| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmlift2.b | ⊢ 𝐵  =  ∪  𝐶 | 
						
							| 2 |  | cvmlift2.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 3 |  | cvmlift2.g | ⊢ ( 𝜑  →  𝐺  ∈  ( ( II  ×t  II )  Cn  𝐽 ) ) | 
						
							| 4 |  | cvmlift2.p | ⊢ ( 𝜑  →  𝑃  ∈  𝐵 ) | 
						
							| 5 |  | cvmlift2.i | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑃 )  =  ( 0 𝐺 0 ) ) | 
						
							| 6 |  | cvmlift2.h | ⊢ 𝐻  =  ( ℩ 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑧 𝐺 0 ) )  ∧  ( 𝑓 ‘ 0 )  =  𝑃 ) ) | 
						
							| 7 |  | cvmlift2.k | ⊢ 𝐾  =  ( 𝑥  ∈  ( 0 [,] 1 ) ,  𝑦  ∈  ( 0 [,] 1 )  ↦  ( ( ℩ 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑥 𝐺 𝑧 ) )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝐻 ‘ 𝑥 ) ) ) ‘ 𝑦 ) ) | 
						
							| 8 |  | cvmlift2.m | ⊢ 𝑀  =  { 𝑧  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑧 ) } | 
						
							| 9 |  | cvmlift2.a | ⊢ 𝐴  =  { 𝑎  ∈  ( 0 [,] 1 )  ∣  ( ( 0 [,] 1 )  ×  { 𝑎 } )  ⊆  𝑀 } | 
						
							| 10 |  | cvmlift2.s | ⊢ 𝑆  =  { 〈 𝑟 ,  𝑡 〉  ∣  ( 𝑡  ∈  ( 0 [,] 1 )  ∧  ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 ) ) } | 
						
							| 11 | 1 2 3 4 5 6 7 | cvmlift2lem5 | ⊢ ( 𝜑  →  𝐾 : ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ⟶ 𝐵 ) | 
						
							| 12 |  | iunid | ⊢ ∪  𝑎  ∈  ( 0 [,] 1 ) { 𝑎 }  =  ( 0 [,] 1 ) | 
						
							| 13 | 12 | xpeq2i | ⊢ ( ( 0 [,] 1 )  ×  ∪  𝑎  ∈  ( 0 [,] 1 ) { 𝑎 } )  =  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) | 
						
							| 14 |  | xpiundi | ⊢ ( ( 0 [,] 1 )  ×  ∪  𝑎  ∈  ( 0 [,] 1 ) { 𝑎 } )  =  ∪  𝑎  ∈  ( 0 [,] 1 ) ( ( 0 [,] 1 )  ×  { 𝑎 } ) | 
						
							| 15 | 13 14 | eqtr3i | ⊢ ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  =  ∪  𝑎  ∈  ( 0 [,] 1 ) ( ( 0 [,] 1 )  ×  { 𝑎 } ) | 
						
							| 16 |  | iiuni | ⊢ ( 0 [,] 1 )  =  ∪  II | 
						
							| 17 |  | iiconn | ⊢ II  ∈  Conn | 
						
							| 18 | 17 | a1i | ⊢ ( 𝜑  →  II  ∈  Conn ) | 
						
							| 19 |  | inss1 | ⊢ ( II  ∩  ( Clsd ‘ II ) )  ⊆  II | 
						
							| 20 |  | iicmp | ⊢ II  ∈  Comp | 
						
							| 21 | 20 | a1i | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 0 [,] 1 ) )  →  II  ∈  Comp ) | 
						
							| 22 |  | iitop | ⊢ II  ∈  Top | 
						
							| 23 | 22 | a1i | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 0 [,] 1 ) )  →  II  ∈  Top ) | 
						
							| 24 | 22 22 | txtopi | ⊢ ( II  ×t  II )  ∈  Top | 
						
							| 25 | 16 | neiss2 | ⊢ ( ( II  ∈  Top  ∧  𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) )  →  { 𝑟 }  ⊆  ( 0 [,] 1 ) ) | 
						
							| 26 | 22 25 | mpan | ⊢ ( 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } )  →  { 𝑟 }  ⊆  ( 0 [,] 1 ) ) | 
						
							| 27 |  | vex | ⊢ 𝑟  ∈  V | 
						
							| 28 | 27 | snss | ⊢ ( 𝑟  ∈  ( 0 [,] 1 )  ↔  { 𝑟 }  ⊆  ( 0 [,] 1 ) ) | 
						
							| 29 | 26 28 | sylibr | ⊢ ( 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } )  →  𝑟  ∈  ( 0 [,] 1 ) ) | 
						
							| 30 | 29 | a1d | ⊢ ( 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } )  →  ( ( ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 )  →  𝑟  ∈  ( 0 [,] 1 ) ) ) | 
						
							| 31 | 30 | rexlimiv | ⊢ ( ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 )  →  𝑟  ∈  ( 0 [,] 1 ) ) | 
						
							| 32 | 31 | adantl | ⊢ ( ( 𝑡  ∈  ( 0 [,] 1 )  ∧  ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 ) )  →  𝑟  ∈  ( 0 [,] 1 ) ) | 
						
							| 33 |  | simpl | ⊢ ( ( 𝑡  ∈  ( 0 [,] 1 )  ∧  ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 ) )  →  𝑡  ∈  ( 0 [,] 1 ) ) | 
						
							| 34 | 32 33 | jca | ⊢ ( ( 𝑡  ∈  ( 0 [,] 1 )  ∧  ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 ) )  →  ( 𝑟  ∈  ( 0 [,] 1 )  ∧  𝑡  ∈  ( 0 [,] 1 ) ) ) | 
						
							| 35 | 34 | ssopab2i | ⊢ { 〈 𝑟 ,  𝑡 〉  ∣  ( 𝑡  ∈  ( 0 [,] 1 )  ∧  ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 ) ) }  ⊆  { 〈 𝑟 ,  𝑡 〉  ∣  ( 𝑟  ∈  ( 0 [,] 1 )  ∧  𝑡  ∈  ( 0 [,] 1 ) ) } | 
						
							| 36 |  | df-xp | ⊢ ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  =  { 〈 𝑟 ,  𝑡 〉  ∣  ( 𝑟  ∈  ( 0 [,] 1 )  ∧  𝑡  ∈  ( 0 [,] 1 ) ) } | 
						
							| 37 | 35 10 36 | 3sstr4i | ⊢ 𝑆  ⊆  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) | 
						
							| 38 | 22 22 16 16 | txunii | ⊢ ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  =  ∪  ( II  ×t  II ) | 
						
							| 39 | 38 | ntropn | ⊢ ( ( ( II  ×t  II )  ∈  Top  ∧  𝑆  ⊆  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) )  →  ( ( int ‘ ( II  ×t  II ) ) ‘ 𝑆 )  ∈  ( II  ×t  II ) ) | 
						
							| 40 | 24 37 39 | mp2an | ⊢ ( ( int ‘ ( II  ×t  II ) ) ‘ 𝑆 )  ∈  ( II  ×t  II ) | 
						
							| 41 | 40 | a1i | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 0 [,] 1 ) )  →  ( ( int ‘ ( II  ×t  II ) ) ‘ 𝑆 )  ∈  ( II  ×t  II ) ) | 
						
							| 42 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) ) )  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 43 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) ) )  →  𝐺  ∈  ( ( II  ×t  II )  Cn  𝐽 ) ) | 
						
							| 44 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) ) )  →  𝑃  ∈  𝐵 ) | 
						
							| 45 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) ) )  →  ( 𝐹 ‘ 𝑃 )  =  ( 0 𝐺 0 ) ) | 
						
							| 46 |  | eqid | ⊢ ( 𝑘  ∈  𝐽  ↦  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑐  ∈  𝑠 ( ∀ 𝑑  ∈  ( 𝑠  ∖  { 𝑐 } ) ( 𝑐  ∩  𝑑 )  =  ∅  ∧  ( 𝐹  ↾  𝑐 )  ∈  ( ( 𝐶  ↾t  𝑐 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } )  =  ( 𝑘  ∈  𝐽  ↦  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑐  ∈  𝑠 ( ∀ 𝑑  ∈  ( 𝑠  ∖  { 𝑐 } ) ( 𝑐  ∩  𝑑 )  =  ∅  ∧  ( 𝐹  ↾  𝑐 )  ∈  ( ( 𝐶  ↾t  𝑐 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } ) | 
						
							| 47 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) ) )  →  𝑏  ∈  ( 0 [,] 1 ) ) | 
						
							| 48 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) ) )  →  𝑎  ∈  ( 0 [,] 1 ) ) | 
						
							| 49 | 1 42 43 44 45 6 7 46 47 48 | cvmlift2lem10 | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) ) )  →  ∃ 𝑢  ∈  II ∃ 𝑣  ∈  II ( 𝑏  ∈  𝑢  ∧  𝑎  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) ) | 
						
							| 50 | 24 | a1i | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑏  ∈  𝑢  ∧  𝑎  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) )  →  ( II  ×t  II )  ∈  Top ) | 
						
							| 51 | 37 | a1i | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑏  ∈  𝑢  ∧  𝑎  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) )  →  𝑆  ⊆  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 52 | 22 | a1i | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑏  ∈  𝑢  ∧  𝑎  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) )  →  II  ∈  Top ) | 
						
							| 53 |  | simplrl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑏  ∈  𝑢  ∧  𝑎  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) )  →  𝑢  ∈  II ) | 
						
							| 54 |  | simplrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑏  ∈  𝑢  ∧  𝑎  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) )  →  𝑣  ∈  II ) | 
						
							| 55 |  | txopn | ⊢ ( ( ( II  ∈  Top  ∧  II  ∈  Top )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  →  ( 𝑢  ×  𝑣 )  ∈  ( II  ×t  II ) ) | 
						
							| 56 | 52 52 53 54 55 | syl22anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑏  ∈  𝑢  ∧  𝑎  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) )  →  ( 𝑢  ×  𝑣 )  ∈  ( II  ×t  II ) ) | 
						
							| 57 |  | simpr | ⊢ ( ( 𝑟  ∈  𝑢  ∧  𝑡  ∈  𝑣 )  →  𝑡  ∈  𝑣 ) | 
						
							| 58 |  | elunii | ⊢ ( ( 𝑡  ∈  𝑣  ∧  𝑣  ∈  II )  →  𝑡  ∈  ∪  II ) | 
						
							| 59 | 58 16 | eleqtrrdi | ⊢ ( ( 𝑡  ∈  𝑣  ∧  𝑣  ∈  II )  →  𝑡  ∈  ( 0 [,] 1 ) ) | 
						
							| 60 | 57 54 59 | syl2anr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑏  ∈  𝑢  ∧  𝑎  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) )  ∧  ( 𝑟  ∈  𝑢  ∧  𝑡  ∈  𝑣 ) )  →  𝑡  ∈  ( 0 [,] 1 ) ) | 
						
							| 61 | 22 | a1i | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑏  ∈  𝑢  ∧  𝑎  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) )  ∧  ( 𝑟  ∈  𝑢  ∧  𝑡  ∈  𝑣 ) )  →  II  ∈  Top ) | 
						
							| 62 | 53 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑏  ∈  𝑢  ∧  𝑎  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) )  ∧  ( 𝑟  ∈  𝑢  ∧  𝑡  ∈  𝑣 ) )  →  𝑢  ∈  II ) | 
						
							| 63 |  | simprl | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑏  ∈  𝑢  ∧  𝑎  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) )  ∧  ( 𝑟  ∈  𝑢  ∧  𝑡  ∈  𝑣 ) )  →  𝑟  ∈  𝑢 ) | 
						
							| 64 |  | opnneip | ⊢ ( ( II  ∈  Top  ∧  𝑢  ∈  II  ∧  𝑟  ∈  𝑢 )  →  𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ) | 
						
							| 65 | 61 62 63 64 | syl3anc | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑏  ∈  𝑢  ∧  𝑎  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) )  ∧  ( 𝑟  ∈  𝑢  ∧  𝑡  ∈  𝑣 ) )  →  𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ) | 
						
							| 66 | 42 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑏  ∈  𝑢  ∧  𝑎  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) )  ∧  ( 𝑟  ∈  𝑢  ∧  𝑡  ∈  𝑣 ) )  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 67 | 43 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑏  ∈  𝑢  ∧  𝑎  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) )  ∧  ( 𝑟  ∈  𝑢  ∧  𝑡  ∈  𝑣 ) )  →  𝐺  ∈  ( ( II  ×t  II )  Cn  𝐽 ) ) | 
						
							| 68 | 44 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑏  ∈  𝑢  ∧  𝑎  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) )  ∧  ( 𝑟  ∈  𝑢  ∧  𝑡  ∈  𝑣 ) )  →  𝑃  ∈  𝐵 ) | 
						
							| 69 | 45 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑏  ∈  𝑢  ∧  𝑎  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) )  ∧  ( 𝑟  ∈  𝑢  ∧  𝑡  ∈  𝑣 ) )  →  ( 𝐹 ‘ 𝑃 )  =  ( 0 𝐺 0 ) ) | 
						
							| 70 | 54 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑏  ∈  𝑢  ∧  𝑎  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) )  ∧  ( 𝑟  ∈  𝑢  ∧  𝑡  ∈  𝑣 ) )  →  𝑣  ∈  II ) | 
						
							| 71 |  | simplr2 | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑏  ∈  𝑢  ∧  𝑎  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) )  ∧  ( 𝑟  ∈  𝑢  ∧  𝑡  ∈  𝑣 ) )  →  𝑎  ∈  𝑣 ) | 
						
							| 72 |  | simprr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑏  ∈  𝑢  ∧  𝑎  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) )  ∧  ( 𝑟  ∈  𝑢  ∧  𝑡  ∈  𝑣 ) )  →  𝑡  ∈  𝑣 ) | 
						
							| 73 |  | sneq | ⊢ ( 𝑐  =  𝑤  →  { 𝑐 }  =  { 𝑤 } ) | 
						
							| 74 | 73 | xpeq2d | ⊢ ( 𝑐  =  𝑤  →  ( 𝑢  ×  { 𝑐 } )  =  ( 𝑢  ×  { 𝑤 } ) ) | 
						
							| 75 | 74 | reseq2d | ⊢ ( 𝑐  =  𝑤  →  ( 𝐾  ↾  ( 𝑢  ×  { 𝑐 } ) )  =  ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) ) ) | 
						
							| 76 | 74 | oveq2d | ⊢ ( 𝑐  =  𝑤  →  ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑐 } ) )  =  ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) ) ) | 
						
							| 77 | 76 | oveq1d | ⊢ ( 𝑐  =  𝑤  →  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑐 } ) )  Cn  𝐶 )  =  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 ) ) | 
						
							| 78 | 75 77 | eleq12d | ⊢ ( 𝑐  =  𝑤  →  ( ( 𝐾  ↾  ( 𝑢  ×  { 𝑐 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑐 } ) )  Cn  𝐶 )  ↔  ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 ) ) ) | 
						
							| 79 | 78 | cbvrexvw | ⊢ ( ∃ 𝑐  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑐 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑐 } ) )  Cn  𝐶 )  ↔  ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 ) ) | 
						
							| 80 |  | simplr3 | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑏  ∈  𝑢  ∧  𝑎  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) )  ∧  ( 𝑟  ∈  𝑢  ∧  𝑡  ∈  𝑣 ) )  →  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) | 
						
							| 81 | 79 80 | biimtrid | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑏  ∈  𝑢  ∧  𝑎  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) )  ∧  ( 𝑟  ∈  𝑢  ∧  𝑡  ∈  𝑣 ) )  →  ( ∃ 𝑐  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑐 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑐 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) | 
						
							| 82 | 1 66 67 68 69 6 7 8 62 70 71 72 81 | cvmlift2lem11 | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑏  ∈  𝑢  ∧  𝑎  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) )  ∧  ( 𝑟  ∈  𝑢  ∧  𝑡  ∈  𝑣 ) )  →  ( ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀  →  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 ) ) | 
						
							| 83 | 1 66 67 68 69 6 7 8 62 70 72 71 81 | cvmlift2lem11 | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑏  ∈  𝑢  ∧  𝑎  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) )  ∧  ( 𝑟  ∈  𝑢  ∧  𝑡  ∈  𝑣 ) )  →  ( ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀  →  ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀 ) ) | 
						
							| 84 | 82 83 | impbid | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑏  ∈  𝑢  ∧  𝑎  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) )  ∧  ( 𝑟  ∈  𝑢  ∧  𝑡  ∈  𝑣 ) )  →  ( ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 ) ) | 
						
							| 85 |  | rspe | ⊢ ( ( 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } )  ∧  ( ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 ) )  →  ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 ) ) | 
						
							| 86 | 65 84 85 | syl2anc | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑏  ∈  𝑢  ∧  𝑎  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) )  ∧  ( 𝑟  ∈  𝑢  ∧  𝑡  ∈  𝑣 ) )  →  ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 ) ) | 
						
							| 87 | 60 86 | jca | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑏  ∈  𝑢  ∧  𝑎  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) )  ∧  ( 𝑟  ∈  𝑢  ∧  𝑡  ∈  𝑣 ) )  →  ( 𝑡  ∈  ( 0 [,] 1 )  ∧  ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 ) ) ) | 
						
							| 88 | 87 | ex | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑏  ∈  𝑢  ∧  𝑎  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) )  →  ( ( 𝑟  ∈  𝑢  ∧  𝑡  ∈  𝑣 )  →  ( 𝑡  ∈  ( 0 [,] 1 )  ∧  ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 ) ) ) ) | 
						
							| 89 | 88 | alrimivv | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑏  ∈  𝑢  ∧  𝑎  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) )  →  ∀ 𝑟 ∀ 𝑡 ( ( 𝑟  ∈  𝑢  ∧  𝑡  ∈  𝑣 )  →  ( 𝑡  ∈  ( 0 [,] 1 )  ∧  ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 ) ) ) ) | 
						
							| 90 |  | df-xp | ⊢ ( 𝑢  ×  𝑣 )  =  { 〈 𝑟 ,  𝑡 〉  ∣  ( 𝑟  ∈  𝑢  ∧  𝑡  ∈  𝑣 ) } | 
						
							| 91 | 90 10 | sseq12i | ⊢ ( ( 𝑢  ×  𝑣 )  ⊆  𝑆  ↔  { 〈 𝑟 ,  𝑡 〉  ∣  ( 𝑟  ∈  𝑢  ∧  𝑡  ∈  𝑣 ) }  ⊆  { 〈 𝑟 ,  𝑡 〉  ∣  ( 𝑡  ∈  ( 0 [,] 1 )  ∧  ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 ) ) } ) | 
						
							| 92 |  | ssopab2bw | ⊢ ( { 〈 𝑟 ,  𝑡 〉  ∣  ( 𝑟  ∈  𝑢  ∧  𝑡  ∈  𝑣 ) }  ⊆  { 〈 𝑟 ,  𝑡 〉  ∣  ( 𝑡  ∈  ( 0 [,] 1 )  ∧  ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 ) ) }  ↔  ∀ 𝑟 ∀ 𝑡 ( ( 𝑟  ∈  𝑢  ∧  𝑡  ∈  𝑣 )  →  ( 𝑡  ∈  ( 0 [,] 1 )  ∧  ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 ) ) ) ) | 
						
							| 93 | 91 92 | bitri | ⊢ ( ( 𝑢  ×  𝑣 )  ⊆  𝑆  ↔  ∀ 𝑟 ∀ 𝑡 ( ( 𝑟  ∈  𝑢  ∧  𝑡  ∈  𝑣 )  →  ( 𝑡  ∈  ( 0 [,] 1 )  ∧  ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 ) ) ) ) | 
						
							| 94 | 89 93 | sylibr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑏  ∈  𝑢  ∧  𝑎  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) )  →  ( 𝑢  ×  𝑣 )  ⊆  𝑆 ) | 
						
							| 95 | 38 | ssntr | ⊢ ( ( ( ( II  ×t  II )  ∈  Top  ∧  𝑆  ⊆  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) )  ∧  ( ( 𝑢  ×  𝑣 )  ∈  ( II  ×t  II )  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑆 ) )  →  ( 𝑢  ×  𝑣 )  ⊆  ( ( int ‘ ( II  ×t  II ) ) ‘ 𝑆 ) ) | 
						
							| 96 | 50 51 56 94 95 | syl22anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑏  ∈  𝑢  ∧  𝑎  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) )  →  ( 𝑢  ×  𝑣 )  ⊆  ( ( int ‘ ( II  ×t  II ) ) ‘ 𝑆 ) ) | 
						
							| 97 |  | simpr1 | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑏  ∈  𝑢  ∧  𝑎  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) )  →  𝑏  ∈  𝑢 ) | 
						
							| 98 |  | simpr2 | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑏  ∈  𝑢  ∧  𝑎  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) )  →  𝑎  ∈  𝑣 ) | 
						
							| 99 |  | opelxpi | ⊢ ( ( 𝑏  ∈  𝑢  ∧  𝑎  ∈  𝑣 )  →  〈 𝑏 ,  𝑎 〉  ∈  ( 𝑢  ×  𝑣 ) ) | 
						
							| 100 | 97 98 99 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑏  ∈  𝑢  ∧  𝑎  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) )  →  〈 𝑏 ,  𝑎 〉  ∈  ( 𝑢  ×  𝑣 ) ) | 
						
							| 101 | 96 100 | sseldd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑏  ∈  𝑢  ∧  𝑎  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) )  →  〈 𝑏 ,  𝑎 〉  ∈  ( ( int ‘ ( II  ×t  II ) ) ‘ 𝑆 ) ) | 
						
							| 102 | 101 | ex | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  →  ( ( 𝑏  ∈  𝑢  ∧  𝑎  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) )  →  〈 𝑏 ,  𝑎 〉  ∈  ( ( int ‘ ( II  ×t  II ) ) ‘ 𝑆 ) ) ) | 
						
							| 103 | 102 | rexlimdvva | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) ) )  →  ( ∃ 𝑢  ∈  II ∃ 𝑣  ∈  II ( 𝑏  ∈  𝑢  ∧  𝑎  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) )  →  〈 𝑏 ,  𝑎 〉  ∈  ( ( int ‘ ( II  ×t  II ) ) ‘ 𝑆 ) ) ) | 
						
							| 104 | 49 103 | mpd | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) ) )  →  〈 𝑏 ,  𝑎 〉  ∈  ( ( int ‘ ( II  ×t  II ) ) ‘ 𝑆 ) ) | 
						
							| 105 |  | vex | ⊢ 𝑎  ∈  V | 
						
							| 106 |  | opeq2 | ⊢ ( 𝑤  =  𝑎  →  〈 𝑏 ,  𝑤 〉  =  〈 𝑏 ,  𝑎 〉 ) | 
						
							| 107 | 106 | eleq1d | ⊢ ( 𝑤  =  𝑎  →  ( 〈 𝑏 ,  𝑤 〉  ∈  ( ( int ‘ ( II  ×t  II ) ) ‘ 𝑆 )  ↔  〈 𝑏 ,  𝑎 〉  ∈  ( ( int ‘ ( II  ×t  II ) ) ‘ 𝑆 ) ) ) | 
						
							| 108 | 105 107 | ralsn | ⊢ ( ∀ 𝑤  ∈  { 𝑎 } 〈 𝑏 ,  𝑤 〉  ∈  ( ( int ‘ ( II  ×t  II ) ) ‘ 𝑆 )  ↔  〈 𝑏 ,  𝑎 〉  ∈  ( ( int ‘ ( II  ×t  II ) ) ‘ 𝑆 ) ) | 
						
							| 109 | 104 108 | sylibr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) ) )  →  ∀ 𝑤  ∈  { 𝑎 } 〈 𝑏 ,  𝑤 〉  ∈  ( ( int ‘ ( II  ×t  II ) ) ‘ 𝑆 ) ) | 
						
							| 110 | 109 | anassrs | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( 0 [,] 1 ) )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  →  ∀ 𝑤  ∈  { 𝑎 } 〈 𝑏 ,  𝑤 〉  ∈  ( ( int ‘ ( II  ×t  II ) ) ‘ 𝑆 ) ) | 
						
							| 111 | 110 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 0 [,] 1 ) )  →  ∀ 𝑏  ∈  ( 0 [,] 1 ) ∀ 𝑤  ∈  { 𝑎 } 〈 𝑏 ,  𝑤 〉  ∈  ( ( int ‘ ( II  ×t  II ) ) ‘ 𝑆 ) ) | 
						
							| 112 |  | dfss3 | ⊢ ( ( ( 0 [,] 1 )  ×  { 𝑎 } )  ⊆  ( ( int ‘ ( II  ×t  II ) ) ‘ 𝑆 )  ↔  ∀ 𝑢  ∈  ( ( 0 [,] 1 )  ×  { 𝑎 } ) 𝑢  ∈  ( ( int ‘ ( II  ×t  II ) ) ‘ 𝑆 ) ) | 
						
							| 113 |  | eleq1 | ⊢ ( 𝑢  =  〈 𝑏 ,  𝑤 〉  →  ( 𝑢  ∈  ( ( int ‘ ( II  ×t  II ) ) ‘ 𝑆 )  ↔  〈 𝑏 ,  𝑤 〉  ∈  ( ( int ‘ ( II  ×t  II ) ) ‘ 𝑆 ) ) ) | 
						
							| 114 | 113 | ralxp | ⊢ ( ∀ 𝑢  ∈  ( ( 0 [,] 1 )  ×  { 𝑎 } ) 𝑢  ∈  ( ( int ‘ ( II  ×t  II ) ) ‘ 𝑆 )  ↔  ∀ 𝑏  ∈  ( 0 [,] 1 ) ∀ 𝑤  ∈  { 𝑎 } 〈 𝑏 ,  𝑤 〉  ∈  ( ( int ‘ ( II  ×t  II ) ) ‘ 𝑆 ) ) | 
						
							| 115 | 112 114 | bitri | ⊢ ( ( ( 0 [,] 1 )  ×  { 𝑎 } )  ⊆  ( ( int ‘ ( II  ×t  II ) ) ‘ 𝑆 )  ↔  ∀ 𝑏  ∈  ( 0 [,] 1 ) ∀ 𝑤  ∈  { 𝑎 } 〈 𝑏 ,  𝑤 〉  ∈  ( ( int ‘ ( II  ×t  II ) ) ‘ 𝑆 ) ) | 
						
							| 116 | 111 115 | sylibr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 0 [,] 1 ) )  →  ( ( 0 [,] 1 )  ×  { 𝑎 } )  ⊆  ( ( int ‘ ( II  ×t  II ) ) ‘ 𝑆 ) ) | 
						
							| 117 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 0 [,] 1 ) )  →  𝑎  ∈  ( 0 [,] 1 ) ) | 
						
							| 118 | 16 16 21 23 41 116 117 | txtube | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 0 [,] 1 ) )  →  ∃ 𝑣  ∈  II ( 𝑎  ∈  𝑣  ∧  ( ( 0 [,] 1 )  ×  𝑣 )  ⊆  ( ( int ‘ ( II  ×t  II ) ) ‘ 𝑆 ) ) ) | 
						
							| 119 | 38 | ntrss2 | ⊢ ( ( ( II  ×t  II )  ∈  Top  ∧  𝑆  ⊆  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) )  →  ( ( int ‘ ( II  ×t  II ) ) ‘ 𝑆 )  ⊆  𝑆 ) | 
						
							| 120 | 24 37 119 | mp2an | ⊢ ( ( int ‘ ( II  ×t  II ) ) ‘ 𝑆 )  ⊆  𝑆 | 
						
							| 121 |  | sstr | ⊢ ( ( ( ( 0 [,] 1 )  ×  𝑣 )  ⊆  ( ( int ‘ ( II  ×t  II ) ) ‘ 𝑆 )  ∧  ( ( int ‘ ( II  ×t  II ) ) ‘ 𝑆 )  ⊆  𝑆 )  →  ( ( 0 [,] 1 )  ×  𝑣 )  ⊆  𝑆 ) | 
						
							| 122 | 120 121 | mpan2 | ⊢ ( ( ( 0 [,] 1 )  ×  𝑣 )  ⊆  ( ( int ‘ ( II  ×t  II ) ) ‘ 𝑆 )  →  ( ( 0 [,] 1 )  ×  𝑣 )  ⊆  𝑆 ) | 
						
							| 123 |  | df-xp | ⊢ ( ( 0 [,] 1 )  ×  𝑣 )  =  { 〈 𝑟 ,  𝑡 〉  ∣  ( 𝑟  ∈  ( 0 [,] 1 )  ∧  𝑡  ∈  𝑣 ) } | 
						
							| 124 | 123 10 | sseq12i | ⊢ ( ( ( 0 [,] 1 )  ×  𝑣 )  ⊆  𝑆  ↔  { 〈 𝑟 ,  𝑡 〉  ∣  ( 𝑟  ∈  ( 0 [,] 1 )  ∧  𝑡  ∈  𝑣 ) }  ⊆  { 〈 𝑟 ,  𝑡 〉  ∣  ( 𝑡  ∈  ( 0 [,] 1 )  ∧  ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 ) ) } ) | 
						
							| 125 |  | ssopab2bw | ⊢ ( { 〈 𝑟 ,  𝑡 〉  ∣  ( 𝑟  ∈  ( 0 [,] 1 )  ∧  𝑡  ∈  𝑣 ) }  ⊆  { 〈 𝑟 ,  𝑡 〉  ∣  ( 𝑡  ∈  ( 0 [,] 1 )  ∧  ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 ) ) }  ↔  ∀ 𝑟 ∀ 𝑡 ( ( 𝑟  ∈  ( 0 [,] 1 )  ∧  𝑡  ∈  𝑣 )  →  ( 𝑡  ∈  ( 0 [,] 1 )  ∧  ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 ) ) ) ) | 
						
							| 126 |  | r2al | ⊢ ( ∀ 𝑟  ∈  ( 0 [,] 1 ) ∀ 𝑡  ∈  𝑣 ( 𝑡  ∈  ( 0 [,] 1 )  ∧  ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 ) )  ↔  ∀ 𝑟 ∀ 𝑡 ( ( 𝑟  ∈  ( 0 [,] 1 )  ∧  𝑡  ∈  𝑣 )  →  ( 𝑡  ∈  ( 0 [,] 1 )  ∧  ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 ) ) ) ) | 
						
							| 127 |  | ralcom | ⊢ ( ∀ 𝑟  ∈  ( 0 [,] 1 ) ∀ 𝑡  ∈  𝑣 ( 𝑡  ∈  ( 0 [,] 1 )  ∧  ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 ) )  ↔  ∀ 𝑡  ∈  𝑣 ∀ 𝑟  ∈  ( 0 [,] 1 ) ( 𝑡  ∈  ( 0 [,] 1 )  ∧  ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 ) ) ) | 
						
							| 128 | 125 126 127 | 3bitr2i | ⊢ ( { 〈 𝑟 ,  𝑡 〉  ∣  ( 𝑟  ∈  ( 0 [,] 1 )  ∧  𝑡  ∈  𝑣 ) }  ⊆  { 〈 𝑟 ,  𝑡 〉  ∣  ( 𝑡  ∈  ( 0 [,] 1 )  ∧  ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 ) ) }  ↔  ∀ 𝑡  ∈  𝑣 ∀ 𝑟  ∈  ( 0 [,] 1 ) ( 𝑡  ∈  ( 0 [,] 1 )  ∧  ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 ) ) ) | 
						
							| 129 | 124 128 | bitri | ⊢ ( ( ( 0 [,] 1 )  ×  𝑣 )  ⊆  𝑆  ↔  ∀ 𝑡  ∈  𝑣 ∀ 𝑟  ∈  ( 0 [,] 1 ) ( 𝑡  ∈  ( 0 [,] 1 )  ∧  ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 ) ) ) | 
						
							| 130 | 122 129 | sylib | ⊢ ( ( ( 0 [,] 1 )  ×  𝑣 )  ⊆  ( ( int ‘ ( II  ×t  II ) ) ‘ 𝑆 )  →  ∀ 𝑡  ∈  𝑣 ∀ 𝑟  ∈  ( 0 [,] 1 ) ( 𝑡  ∈  ( 0 [,] 1 )  ∧  ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 ) ) ) | 
						
							| 131 |  | simpr | ⊢ ( ( 𝑡  ∈  ( 0 [,] 1 )  ∧  ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 ) )  →  ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 ) ) | 
						
							| 132 | 131 | ralimi | ⊢ ( ∀ 𝑟  ∈  ( 0 [,] 1 ) ( 𝑡  ∈  ( 0 [,] 1 )  ∧  ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 ) )  →  ∀ 𝑟  ∈  ( 0 [,] 1 ) ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 ) ) | 
						
							| 133 |  | cvmlift2lem1 | ⊢ ( ∀ 𝑟  ∈  ( 0 [,] 1 ) ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 )  →  ( ( ( 0 [,] 1 )  ×  { 𝑎 } )  ⊆  𝑀  →  ( ( 0 [,] 1 )  ×  { 𝑡 } )  ⊆  𝑀 ) ) | 
						
							| 134 |  | bicom | ⊢ ( ( ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 )  ↔  ( ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀 ) ) | 
						
							| 135 | 134 | rexbii | ⊢ ( ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 )  ↔  ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀 ) ) | 
						
							| 136 | 135 | ralbii | ⊢ ( ∀ 𝑟  ∈  ( 0 [,] 1 ) ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 )  ↔  ∀ 𝑟  ∈  ( 0 [,] 1 ) ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀 ) ) | 
						
							| 137 |  | cvmlift2lem1 | ⊢ ( ∀ 𝑟  ∈  ( 0 [,] 1 ) ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀 )  →  ( ( ( 0 [,] 1 )  ×  { 𝑡 } )  ⊆  𝑀  →  ( ( 0 [,] 1 )  ×  { 𝑎 } )  ⊆  𝑀 ) ) | 
						
							| 138 | 136 137 | sylbi | ⊢ ( ∀ 𝑟  ∈  ( 0 [,] 1 ) ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 )  →  ( ( ( 0 [,] 1 )  ×  { 𝑡 } )  ⊆  𝑀  →  ( ( 0 [,] 1 )  ×  { 𝑎 } )  ⊆  𝑀 ) ) | 
						
							| 139 | 133 138 | impbid | ⊢ ( ∀ 𝑟  ∈  ( 0 [,] 1 ) ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 )  →  ( ( ( 0 [,] 1 )  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( ( 0 [,] 1 )  ×  { 𝑡 } )  ⊆  𝑀 ) ) | 
						
							| 140 | 132 139 | syl | ⊢ ( ∀ 𝑟  ∈  ( 0 [,] 1 ) ( 𝑡  ∈  ( 0 [,] 1 )  ∧  ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 ) )  →  ( ( ( 0 [,] 1 )  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( ( 0 [,] 1 )  ×  { 𝑡 } )  ⊆  𝑀 ) ) | 
						
							| 141 | 9 | reqabi | ⊢ ( 𝑎  ∈  𝐴  ↔  ( 𝑎  ∈  ( 0 [,] 1 )  ∧  ( ( 0 [,] 1 )  ×  { 𝑎 } )  ⊆  𝑀 ) ) | 
						
							| 142 | 141 | baib | ⊢ ( 𝑎  ∈  ( 0 [,] 1 )  →  ( 𝑎  ∈  𝐴  ↔  ( ( 0 [,] 1 )  ×  { 𝑎 } )  ⊆  𝑀 ) ) | 
						
							| 143 | 142 | ad3antlr | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ( 0 [,] 1 ) )  ∧  𝑣  ∈  II )  ∧  𝑡  ∈  𝑣 )  →  ( 𝑎  ∈  𝐴  ↔  ( ( 0 [,] 1 )  ×  { 𝑎 } )  ⊆  𝑀 ) ) | 
						
							| 144 |  | elssuni | ⊢ ( 𝑣  ∈  II  →  𝑣  ⊆  ∪  II ) | 
						
							| 145 | 144 16 | sseqtrrdi | ⊢ ( 𝑣  ∈  II  →  𝑣  ⊆  ( 0 [,] 1 ) ) | 
						
							| 146 | 145 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( 0 [,] 1 ) )  ∧  𝑣  ∈  II )  →  𝑣  ⊆  ( 0 [,] 1 ) ) | 
						
							| 147 | 146 | sselda | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ( 0 [,] 1 ) )  ∧  𝑣  ∈  II )  ∧  𝑡  ∈  𝑣 )  →  𝑡  ∈  ( 0 [,] 1 ) ) | 
						
							| 148 |  | sneq | ⊢ ( 𝑎  =  𝑡  →  { 𝑎 }  =  { 𝑡 } ) | 
						
							| 149 | 148 | xpeq2d | ⊢ ( 𝑎  =  𝑡  →  ( ( 0 [,] 1 )  ×  { 𝑎 } )  =  ( ( 0 [,] 1 )  ×  { 𝑡 } ) ) | 
						
							| 150 | 149 | sseq1d | ⊢ ( 𝑎  =  𝑡  →  ( ( ( 0 [,] 1 )  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( ( 0 [,] 1 )  ×  { 𝑡 } )  ⊆  𝑀 ) ) | 
						
							| 151 | 150 9 | elrab2 | ⊢ ( 𝑡  ∈  𝐴  ↔  ( 𝑡  ∈  ( 0 [,] 1 )  ∧  ( ( 0 [,] 1 )  ×  { 𝑡 } )  ⊆  𝑀 ) ) | 
						
							| 152 | 151 | baib | ⊢ ( 𝑡  ∈  ( 0 [,] 1 )  →  ( 𝑡  ∈  𝐴  ↔  ( ( 0 [,] 1 )  ×  { 𝑡 } )  ⊆  𝑀 ) ) | 
						
							| 153 | 147 152 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ( 0 [,] 1 ) )  ∧  𝑣  ∈  II )  ∧  𝑡  ∈  𝑣 )  →  ( 𝑡  ∈  𝐴  ↔  ( ( 0 [,] 1 )  ×  { 𝑡 } )  ⊆  𝑀 ) ) | 
						
							| 154 | 143 153 | bibi12d | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ( 0 [,] 1 ) )  ∧  𝑣  ∈  II )  ∧  𝑡  ∈  𝑣 )  →  ( ( 𝑎  ∈  𝐴  ↔  𝑡  ∈  𝐴 )  ↔  ( ( ( 0 [,] 1 )  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( ( 0 [,] 1 )  ×  { 𝑡 } )  ⊆  𝑀 ) ) ) | 
						
							| 155 | 140 154 | imbitrrid | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ( 0 [,] 1 ) )  ∧  𝑣  ∈  II )  ∧  𝑡  ∈  𝑣 )  →  ( ∀ 𝑟  ∈  ( 0 [,] 1 ) ( 𝑡  ∈  ( 0 [,] 1 )  ∧  ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 ) )  →  ( 𝑎  ∈  𝐴  ↔  𝑡  ∈  𝐴 ) ) ) | 
						
							| 156 | 155 | ralimdva | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( 0 [,] 1 ) )  ∧  𝑣  ∈  II )  →  ( ∀ 𝑡  ∈  𝑣 ∀ 𝑟  ∈  ( 0 [,] 1 ) ( 𝑡  ∈  ( 0 [,] 1 )  ∧  ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 ) )  →  ∀ 𝑡  ∈  𝑣 ( 𝑎  ∈  𝐴  ↔  𝑡  ∈  𝐴 ) ) ) | 
						
							| 157 | 130 156 | syl5 | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( 0 [,] 1 ) )  ∧  𝑣  ∈  II )  →  ( ( ( 0 [,] 1 )  ×  𝑣 )  ⊆  ( ( int ‘ ( II  ×t  II ) ) ‘ 𝑆 )  →  ∀ 𝑡  ∈  𝑣 ( 𝑎  ∈  𝐴  ↔  𝑡  ∈  𝐴 ) ) ) | 
						
							| 158 | 157 | anim2d | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( 0 [,] 1 ) )  ∧  𝑣  ∈  II )  →  ( ( 𝑎  ∈  𝑣  ∧  ( ( 0 [,] 1 )  ×  𝑣 )  ⊆  ( ( int ‘ ( II  ×t  II ) ) ‘ 𝑆 ) )  →  ( 𝑎  ∈  𝑣  ∧  ∀ 𝑡  ∈  𝑣 ( 𝑎  ∈  𝐴  ↔  𝑡  ∈  𝐴 ) ) ) ) | 
						
							| 159 | 158 | reximdva | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 0 [,] 1 ) )  →  ( ∃ 𝑣  ∈  II ( 𝑎  ∈  𝑣  ∧  ( ( 0 [,] 1 )  ×  𝑣 )  ⊆  ( ( int ‘ ( II  ×t  II ) ) ‘ 𝑆 ) )  →  ∃ 𝑣  ∈  II ( 𝑎  ∈  𝑣  ∧  ∀ 𝑡  ∈  𝑣 ( 𝑎  ∈  𝐴  ↔  𝑡  ∈  𝐴 ) ) ) ) | 
						
							| 160 | 118 159 | mpd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 0 [,] 1 ) )  →  ∃ 𝑣  ∈  II ( 𝑎  ∈  𝑣  ∧  ∀ 𝑡  ∈  𝑣 ( 𝑎  ∈  𝐴  ↔  𝑡  ∈  𝐴 ) ) ) | 
						
							| 161 | 160 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  ( 0 [,] 1 ) ∃ 𝑣  ∈  II ( 𝑎  ∈  𝑣  ∧  ∀ 𝑡  ∈  𝑣 ( 𝑎  ∈  𝐴  ↔  𝑡  ∈  𝐴 ) ) ) | 
						
							| 162 |  | ssrab2 | ⊢ { 𝑎  ∈  ( 0 [,] 1 )  ∣  ( ( 0 [,] 1 )  ×  { 𝑎 } )  ⊆  𝑀 }  ⊆  ( 0 [,] 1 ) | 
						
							| 163 | 9 162 | eqsstri | ⊢ 𝐴  ⊆  ( 0 [,] 1 ) | 
						
							| 164 | 16 | isclo | ⊢ ( ( II  ∈  Top  ∧  𝐴  ⊆  ( 0 [,] 1 ) )  →  ( 𝐴  ∈  ( II  ∩  ( Clsd ‘ II ) )  ↔  ∀ 𝑎  ∈  ( 0 [,] 1 ) ∃ 𝑣  ∈  II ( 𝑎  ∈  𝑣  ∧  ∀ 𝑡  ∈  𝑣 ( 𝑎  ∈  𝐴  ↔  𝑡  ∈  𝐴 ) ) ) ) | 
						
							| 165 | 22 163 164 | mp2an | ⊢ ( 𝐴  ∈  ( II  ∩  ( Clsd ‘ II ) )  ↔  ∀ 𝑎  ∈  ( 0 [,] 1 ) ∃ 𝑣  ∈  II ( 𝑎  ∈  𝑣  ∧  ∀ 𝑡  ∈  𝑣 ( 𝑎  ∈  𝐴  ↔  𝑡  ∈  𝐴 ) ) ) | 
						
							| 166 | 161 165 | sylibr | ⊢ ( 𝜑  →  𝐴  ∈  ( II  ∩  ( Clsd ‘ II ) ) ) | 
						
							| 167 | 19 166 | sselid | ⊢ ( 𝜑  →  𝐴  ∈  II ) | 
						
							| 168 |  | 0elunit | ⊢ 0  ∈  ( 0 [,] 1 ) | 
						
							| 169 | 168 | a1i | ⊢ ( 𝜑  →  0  ∈  ( 0 [,] 1 ) ) | 
						
							| 170 |  | relxp | ⊢ Rel  ( ( 0 [,] 1 )  ×  { 0 } ) | 
						
							| 171 | 170 | a1i | ⊢ ( 𝜑  →  Rel  ( ( 0 [,] 1 )  ×  { 0 } ) ) | 
						
							| 172 |  | opelxp | ⊢ ( 〈 𝑟 ,  𝑎 〉  ∈  ( ( 0 [,] 1 )  ×  { 0 } )  ↔  ( 𝑟  ∈  ( 0 [,] 1 )  ∧  𝑎  ∈  { 0 } ) ) | 
						
							| 173 |  | id | ⊢ ( 𝑟  ∈  ( 0 [,] 1 )  →  𝑟  ∈  ( 0 [,] 1 ) ) | 
						
							| 174 |  | opelxpi | ⊢ ( ( 𝑟  ∈  ( 0 [,] 1 )  ∧  0  ∈  ( 0 [,] 1 ) )  →  〈 𝑟 ,  0 〉  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 175 | 173 169 174 | syl2anr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  →  〈 𝑟 ,  0 〉  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 176 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 177 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  →  𝐺  ∈  ( ( II  ×t  II )  Cn  𝐽 ) ) | 
						
							| 178 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  →  𝑃  ∈  𝐵 ) | 
						
							| 179 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  →  ( 𝐹 ‘ 𝑃 )  =  ( 0 𝐺 0 ) ) | 
						
							| 180 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  →  𝑟  ∈  ( 0 [,] 1 ) ) | 
						
							| 181 | 168 | a1i | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  →  0  ∈  ( 0 [,] 1 ) ) | 
						
							| 182 | 1 176 177 178 179 6 7 46 180 181 | cvmlift2lem10 | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  →  ∃ 𝑢  ∈  II ∃ 𝑣  ∈  II ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) ) | 
						
							| 183 |  | df-3an | ⊢ ( ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) )  ↔  ( ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣 )  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) ) ) | 
						
							| 184 |  | simprr | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣 ) )  →  0  ∈  𝑣 ) | 
						
							| 185 | 11 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣 ) )  →  𝐾 : ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ⟶ 𝐵 ) | 
						
							| 186 | 185 | ffnd | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣 ) )  →  𝐾  Fn  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 187 |  | fnov | ⊢ ( 𝐾  Fn  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ↔  𝐾  =  ( 𝑏  ∈  ( 0 [,] 1 ) ,  𝑤  ∈  ( 0 [,] 1 )  ↦  ( 𝑏 𝐾 𝑤 ) ) ) | 
						
							| 188 | 186 187 | sylib | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣 ) )  →  𝐾  =  ( 𝑏  ∈  ( 0 [,] 1 ) ,  𝑤  ∈  ( 0 [,] 1 )  ↦  ( 𝑏 𝐾 𝑤 ) ) ) | 
						
							| 189 | 188 | reseq1d | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣 ) )  →  ( 𝐾  ↾  ( 𝑢  ×  { 0 } ) )  =  ( ( 𝑏  ∈  ( 0 [,] 1 ) ,  𝑤  ∈  ( 0 [,] 1 )  ↦  ( 𝑏 𝐾 𝑤 ) )  ↾  ( 𝑢  ×  { 0 } ) ) ) | 
						
							| 190 |  | simplrl | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣 ) )  →  𝑢  ∈  II ) | 
						
							| 191 |  | elssuni | ⊢ ( 𝑢  ∈  II  →  𝑢  ⊆  ∪  II ) | 
						
							| 192 | 191 16 | sseqtrrdi | ⊢ ( 𝑢  ∈  II  →  𝑢  ⊆  ( 0 [,] 1 ) ) | 
						
							| 193 | 190 192 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣 ) )  →  𝑢  ⊆  ( 0 [,] 1 ) ) | 
						
							| 194 | 169 | snssd | ⊢ ( 𝜑  →  { 0 }  ⊆  ( 0 [,] 1 ) ) | 
						
							| 195 | 194 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣 ) )  →  { 0 }  ⊆  ( 0 [,] 1 ) ) | 
						
							| 196 |  | resmpo | ⊢ ( ( 𝑢  ⊆  ( 0 [,] 1 )  ∧  { 0 }  ⊆  ( 0 [,] 1 ) )  →  ( ( 𝑏  ∈  ( 0 [,] 1 ) ,  𝑤  ∈  ( 0 [,] 1 )  ↦  ( 𝑏 𝐾 𝑤 ) )  ↾  ( 𝑢  ×  { 0 } ) )  =  ( 𝑏  ∈  𝑢 ,  𝑤  ∈  { 0 }  ↦  ( 𝑏 𝐾 𝑤 ) ) ) | 
						
							| 197 | 193 195 196 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣 ) )  →  ( ( 𝑏  ∈  ( 0 [,] 1 ) ,  𝑤  ∈  ( 0 [,] 1 )  ↦  ( 𝑏 𝐾 𝑤 ) )  ↾  ( 𝑢  ×  { 0 } ) )  =  ( 𝑏  ∈  𝑢 ,  𝑤  ∈  { 0 }  ↦  ( 𝑏 𝐾 𝑤 ) ) ) | 
						
							| 198 | 193 | sselda | ⊢ ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣 ) )  ∧  𝑏  ∈  𝑢 )  →  𝑏  ∈  ( 0 [,] 1 ) ) | 
						
							| 199 |  | simplll | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣 ) )  →  𝜑 ) | 
						
							| 200 | 1 2 3 4 5 6 7 | cvmlift2lem8 | ⊢ ( ( 𝜑  ∧  𝑏  ∈  ( 0 [,] 1 ) )  →  ( 𝑏 𝐾 0 )  =  ( 𝐻 ‘ 𝑏 ) ) | 
						
							| 201 | 199 200 | sylan | ⊢ ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣 ) )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  →  ( 𝑏 𝐾 0 )  =  ( 𝐻 ‘ 𝑏 ) ) | 
						
							| 202 | 198 201 | syldan | ⊢ ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣 ) )  ∧  𝑏  ∈  𝑢 )  →  ( 𝑏 𝐾 0 )  =  ( 𝐻 ‘ 𝑏 ) ) | 
						
							| 203 |  | elsni | ⊢ ( 𝑤  ∈  { 0 }  →  𝑤  =  0 ) | 
						
							| 204 | 203 | oveq2d | ⊢ ( 𝑤  ∈  { 0 }  →  ( 𝑏 𝐾 𝑤 )  =  ( 𝑏 𝐾 0 ) ) | 
						
							| 205 | 204 | eqeq1d | ⊢ ( 𝑤  ∈  { 0 }  →  ( ( 𝑏 𝐾 𝑤 )  =  ( 𝐻 ‘ 𝑏 )  ↔  ( 𝑏 𝐾 0 )  =  ( 𝐻 ‘ 𝑏 ) ) ) | 
						
							| 206 | 202 205 | syl5ibrcom | ⊢ ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣 ) )  ∧  𝑏  ∈  𝑢 )  →  ( 𝑤  ∈  { 0 }  →  ( 𝑏 𝐾 𝑤 )  =  ( 𝐻 ‘ 𝑏 ) ) ) | 
						
							| 207 | 206 | 3impia | ⊢ ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣 ) )  ∧  𝑏  ∈  𝑢  ∧  𝑤  ∈  { 0 } )  →  ( 𝑏 𝐾 𝑤 )  =  ( 𝐻 ‘ 𝑏 ) ) | 
						
							| 208 | 207 | mpoeq3dva | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣 ) )  →  ( 𝑏  ∈  𝑢 ,  𝑤  ∈  { 0 }  ↦  ( 𝑏 𝐾 𝑤 ) )  =  ( 𝑏  ∈  𝑢 ,  𝑤  ∈  { 0 }  ↦  ( 𝐻 ‘ 𝑏 ) ) ) | 
						
							| 209 | 189 197 208 | 3eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣 ) )  →  ( 𝐾  ↾  ( 𝑢  ×  { 0 } ) )  =  ( 𝑏  ∈  𝑢 ,  𝑤  ∈  { 0 }  ↦  ( 𝐻 ‘ 𝑏 ) ) ) | 
						
							| 210 |  | eqid | ⊢ ( II  ↾t  𝑢 )  =  ( II  ↾t  𝑢 ) | 
						
							| 211 |  | iitopon | ⊢ II  ∈  ( TopOn ‘ ( 0 [,] 1 ) ) | 
						
							| 212 | 211 | a1i | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣 ) )  →  II  ∈  ( TopOn ‘ ( 0 [,] 1 ) ) ) | 
						
							| 213 |  | eqid | ⊢ ( II  ↾t  { 0 } )  =  ( II  ↾t  { 0 } ) | 
						
							| 214 | 212 212 | cnmpt1st | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣 ) )  →  ( 𝑏  ∈  ( 0 [,] 1 ) ,  𝑤  ∈  ( 0 [,] 1 )  ↦  𝑏 )  ∈  ( ( II  ×t  II )  Cn  II ) ) | 
						
							| 215 | 1 2 3 4 5 6 | cvmlift2lem2 | ⊢ ( 𝜑  →  ( 𝐻  ∈  ( II  Cn  𝐶 )  ∧  ( 𝐹  ∘  𝐻 )  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑧 𝐺 0 ) )  ∧  ( 𝐻 ‘ 0 )  =  𝑃 ) ) | 
						
							| 216 | 215 | simp1d | ⊢ ( 𝜑  →  𝐻  ∈  ( II  Cn  𝐶 ) ) | 
						
							| 217 | 199 216 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣 ) )  →  𝐻  ∈  ( II  Cn  𝐶 ) ) | 
						
							| 218 | 212 212 214 217 | cnmpt21f | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣 ) )  →  ( 𝑏  ∈  ( 0 [,] 1 ) ,  𝑤  ∈  ( 0 [,] 1 )  ↦  ( 𝐻 ‘ 𝑏 ) )  ∈  ( ( II  ×t  II )  Cn  𝐶 ) ) | 
						
							| 219 | 210 212 193 213 212 195 218 | cnmpt2res | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣 ) )  →  ( 𝑏  ∈  𝑢 ,  𝑤  ∈  { 0 }  ↦  ( 𝐻 ‘ 𝑏 ) )  ∈  ( ( ( II  ↾t  𝑢 )  ×t  ( II  ↾t  { 0 } ) )  Cn  𝐶 ) ) | 
						
							| 220 |  | vex | ⊢ 𝑢  ∈  V | 
						
							| 221 |  | snex | ⊢ { 0 }  ∈  V | 
						
							| 222 |  | txrest | ⊢ ( ( ( II  ∈  Top  ∧  II  ∈  Top )  ∧  ( 𝑢  ∈  V  ∧  { 0 }  ∈  V ) )  →  ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 0 } ) )  =  ( ( II  ↾t  𝑢 )  ×t  ( II  ↾t  { 0 } ) ) ) | 
						
							| 223 | 22 22 220 221 222 | mp4an | ⊢ ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 0 } ) )  =  ( ( II  ↾t  𝑢 )  ×t  ( II  ↾t  { 0 } ) ) | 
						
							| 224 | 223 | oveq1i | ⊢ ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 0 } ) )  Cn  𝐶 )  =  ( ( ( II  ↾t  𝑢 )  ×t  ( II  ↾t  { 0 } ) )  Cn  𝐶 ) | 
						
							| 225 | 219 224 | eleqtrrdi | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣 ) )  →  ( 𝑏  ∈  𝑢 ,  𝑤  ∈  { 0 }  ↦  ( 𝐻 ‘ 𝑏 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 0 } ) )  Cn  𝐶 ) ) | 
						
							| 226 | 209 225 | eqeltrd | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣 ) )  →  ( 𝐾  ↾  ( 𝑢  ×  { 0 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 0 } ) )  Cn  𝐶 ) ) | 
						
							| 227 |  | sneq | ⊢ ( 𝑤  =  0  →  { 𝑤 }  =  { 0 } ) | 
						
							| 228 | 227 | xpeq2d | ⊢ ( 𝑤  =  0  →  ( 𝑢  ×  { 𝑤 } )  =  ( 𝑢  ×  { 0 } ) ) | 
						
							| 229 | 228 | reseq2d | ⊢ ( 𝑤  =  0  →  ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  =  ( 𝐾  ↾  ( 𝑢  ×  { 0 } ) ) ) | 
						
							| 230 | 228 | oveq2d | ⊢ ( 𝑤  =  0  →  ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  =  ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 0 } ) ) ) | 
						
							| 231 | 230 | oveq1d | ⊢ ( 𝑤  =  0  →  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  =  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 0 } ) )  Cn  𝐶 ) ) | 
						
							| 232 | 229 231 | eleq12d | ⊢ ( 𝑤  =  0  →  ( ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  ↔  ( 𝐾  ↾  ( 𝑢  ×  { 0 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 0 } ) )  Cn  𝐶 ) ) ) | 
						
							| 233 | 232 | rspcev | ⊢ ( ( 0  ∈  𝑣  ∧  ( 𝐾  ↾  ( 𝑢  ×  { 0 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 0 } ) )  Cn  𝐶 ) )  →  ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 ) ) | 
						
							| 234 | 184 226 233 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣 ) )  →  ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 ) ) | 
						
							| 235 |  | opelxpi | ⊢ ( ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣 )  →  〈 𝑟 ,  0 〉  ∈  ( 𝑢  ×  𝑣 ) ) | 
						
							| 236 | 235 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣 ) )  →  〈 𝑟 ,  0 〉  ∈  ( 𝑢  ×  𝑣 ) ) | 
						
							| 237 |  | simplrr | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣 ) )  →  𝑣  ∈  II ) | 
						
							| 238 | 237 145 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣 ) )  →  𝑣  ⊆  ( 0 [,] 1 ) ) | 
						
							| 239 |  | xpss12 | ⊢ ( ( 𝑢  ⊆  ( 0 [,] 1 )  ∧  𝑣  ⊆  ( 0 [,] 1 ) )  →  ( 𝑢  ×  𝑣 )  ⊆  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 240 | 193 238 239 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣 ) )  →  ( 𝑢  ×  𝑣 )  ⊆  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 241 | 38 | restuni | ⊢ ( ( ( II  ×t  II )  ∈  Top  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) )  →  ( 𝑢  ×  𝑣 )  =  ∪  ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) ) ) | 
						
							| 242 | 24 240 241 | sylancr | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣 ) )  →  ( 𝑢  ×  𝑣 )  =  ∪  ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) ) ) | 
						
							| 243 | 236 242 | eleqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣 ) )  →  〈 𝑟 ,  0 〉  ∈  ∪  ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) ) ) | 
						
							| 244 |  | eqid | ⊢ ∪  ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  =  ∪  ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) ) | 
						
							| 245 | 244 | cncnpi | ⊢ ( ( ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 )  ∧  〈 𝑟 ,  0 〉  ∈  ∪  ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) ) )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  CnP  𝐶 ) ‘ 〈 𝑟 ,  0 〉 ) ) | 
						
							| 246 | 245 | expcom | ⊢ ( 〈 𝑟 ,  0 〉  ∈  ∪  ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  →  ( ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  CnP  𝐶 ) ‘ 〈 𝑟 ,  0 〉 ) ) ) | 
						
							| 247 | 243 246 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣 ) )  →  ( ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  CnP  𝐶 ) ‘ 〈 𝑟 ,  0 〉 ) ) ) | 
						
							| 248 | 24 | a1i | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣 ) )  →  ( II  ×t  II )  ∈  Top ) | 
						
							| 249 | 22 | a1i | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣 ) )  →  II  ∈  Top ) | 
						
							| 250 | 249 249 190 237 55 | syl22anc | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣 ) )  →  ( 𝑢  ×  𝑣 )  ∈  ( II  ×t  II ) ) | 
						
							| 251 |  | isopn3i | ⊢ ( ( ( II  ×t  II )  ∈  Top  ∧  ( 𝑢  ×  𝑣 )  ∈  ( II  ×t  II ) )  →  ( ( int ‘ ( II  ×t  II ) ) ‘ ( 𝑢  ×  𝑣 ) )  =  ( 𝑢  ×  𝑣 ) ) | 
						
							| 252 | 24 250 251 | sylancr | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣 ) )  →  ( ( int ‘ ( II  ×t  II ) ) ‘ ( 𝑢  ×  𝑣 ) )  =  ( 𝑢  ×  𝑣 ) ) | 
						
							| 253 | 236 252 | eleqtrrd | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣 ) )  →  〈 𝑟 ,  0 〉  ∈  ( ( int ‘ ( II  ×t  II ) ) ‘ ( 𝑢  ×  𝑣 ) ) ) | 
						
							| 254 | 38 1 | cnprest | ⊢ ( ( ( ( II  ×t  II )  ∈  Top  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) )  ∧  ( 〈 𝑟 ,  0 〉  ∈  ( ( int ‘ ( II  ×t  II ) ) ‘ ( 𝑢  ×  𝑣 ) )  ∧  𝐾 : ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ⟶ 𝐵 ) )  →  ( 𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 〈 𝑟 ,  0 〉 )  ↔  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  CnP  𝐶 ) ‘ 〈 𝑟 ,  0 〉 ) ) ) | 
						
							| 255 | 248 240 253 185 254 | syl22anc | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣 ) )  →  ( 𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 〈 𝑟 ,  0 〉 )  ↔  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  CnP  𝐶 ) ‘ 〈 𝑟 ,  0 〉 ) ) ) | 
						
							| 256 | 247 255 | sylibrd | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣 ) )  →  ( ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 )  →  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 〈 𝑟 ,  0 〉 ) ) ) | 
						
							| 257 | 234 256 | embantd | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  ∧  ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣 ) )  →  ( ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) )  →  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 〈 𝑟 ,  0 〉 ) ) ) | 
						
							| 258 | 257 | expimpd | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  →  ( ( ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣 )  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) )  →  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 〈 𝑟 ,  0 〉 ) ) ) | 
						
							| 259 | 183 258 | biimtrid | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  ∈  II  ∧  𝑣  ∈  II ) )  →  ( ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) )  →  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 〈 𝑟 ,  0 〉 ) ) ) | 
						
							| 260 | 259 | rexlimdvva | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  →  ( ∃ 𝑢  ∈  II ∃ 𝑣  ∈  II ( 𝑟  ∈  𝑢  ∧  0  ∈  𝑣  ∧  ( ∃ 𝑤  ∈  𝑣 ( 𝐾  ↾  ( 𝑢  ×  { 𝑤 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  { 𝑤 } ) )  Cn  𝐶 )  →  ( 𝐾  ↾  ( 𝑢  ×  𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑢  ×  𝑣 ) )  Cn  𝐶 ) ) )  →  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 〈 𝑟 ,  0 〉 ) ) ) | 
						
							| 261 | 182 260 | mpd | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  →  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 〈 𝑟 ,  0 〉 ) ) | 
						
							| 262 |  | fveq2 | ⊢ ( 𝑧  =  〈 𝑟 ,  0 〉  →  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑧 )  =  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 〈 𝑟 ,  0 〉 ) ) | 
						
							| 263 | 262 | eleq2d | ⊢ ( 𝑧  =  〈 𝑟 ,  0 〉  →  ( 𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑧 )  ↔  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 〈 𝑟 ,  0 〉 ) ) ) | 
						
							| 264 | 263 8 | elrab2 | ⊢ ( 〈 𝑟 ,  0 〉  ∈  𝑀  ↔  ( 〈 𝑟 ,  0 〉  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∧  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 〈 𝑟 ,  0 〉 ) ) ) | 
						
							| 265 | 175 261 264 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  →  〈 𝑟 ,  0 〉  ∈  𝑀 ) | 
						
							| 266 |  | elsni | ⊢ ( 𝑎  ∈  { 0 }  →  𝑎  =  0 ) | 
						
							| 267 | 266 | opeq2d | ⊢ ( 𝑎  ∈  { 0 }  →  〈 𝑟 ,  𝑎 〉  =  〈 𝑟 ,  0 〉 ) | 
						
							| 268 | 267 | eleq1d | ⊢ ( 𝑎  ∈  { 0 }  →  ( 〈 𝑟 ,  𝑎 〉  ∈  𝑀  ↔  〈 𝑟 ,  0 〉  ∈  𝑀 ) ) | 
						
							| 269 | 265 268 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( 0 [,] 1 ) )  →  ( 𝑎  ∈  { 0 }  →  〈 𝑟 ,  𝑎 〉  ∈  𝑀 ) ) | 
						
							| 270 | 269 | expimpd | ⊢ ( 𝜑  →  ( ( 𝑟  ∈  ( 0 [,] 1 )  ∧  𝑎  ∈  { 0 } )  →  〈 𝑟 ,  𝑎 〉  ∈  𝑀 ) ) | 
						
							| 271 | 172 270 | biimtrid | ⊢ ( 𝜑  →  ( 〈 𝑟 ,  𝑎 〉  ∈  ( ( 0 [,] 1 )  ×  { 0 } )  →  〈 𝑟 ,  𝑎 〉  ∈  𝑀 ) ) | 
						
							| 272 | 171 271 | relssdv | ⊢ ( 𝜑  →  ( ( 0 [,] 1 )  ×  { 0 } )  ⊆  𝑀 ) | 
						
							| 273 |  | sneq | ⊢ ( 𝑎  =  0  →  { 𝑎 }  =  { 0 } ) | 
						
							| 274 | 273 | xpeq2d | ⊢ ( 𝑎  =  0  →  ( ( 0 [,] 1 )  ×  { 𝑎 } )  =  ( ( 0 [,] 1 )  ×  { 0 } ) ) | 
						
							| 275 | 274 | sseq1d | ⊢ ( 𝑎  =  0  →  ( ( ( 0 [,] 1 )  ×  { 𝑎 } )  ⊆  𝑀  ↔  ( ( 0 [,] 1 )  ×  { 0 } )  ⊆  𝑀 ) ) | 
						
							| 276 | 275 9 | elrab2 | ⊢ ( 0  ∈  𝐴  ↔  ( 0  ∈  ( 0 [,] 1 )  ∧  ( ( 0 [,] 1 )  ×  { 0 } )  ⊆  𝑀 ) ) | 
						
							| 277 | 169 272 276 | sylanbrc | ⊢ ( 𝜑  →  0  ∈  𝐴 ) | 
						
							| 278 | 277 | ne0d | ⊢ ( 𝜑  →  𝐴  ≠  ∅ ) | 
						
							| 279 |  | inss2 | ⊢ ( II  ∩  ( Clsd ‘ II ) )  ⊆  ( Clsd ‘ II ) | 
						
							| 280 | 279 166 | sselid | ⊢ ( 𝜑  →  𝐴  ∈  ( Clsd ‘ II ) ) | 
						
							| 281 | 16 18 167 278 280 | connclo | ⊢ ( 𝜑  →  𝐴  =  ( 0 [,] 1 ) ) | 
						
							| 282 | 281 9 | eqtr3di | ⊢ ( 𝜑  →  ( 0 [,] 1 )  =  { 𝑎  ∈  ( 0 [,] 1 )  ∣  ( ( 0 [,] 1 )  ×  { 𝑎 } )  ⊆  𝑀 } ) | 
						
							| 283 |  | rabid2 | ⊢ ( ( 0 [,] 1 )  =  { 𝑎  ∈  ( 0 [,] 1 )  ∣  ( ( 0 [,] 1 )  ×  { 𝑎 } )  ⊆  𝑀 }  ↔  ∀ 𝑎  ∈  ( 0 [,] 1 ) ( ( 0 [,] 1 )  ×  { 𝑎 } )  ⊆  𝑀 ) | 
						
							| 284 | 282 283 | sylib | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  ( 0 [,] 1 ) ( ( 0 [,] 1 )  ×  { 𝑎 } )  ⊆  𝑀 ) | 
						
							| 285 |  | iunss | ⊢ ( ∪  𝑎  ∈  ( 0 [,] 1 ) ( ( 0 [,] 1 )  ×  { 𝑎 } )  ⊆  𝑀  ↔  ∀ 𝑎  ∈  ( 0 [,] 1 ) ( ( 0 [,] 1 )  ×  { 𝑎 } )  ⊆  𝑀 ) | 
						
							| 286 | 284 285 | sylibr | ⊢ ( 𝜑  →  ∪  𝑎  ∈  ( 0 [,] 1 ) ( ( 0 [,] 1 )  ×  { 𝑎 } )  ⊆  𝑀 ) | 
						
							| 287 | 15 286 | eqsstrid | ⊢ ( 𝜑  →  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ⊆  𝑀 ) | 
						
							| 288 | 287 8 | sseqtrdi | ⊢ ( 𝜑  →  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ⊆  { 𝑧  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑧 ) } ) | 
						
							| 289 |  | ssrab | ⊢ ( ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ⊆  { 𝑧  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑧 ) }  ↔  ( ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ⊆  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∧  ∀ 𝑧  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) 𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑧 ) ) ) | 
						
							| 290 | 289 | simprbi | ⊢ ( ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ⊆  { 𝑧  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑧 ) }  →  ∀ 𝑧  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) 𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑧 ) ) | 
						
							| 291 | 288 290 | syl | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) 𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑧 ) ) | 
						
							| 292 |  | txtopon | ⊢ ( ( II  ∈  ( TopOn ‘ ( 0 [,] 1 ) )  ∧  II  ∈  ( TopOn ‘ ( 0 [,] 1 ) ) )  →  ( II  ×t  II )  ∈  ( TopOn ‘ ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) ) | 
						
							| 293 | 211 211 292 | mp2an | ⊢ ( II  ×t  II )  ∈  ( TopOn ‘ ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 294 |  | cvmtop1 | ⊢ ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  →  𝐶  ∈  Top ) | 
						
							| 295 | 2 294 | syl | ⊢ ( 𝜑  →  𝐶  ∈  Top ) | 
						
							| 296 | 1 | toptopon | ⊢ ( 𝐶  ∈  Top  ↔  𝐶  ∈  ( TopOn ‘ 𝐵 ) ) | 
						
							| 297 | 295 296 | sylib | ⊢ ( 𝜑  →  𝐶  ∈  ( TopOn ‘ 𝐵 ) ) | 
						
							| 298 |  | cncnp | ⊢ ( ( ( II  ×t  II )  ∈  ( TopOn ‘ ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) )  ∧  𝐶  ∈  ( TopOn ‘ 𝐵 ) )  →  ( 𝐾  ∈  ( ( II  ×t  II )  Cn  𝐶 )  ↔  ( 𝐾 : ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ⟶ 𝐵  ∧  ∀ 𝑧  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) 𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑧 ) ) ) ) | 
						
							| 299 | 293 297 298 | sylancr | ⊢ ( 𝜑  →  ( 𝐾  ∈  ( ( II  ×t  II )  Cn  𝐶 )  ↔  ( 𝐾 : ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ⟶ 𝐵  ∧  ∀ 𝑧  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) 𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑧 ) ) ) ) | 
						
							| 300 | 11 291 299 | mpbir2and | ⊢ ( 𝜑  →  𝐾  ∈  ( ( II  ×t  II )  Cn  𝐶 ) ) |