) X. { t } ) C_ M -> ( ( 0 [,] 1 ) X. { a } ) C_ M ) ) | 
						
							| 139 | 133 138 | impbid |  |-  ( A. r e. ( 0 [,] 1 ) E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) -> ( ( ( 0 [,] 1 ) X. { a } ) C_ M <-> ( ( 0 [,] 1 ) X. { t } ) C_ M ) ) | 
						
							| 140 | 132 139 | syl |  |-  ( A. r e. ( 0 [,] 1 ) ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) -> ( ( ( 0 [,] 1 ) X. { a } ) C_ M <-> ( ( 0 [,] 1 ) X. { t } ) C_ M ) ) | 
						
							| 141 | 9 | reqabi |  |-  ( a e. A <-> ( a e. ( 0 [,] 1 ) /\ ( ( 0 [,] 1 ) X. { a } ) C_ M ) ) | 
						
							| 142 | 141 | baib |  |-  ( a e. ( 0 [,] 1 ) -> ( a e. A <-> ( ( 0 [,] 1 ) X. { a } ) C_ M ) ) | 
						
							| 143 | 142 | ad3antlr |  |-  ( ( ( ( ph /\ a e. ( 0 [,] 1 ) ) /\ v e. II ) /\ t e. v ) -> ( a e. A <-> ( ( 0 [,] 1 ) X. { a } ) C_ M ) ) | 
						
							| 144 |  | elssuni |  |-  ( v e. II -> v C_ U. II ) | 
						
							| 145 | 144 16 | sseqtrrdi |  |-  ( v e. II -> v C_ ( 0 [,] 1 ) ) | 
						
							| 146 | 145 | adantl |  |-  ( ( ( ph /\ a e. ( 0 [,] 1 ) ) /\ v e. II ) -> v C_ ( 0 [,] 1 ) ) | 
						
							| 147 | 146 | sselda |  |-  ( ( ( ( ph /\ a e. ( 0 [,] 1 ) ) /\ v e. II ) /\ t e. v ) -> t e. ( 0 [,] 1 ) ) | 
						
							| 148 |  | sneq |  |-  ( a = t -> { a } = { t } ) | 
						
							| 149 | 148 | xpeq2d |  |-  ( a = t -> ( ( 0 [,] 1 ) X. { a } ) = ( ( 0 [,] 1 ) X. { t } ) ) | 
						
							| 150 | 149 | sseq1d |  |-  ( a = t -> ( ( ( 0 [,] 1 ) X. { a } ) C_ M <-> ( ( 0 [,] 1 ) X. { t } ) C_ M ) ) | 
						
							| 151 | 150 9 | elrab2 |  |-  ( t e. A <-> ( t e. ( 0 [,] 1 ) /\ ( ( 0 [,] 1 ) X. { t } ) C_ M ) ) | 
						
							| 152 | 151 | baib |  |-  ( t e. ( 0 [,] 1 ) -> ( t e. A <-> ( ( 0 [,] 1 ) X. { t } ) C_ M ) ) | 
						
							| 153 | 147 152 | syl |  |-  ( ( ( ( ph /\ a e. ( 0 [,] 1 ) ) /\ v e. II ) /\ t e. v ) -> ( t e. A <-> ( ( 0 [,] 1 ) X. { t } ) C_ M ) ) | 
						
							| 154 | 143 153 | bibi12d |  |-  ( ( ( ( ph /\ a e. ( 0 [,] 1 ) ) /\ v e. II ) /\ t e. v ) -> ( ( a e. A <-> t e. A ) <-> ( ( ( 0 [,] 1 ) X. { a } ) C_ M <-> ( ( 0 [,] 1 ) X. { t } ) C_ M ) ) ) | 
						
							| 155 | 140 154 | imbitrrid |  |-  ( ( ( ( ph /\ a e. ( 0 [,] 1 ) ) /\ v e. II ) /\ t e. v ) -> ( A. r e. ( 0 [,] 1 ) ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) -> ( a e. A <-> t e. A ) ) ) | 
						
							| 156 | 155 | ralimdva |  |-  ( ( ( ph /\ a e. ( 0 [,] 1 ) ) /\ v e. II ) -> ( A. t e. v A. r e. ( 0 [,] 1 ) ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { a } ) C_ M <-> ( u X. { t } ) C_ M ) ) -> A. t e. v ( a e. A <-> t e. A ) ) ) | 
						
							| 157 | 130 156 | syl5 |  |-  ( ( ( ph /\ a e. ( 0 [,] 1 ) ) /\ v e. II ) -> ( ( ( 0 [,] 1 ) X. v ) C_ ( ( int ` ( II tX II ) ) ` S ) -> A. t e. v ( a e. A <-> t e. A ) ) ) | 
						
							| 158 | 157 | anim2d |  |-  ( ( ( ph /\ a e. ( 0 [,] 1 ) ) /\ v e. II ) -> ( ( a e. v /\ ( ( 0 [,] 1 ) X. v ) C_ ( ( int ` ( II tX II ) ) ` S ) ) -> ( a e. v /\ A. t e. v ( a e. A <-> t e. A ) ) ) ) | 
						
							| 159 | 158 | reximdva |  |-  ( ( ph /\ a e. ( 0 [,] 1 ) ) -> ( E. v e. II ( a e. v /\ ( ( 0 [,] 1 ) X. v ) C_ ( ( int ` ( II tX II ) ) ` S ) ) -> E. v e. II ( a e. v /\ A. t e. v ( a e. A <-> t e. A ) ) ) ) | 
						
							| 160 | 118 159 | mpd |  |-  ( ( ph /\ a e. ( 0 [,] 1 ) ) -> E. v e. II ( a e. v /\ A. t e. v ( a e. A <-> t e. A ) ) ) | 
						
							| 161 | 160 | ralrimiva |  |-  ( ph -> A. a e. ( 0 [,] 1 ) E. v e. II ( a e. v /\ A. t e. v ( a e. A <-> t e. A ) ) ) | 
						
							| 162 |  | ssrab2 |  |-  { a e. ( 0 [,] 1 ) | ( ( 0 [,] 1 ) X. { a } ) C_ M } C_ ( 0 [,] 1 ) | 
						
							| 163 | 9 162 | eqsstri |  |-  A C_ ( 0 [,] 1 ) | 
						
							| 164 | 16 | isclo |  |-  ( ( II e. Top /\ A C_ ( 0 [,] 1 ) ) -> ( A e. ( II i^i ( Clsd ` II ) ) <-> A. a e. ( 0 [,] 1 ) E. v e. II ( a e. v /\ A. t e. v ( a e. A <-> t e. A ) ) ) ) | 
						
							| 165 | 22 163 164 | mp2an |  |-  ( A e. ( II i^i ( Clsd ` II ) ) <-> A. a e. ( 0 [,] 1 ) E. v e. II ( a e. v /\ A. t e. v ( a e. A <-> t e. A ) ) ) | 
						
							| 166 | 161 165 | sylibr |  |-  ( ph -> A e. ( II i^i ( Clsd ` II ) ) ) | 
						
							| 167 | 19 166 | sselid |  |-  ( ph -> A e. II ) | 
						
							| 168 |  | 0elunit |  |-  0 e. ( 0 [,] 1 ) | 
						
							| 169 | 168 | a1i |  |-  ( ph -> 0 e. ( 0 [,] 1 ) ) | 
						
							| 170 |  | relxp |  |-  Rel ( ( 0 [,] 1 ) X. { 0 } ) | 
						
							| 171 | 170 | a1i |  |-  ( ph -> Rel ( ( 0 [,] 1 ) X. { 0 } ) ) | 
						
							| 172 |  | opelxp |  |-  ( <. r , a >. e. ( ( 0 [,] 1 ) X. { 0 } ) <-> ( r e. ( 0 [,] 1 ) /\ a e. { 0 } ) ) | 
						
							| 173 |  | id |  |-  ( r e. ( 0 [,] 1 ) -> r e. ( 0 [,] 1 ) ) | 
						
							| 174 |  | opelxpi |  |-  ( ( r e. ( 0 [,] 1 ) /\ 0 e. ( 0 [,] 1 ) ) -> <. r , 0 >. e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 175 | 173 169 174 | syl2anr |  |-  ( ( ph /\ r e. ( 0 [,] 1 ) ) -> <. r , 0 >. e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 176 | 2 | adantr |  |-  ( ( ph /\ r e. ( 0 [,] 1 ) ) -> F e. ( C CovMap J ) ) | 
						
							| 177 | 3 | adantr |  |-  ( ( ph /\ r e. ( 0 [,] 1 ) ) -> G e. ( ( II tX II ) Cn J ) ) | 
						
							| 178 | 4 | adantr |  |-  ( ( ph /\ r e. ( 0 [,] 1 ) ) -> P e. B ) | 
						
							| 179 | 5 | adantr |  |-  ( ( ph /\ r e. ( 0 [,] 1 ) ) -> ( F ` P ) = ( 0 G 0 ) ) | 
						
							| 180 |  | simpr |  |-  ( ( ph /\ r e. ( 0 [,] 1 ) ) -> r e. ( 0 [,] 1 ) ) | 
						
							| 181 | 168 | a1i |  |-  ( ( ph /\ r e. ( 0 [,] 1 ) ) -> 0 e. ( 0 [,] 1 ) ) | 
						
							| 182 | 1 176 177 178 179 6 7 46 180 181 | cvmlift2lem10 |  |-  ( ( ph /\ r e. ( 0 [,] 1 ) ) -> E. u e. II E. v e. II ( r e. u /\ 0 e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) | 
						
							| 183 |  | df-3an |  |-  ( ( r e. u /\ 0 e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) <-> ( ( r e. u /\ 0 e. v ) /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) ) | 
						
							| 184 |  | simprr |  |-  ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> 0 e. v ) | 
						
							| 185 | 11 | ad3antrrr |  |-  ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> K : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> B ) | 
						
							| 186 | 185 | ffnd |  |-  ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> K Fn ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 187 |  | fnov |  |-  ( K Fn ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) <-> K = ( b e. ( 0 [,] 1 ) , w e. ( 0 [,] 1 ) |-> ( b K w ) ) ) | 
						
							| 188 | 186 187 | sylib |  |-  ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> K = ( b e. ( 0 [,] 1 ) , w e. ( 0 [,] 1 ) |-> ( b K w ) ) ) | 
						
							| 189 | 188 | reseq1d |  |-  ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> ( K |` ( u X. { 0 } ) ) = ( ( b e. ( 0 [,] 1 ) , w e. ( 0 [,] 1 ) |-> ( b K w ) ) |` ( u X. { 0 } ) ) ) | 
						
							| 190 |  | simplrl |  |-  ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> u e. II ) | 
						
							| 191 |  | elssuni |  |-  ( u e. II -> u C_ U. II ) | 
						
							| 192 | 191 16 | sseqtrrdi |  |-  ( u e. II -> u C_ ( 0 [,] 1 ) ) | 
						
							| 193 | 190 192 | syl |  |-  ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> u C_ ( 0 [,] 1 ) ) | 
						
							| 194 | 169 | snssd |  |-  ( ph -> { 0 } C_ ( 0 [,] 1 ) ) | 
						
							| 195 | 194 | ad3antrrr |  |-  ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> { 0 } C_ ( 0 [,] 1 ) ) | 
						
							| 196 |  | resmpo |  |-  ( ( u C_ ( 0 [,] 1 ) /\ { 0 } C_ ( 0 [,] 1 ) ) -> ( ( b e. ( 0 [,] 1 ) , w e. ( 0 [,] 1 ) |-> ( b K w ) ) |` ( u X. { 0 } ) ) = ( b e. u , w e. { 0 } |-> ( b K w ) ) ) | 
						
							| 197 | 193 195 196 | syl2anc |  |-  ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> ( ( b e. ( 0 [,] 1 ) , w e. ( 0 [,] 1 ) |-> ( b K w ) ) |` ( u X. { 0 } ) ) = ( b e. u , w e. { 0 } |-> ( b K w ) ) ) | 
						
							| 198 | 193 | sselda |  |-  ( ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) /\ b e. u ) -> b e. ( 0 [,] 1 ) ) | 
						
							| 199 |  | simplll |  |-  ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> ph ) | 
						
							| 200 | 1 2 3 4 5 6 7 | cvmlift2lem8 |  |-  ( ( ph /\ b e. ( 0 [,] 1 ) ) -> ( b K 0 ) = ( H ` b ) ) | 
						
							| 201 | 199 200 | sylan |  |-  ( ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) /\ b e. ( 0 [,] 1 ) ) -> ( b K 0 ) = ( H ` b ) ) | 
						
							| 202 | 198 201 | syldan |  |-  ( ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) /\ b e. u ) -> ( b K 0 ) = ( H ` b ) ) | 
						
							| 203 |  | elsni |  |-  ( w e. { 0 } -> w = 0 ) | 
						
							| 204 | 203 | oveq2d |  |-  ( w e. { 0 } -> ( b K w ) = ( b K 0 ) ) | 
						
							| 205 | 204 | eqeq1d |  |-  ( w e. { 0 } -> ( ( b K w ) = ( H ` b ) <-> ( b K 0 ) = ( H ` b ) ) ) | 
						
							| 206 | 202 205 | syl5ibrcom |  |-  ( ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) /\ b e. u ) -> ( w e. { 0 } -> ( b K w ) = ( H ` b ) ) ) | 
						
							| 207 | 206 | 3impia |  |-  ( ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) /\ b e. u /\ w e. { 0 } ) -> ( b K w ) = ( H ` b ) ) | 
						
							| 208 | 207 | mpoeq3dva |  |-  ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> ( b e. u , w e. { 0 } |-> ( b K w ) ) = ( b e. u , w e. { 0 } |-> ( H ` b ) ) ) | 
						
							| 209 | 189 197 208 | 3eqtrd |  |-  ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> ( K |` ( u X. { 0 } ) ) = ( b e. u , w e. { 0 } |-> ( H ` b ) ) ) | 
						
							| 210 |  | eqid |  |-  ( II |`t u ) = ( II |`t u ) | 
						
							| 211 |  | iitopon |  |-  II e. ( TopOn ` ( 0 [,] 1 ) ) | 
						
							| 212 | 211 | a1i |  |-  ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) | 
						
							| 213 |  | eqid |  |-  ( II |`t { 0 } ) = ( II |`t { 0 } ) | 
						
							| 214 | 212 212 | cnmpt1st |  |-  ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> ( b e. ( 0 [,] 1 ) , w e. ( 0 [,] 1 ) |-> b ) e. ( ( II tX II ) Cn II ) ) | 
						
							| 215 | 1 2 3 4 5 6 | cvmlift2lem2 |  |-  ( ph -> ( H e. ( II Cn C ) /\ ( F o. H ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) /\ ( H ` 0 ) = P ) ) | 
						
							| 216 | 215 | simp1d |  |-  ( ph -> H e. ( II Cn C ) ) | 
						
							| 217 | 199 216 | syl |  |-  ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> H e. ( II Cn C ) ) | 
						
							| 218 | 212 212 214 217 | cnmpt21f |  |-  ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> ( b e. ( 0 [,] 1 ) , w e. ( 0 [,] 1 ) |-> ( H ` b ) ) e. ( ( II tX II ) Cn C ) ) | 
						
							| 219 | 210 212 193 213 212 195 218 | cnmpt2res |  |-  ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> ( b e. u , w e. { 0 } |-> ( H ` b ) ) e. ( ( ( II |`t u ) tX ( II |`t { 0 } ) ) Cn C ) ) | 
						
							| 220 |  | vex |  |-  u e. _V | 
						
							| 221 |  | snex |  |-  { 0 } e. _V | 
						
							| 222 |  | txrest |  |-  ( ( ( II e. Top /\ II e. Top ) /\ ( u e. _V /\ { 0 } e. _V ) ) -> ( ( II tX II ) |`t ( u X. { 0 } ) ) = ( ( II |`t u ) tX ( II |`t { 0 } ) ) ) | 
						
							| 223 | 22 22 220 221 222 | mp4an |  |-  ( ( II tX II ) |`t ( u X. { 0 } ) ) = ( ( II |`t u ) tX ( II |`t { 0 } ) ) | 
						
							| 224 | 223 | oveq1i |  |-  ( ( ( II tX II ) |`t ( u X. { 0 } ) ) Cn C ) = ( ( ( II |`t u ) tX ( II |`t { 0 } ) ) Cn C ) | 
						
							| 225 | 219 224 | eleqtrrdi |  |-  ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> ( b e. u , w e. { 0 } |-> ( H ` b ) ) e. ( ( ( II tX II ) |`t ( u X. { 0 } ) ) Cn C ) ) | 
						
							| 226 | 209 225 | eqeltrd |  |-  ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> ( K |` ( u X. { 0 } ) ) e. ( ( ( II tX II ) |`t ( u X. { 0 } ) ) Cn C ) ) | 
						
							| 227 |  | sneq |  |-  ( w = 0 -> { w } = { 0 } ) | 
						
							| 228 | 227 | xpeq2d |  |-  ( w = 0 -> ( u X. { w } ) = ( u X. { 0 } ) ) | 
						
							| 229 | 228 | reseq2d |  |-  ( w = 0 -> ( K |` ( u X. { w } ) ) = ( K |` ( u X. { 0 } ) ) ) | 
						
							| 230 | 228 | oveq2d |  |-  ( w = 0 -> ( ( II tX II ) |`t ( u X. { w } ) ) = ( ( II tX II ) |`t ( u X. { 0 } ) ) ) | 
						
							| 231 | 230 | oveq1d |  |-  ( w = 0 -> ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) = ( ( ( II tX II ) |`t ( u X. { 0 } ) ) Cn C ) ) | 
						
							| 232 | 229 231 | eleq12d |  |-  ( w = 0 -> ( ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) <-> ( K |` ( u X. { 0 } ) ) e. ( ( ( II tX II ) |`t ( u X. { 0 } ) ) Cn C ) ) ) | 
						
							| 233 | 232 | rspcev |  |-  ( ( 0 e. v /\ ( K |` ( u X. { 0 } ) ) e. ( ( ( II tX II ) |`t ( u X. { 0 } ) ) Cn C ) ) -> E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) ) | 
						
							| 234 | 184 226 233 | syl2anc |  |-  ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) ) | 
						
							| 235 |  | opelxpi |  |-  ( ( r e. u /\ 0 e. v ) -> <. r , 0 >. e. ( u X. v ) ) | 
						
							| 236 | 235 | adantl |  |-  ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> <. r , 0 >. e. ( u X. v ) ) | 
						
							| 237 |  | simplrr |  |-  ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> v e. II ) | 
						
							| 238 | 237 145 | syl |  |-  ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> v C_ ( 0 [,] 1 ) ) | 
						
							| 239 |  | xpss12 |  |-  ( ( u C_ ( 0 [,] 1 ) /\ v C_ ( 0 [,] 1 ) ) -> ( u X. v ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 240 | 193 238 239 | syl2anc |  |-  ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> ( u X. v ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 241 | 38 | restuni |  |-  ( ( ( II tX II ) e. Top /\ ( u X. v ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) -> ( u X. v ) = U. ( ( II tX II ) |`t ( u X. v ) ) ) | 
						
							| 242 | 24 240 241 | sylancr |  |-  ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> ( u X. v ) = U. ( ( II tX II ) |`t ( u X. v ) ) ) | 
						
							| 243 | 236 242 | eleqtrd |  |-  ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> <. r , 0 >. e. U. ( ( II tX II ) |`t ( u X. v ) ) ) | 
						
							| 244 |  | eqid |  |-  U. ( ( II tX II ) |`t ( u X. v ) ) = U. ( ( II tX II ) |`t ( u X. v ) ) | 
						
							| 245 | 244 | cncnpi |  |-  ( ( ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) /\ <. r , 0 >. e. U. ( ( II tX II ) |`t ( u X. v ) ) ) -> ( K |` ( u X. v ) ) e. ( ( ( ( II tX II ) |`t ( u X. v ) ) CnP C ) ` <. r , 0 >. ) ) | 
						
							| 246 | 245 | expcom |  |-  ( <. r , 0 >. e. U. ( ( II tX II ) |`t ( u X. v ) ) -> ( ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( ( II tX II ) |`t ( u X. v ) ) CnP C ) ` <. r , 0 >. ) ) ) | 
						
							| 247 | 243 246 | syl |  |-  ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> ( ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( ( II tX II ) |`t ( u X. v ) ) CnP C ) ` <. r , 0 >. ) ) ) | 
						
							| 248 | 24 | a1i |  |-  ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> ( II tX II ) e. Top ) | 
						
							| 249 | 22 | a1i |  |-  ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> II e. Top ) | 
						
							| 250 | 249 249 190 237 55 | syl22anc |  |-  ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> ( u X. v ) e. ( II tX II ) ) | 
						
							| 251 |  | isopn3i |  |-  ( ( ( II tX II ) e. Top /\ ( u X. v ) e. ( II tX II ) ) -> ( ( int ` ( II tX II ) ) ` ( u X. v ) ) = ( u X. v ) ) | 
						
							| 252 | 24 250 251 | sylancr |  |-  ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> ( ( int ` ( II tX II ) ) ` ( u X. v ) ) = ( u X. v ) ) | 
						
							| 253 | 236 252 | eleqtrrd |  |-  ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> <. r , 0 >. e. ( ( int ` ( II tX II ) ) ` ( u X. v ) ) ) | 
						
							| 254 | 38 1 | cnprest |  |-  ( ( ( ( II tX II ) e. Top /\ ( u X. v ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) /\ ( <. r , 0 >. e. ( ( int ` ( II tX II ) ) ` ( u X. v ) ) /\ K : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> B ) ) -> ( K e. ( ( ( II tX II ) CnP C ) ` <. r , 0 >. ) <-> ( K |` ( u X. v ) ) e. ( ( ( ( II tX II ) |`t ( u X. v ) ) CnP C ) ` <. r , 0 >. ) ) ) | 
						
							| 255 | 248 240 253 185 254 | syl22anc |  |-  ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> ( K e. ( ( ( II tX II ) CnP C ) ` <. r , 0 >. ) <-> ( K |` ( u X. v ) ) e. ( ( ( ( II tX II ) |`t ( u X. v ) ) CnP C ) ` <. r , 0 >. ) ) ) | 
						
							| 256 | 247 255 | sylibrd |  |-  ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> ( ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) -> K e. ( ( ( II tX II ) CnP C ) ` <. r , 0 >. ) ) ) | 
						
							| 257 | 234 256 | embantd |  |-  ( ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) /\ ( r e. u /\ 0 e. v ) ) -> ( ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) -> K e. ( ( ( II tX II ) CnP C ) ` <. r , 0 >. ) ) ) | 
						
							| 258 | 257 | expimpd |  |-  ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) -> ( ( ( r e. u /\ 0 e. v ) /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) -> K e. ( ( ( II tX II ) CnP C ) ` <. r , 0 >. ) ) ) | 
						
							| 259 | 183 258 | biimtrid |  |-  ( ( ( ph /\ r e. ( 0 [,] 1 ) ) /\ ( u e. II /\ v e. II ) ) -> ( ( r e. u /\ 0 e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) -> K e. ( ( ( II tX II ) CnP C ) ` <. r , 0 >. ) ) ) | 
						
							| 260 | 259 | rexlimdvva |  |-  ( ( ph /\ r e. ( 0 [,] 1 ) ) -> ( E. u e. II E. v e. II ( r e. u /\ 0 e. v /\ ( E. w e. v ( K |` ( u X. { w } ) ) e. ( ( ( II tX II ) |`t ( u X. { w } ) ) Cn C ) -> ( K |` ( u X. v ) ) e. ( ( ( II tX II ) |`t ( u X. v ) ) Cn C ) ) ) -> K e. ( ( ( II tX II ) CnP C ) ` <. r , 0 >. ) ) ) | 
						
							| 261 | 182 260 | mpd |  |-  ( ( ph /\ r e. ( 0 [,] 1 ) ) -> K e. ( ( ( II tX II ) CnP C ) ` <. r , 0 >. ) ) | 
						
							| 262 |  | fveq2 |  |-  ( z = <. r , 0 >. -> ( ( ( II tX II ) CnP C ) ` z ) = ( ( ( II tX II ) CnP C ) ` <. r , 0 >. ) ) | 
						
							| 263 | 262 | eleq2d |  |-  ( z = <. r , 0 >. -> ( K e. ( ( ( II tX II ) CnP C ) ` z ) <-> K e. ( ( ( II tX II ) CnP C ) ` <. r , 0 >. ) ) ) | 
						
							| 264 | 263 8 | elrab2 |  |-  ( <. r , 0 >. e. M <-> ( <. r , 0 >. e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) /\ K e. ( ( ( II tX II ) CnP C ) ` <. r , 0 >. ) ) ) | 
						
							| 265 | 175 261 264 | sylanbrc |  |-  ( ( ph /\ r e. ( 0 [,] 1 ) ) -> <. r , 0 >. e. M ) | 
						
							| 266 |  | elsni |  |-  ( a e. { 0 } -> a = 0 ) | 
						
							| 267 | 266 | opeq2d |  |-  ( a e. { 0 } -> <. r , a >. = <. r , 0 >. ) | 
						
							| 268 | 267 | eleq1d |  |-  ( a e. { 0 } -> ( <. r , a >. e. M <-> <. r , 0 >. e. M ) ) | 
						
							| 269 | 265 268 | syl5ibrcom |  |-  ( ( ph /\ r e. ( 0 [,] 1 ) ) -> ( a e. { 0 } -> <. r , a >. e. M ) ) | 
						
							| 270 | 269 | expimpd |  |-  ( ph -> ( ( r e. ( 0 [,] 1 ) /\ a e. { 0 } ) -> <. r , a >. e. M ) ) | 
						
							| 271 | 172 270 | biimtrid |  |-  ( ph -> ( <. r , a >. e. ( ( 0 [,] 1 ) X. { 0 } ) -> <. r , a >. e. M ) ) | 
						
							| 272 | 171 271 | relssdv |  |-  ( ph -> ( ( 0 [,] 1 ) X. { 0 } ) C_ M ) | 
						
							| 273 |  | sneq |  |-  ( a = 0 -> { a } = { 0 } ) | 
						
							| 274 | 273 | xpeq2d |  |-  ( a = 0 -> ( ( 0 [,] 1 ) X. { a } ) = ( ( 0 [,] 1 ) X. { 0 } ) ) | 
						
							| 275 | 274 | sseq1d |  |-  ( a = 0 -> ( ( ( 0 [,] 1 ) X. { a } ) C_ M <-> ( ( 0 [,] 1 ) X. { 0 } ) C_ M ) ) | 
						
							| 276 | 275 9 | elrab2 |  |-  ( 0 e. A <-> ( 0 e. ( 0 [,] 1 ) /\ ( ( 0 [,] 1 ) X. { 0 } ) C_ M ) ) | 
						
							| 277 | 169 272 276 | sylanbrc |  |-  ( ph -> 0 e. A ) | 
						
							| 278 | 277 | ne0d |  |-  ( ph -> A =/= (/) ) | 
						
							| 279 |  | inss2 |  |-  ( II i^i ( Clsd ` II ) ) C_ ( Clsd ` II ) | 
						
							| 280 | 279 166 | sselid |  |-  ( ph -> A e. ( Clsd ` II ) ) | 
						
							| 281 | 16 18 167 278 280 | connclo |  |-  ( ph -> A = ( 0 [,] 1 ) ) | 
						
							| 282 | 281 9 | eqtr3di |  |-  ( ph -> ( 0 [,] 1 ) = { a e. ( 0 [,] 1 ) | ( ( 0 [,] 1 ) X. { a } ) C_ M } ) | 
						
							| 283 |  | rabid2 |  |-  ( ( 0 [,] 1 ) = { a e. ( 0 [,] 1 ) | ( ( 0 [,] 1 ) X. { a } ) C_ M } <-> A. a e. ( 0 [,] 1 ) ( ( 0 [,] 1 ) X. { a } ) C_ M ) | 
						
							| 284 | 282 283 | sylib |  |-  ( ph -> A. a e. ( 0 [,] 1 ) ( ( 0 [,] 1 ) X. { a } ) C_ M ) | 
						
							| 285 |  | iunss |  |-  ( U_ a e. ( 0 [,] 1 ) ( ( 0 [,] 1 ) X. { a } ) C_ M <-> A. a e. ( 0 [,] 1 ) ( ( 0 [,] 1 ) X. { a } ) C_ M ) | 
						
							| 286 | 284 285 | sylibr |  |-  ( ph -> U_ a e. ( 0 [,] 1 ) ( ( 0 [,] 1 ) X. { a } ) C_ M ) | 
						
							| 287 | 15 286 | eqsstrid |  |-  ( ph -> ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) C_ M ) | 
						
							| 288 | 287 8 | sseqtrdi |  |-  ( ph -> ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) C_ { z e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` z ) } ) | 
						
							| 289 |  | ssrab |  |-  ( ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) C_ { z e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` z ) } <-> ( ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) /\ A. z e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) K e. ( ( ( II tX II ) CnP C ) ` z ) ) ) | 
						
							| 290 | 289 | simprbi |  |-  ( ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) C_ { z e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` z ) } -> A. z e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) K e. ( ( ( II tX II ) CnP C ) ` z ) ) | 
						
							| 291 | 288 290 | syl |  |-  ( ph -> A. z e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) K e. ( ( ( II tX II ) CnP C ) ` z ) ) | 
						
							| 292 |  | txtopon |  |-  ( ( II e. ( TopOn ` ( 0 [,] 1 ) ) /\ II e. ( TopOn ` ( 0 [,] 1 ) ) ) -> ( II tX II ) e. ( TopOn ` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) | 
						
							| 293 | 211 211 292 | mp2an |  |-  ( II tX II ) e. ( TopOn ` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 294 |  | cvmtop1 |  |-  ( F e. ( C CovMap J ) -> C e. Top ) | 
						
							| 295 | 2 294 | syl |  |-  ( ph -> C e. Top ) | 
						
							| 296 | 1 | toptopon |  |-  ( C e. Top <-> C e. ( TopOn ` B ) ) | 
						
							| 297 | 295 296 | sylib |  |-  ( ph -> C e. ( TopOn ` B ) ) | 
						
							| 298 |  | cncnp |  |-  ( ( ( II tX II ) e. ( TopOn ` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) /\ C e. ( TopOn ` B ) ) -> ( K e. ( ( II tX II ) Cn C ) <-> ( K : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> B /\ A. z e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) K e. ( ( ( II tX II ) CnP C ) ` z ) ) ) ) | 
						
							| 299 | 293 297 298 | sylancr |  |-  ( ph -> ( K e. ( ( II tX II ) Cn C ) <-> ( K : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> B /\ A. z e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) K e. ( ( ( II tX II ) CnP C ) ` z ) ) ) ) | 
						
							| 300 | 11 291 299 | mpbir2and |  |-  ( ph -> K e. ( ( II tX II ) Cn C ) ) |