Step |
Hyp |
Ref |
Expression |
1 |
|
cvmlift2.b |
⊢ 𝐵 = ∪ 𝐶 |
2 |
|
cvmlift2.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
3 |
|
cvmlift2.g |
⊢ ( 𝜑 → 𝐺 ∈ ( ( II ×t II ) Cn 𝐽 ) ) |
4 |
|
cvmlift2.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝐵 ) |
5 |
|
cvmlift2.i |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) = ( 0 𝐺 0 ) ) |
6 |
|
cvmlift2.h |
⊢ 𝐻 = ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑧 𝐺 0 ) ) ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) |
7 |
|
cvmlift2.k |
⊢ 𝐾 = ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 𝐺 𝑧 ) ) ∧ ( 𝑓 ‘ 0 ) = ( 𝐻 ‘ 𝑥 ) ) ) ‘ 𝑦 ) ) |
8 |
|
cvmlift2.m |
⊢ 𝑀 = { 𝑧 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ∣ 𝐾 ∈ ( ( ( II ×t II ) CnP 𝐶 ) ‘ 𝑧 ) } |
9 |
|
cvmlift2.a |
⊢ 𝐴 = { 𝑎 ∈ ( 0 [,] 1 ) ∣ ( ( 0 [,] 1 ) × { 𝑎 } ) ⊆ 𝑀 } |
10 |
|
cvmlift2.s |
⊢ 𝑆 = { 〈 𝑟 , 𝑡 〉 ∣ ( 𝑡 ∈ ( 0 [,] 1 ) ∧ ∃ 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ) ) } |
11 |
1 2 3 4 5 6 7
|
cvmlift2lem5 |
⊢ ( 𝜑 → 𝐾 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝐵 ) |
12 |
|
iunid |
⊢ ∪ 𝑎 ∈ ( 0 [,] 1 ) { 𝑎 } = ( 0 [,] 1 ) |
13 |
12
|
xpeq2i |
⊢ ( ( 0 [,] 1 ) × ∪ 𝑎 ∈ ( 0 [,] 1 ) { 𝑎 } ) = ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) |
14 |
|
xpiundi |
⊢ ( ( 0 [,] 1 ) × ∪ 𝑎 ∈ ( 0 [,] 1 ) { 𝑎 } ) = ∪ 𝑎 ∈ ( 0 [,] 1 ) ( ( 0 [,] 1 ) × { 𝑎 } ) |
15 |
13 14
|
eqtr3i |
⊢ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) = ∪ 𝑎 ∈ ( 0 [,] 1 ) ( ( 0 [,] 1 ) × { 𝑎 } ) |
16 |
|
iiuni |
⊢ ( 0 [,] 1 ) = ∪ II |
17 |
|
iiconn |
⊢ II ∈ Conn |
18 |
17
|
a1i |
⊢ ( 𝜑 → II ∈ Conn ) |
19 |
|
inss1 |
⊢ ( II ∩ ( Clsd ‘ II ) ) ⊆ II |
20 |
|
iicmp |
⊢ II ∈ Comp |
21 |
20
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 [,] 1 ) ) → II ∈ Comp ) |
22 |
|
iitop |
⊢ II ∈ Top |
23 |
22
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 [,] 1 ) ) → II ∈ Top ) |
24 |
22 22
|
txtopi |
⊢ ( II ×t II ) ∈ Top |
25 |
16
|
neiss2 |
⊢ ( ( II ∈ Top ∧ 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ) → { 𝑟 } ⊆ ( 0 [,] 1 ) ) |
26 |
22 25
|
mpan |
⊢ ( 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) → { 𝑟 } ⊆ ( 0 [,] 1 ) ) |
27 |
|
vex |
⊢ 𝑟 ∈ V |
28 |
27
|
snss |
⊢ ( 𝑟 ∈ ( 0 [,] 1 ) ↔ { 𝑟 } ⊆ ( 0 [,] 1 ) ) |
29 |
26 28
|
sylibr |
⊢ ( 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) → 𝑟 ∈ ( 0 [,] 1 ) ) |
30 |
29
|
a1d |
⊢ ( 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) → ( ( ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ) → 𝑟 ∈ ( 0 [,] 1 ) ) ) |
31 |
30
|
rexlimiv |
⊢ ( ∃ 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ) → 𝑟 ∈ ( 0 [,] 1 ) ) |
32 |
31
|
adantl |
⊢ ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ ∃ 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ) ) → 𝑟 ∈ ( 0 [,] 1 ) ) |
33 |
|
simpl |
⊢ ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ ∃ 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ) ) → 𝑡 ∈ ( 0 [,] 1 ) ) |
34 |
32 33
|
jca |
⊢ ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ ∃ 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ) ) → ( 𝑟 ∈ ( 0 [,] 1 ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) ) |
35 |
34
|
ssopab2i |
⊢ { 〈 𝑟 , 𝑡 〉 ∣ ( 𝑡 ∈ ( 0 [,] 1 ) ∧ ∃ 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ) ) } ⊆ { 〈 𝑟 , 𝑡 〉 ∣ ( 𝑟 ∈ ( 0 [,] 1 ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) } |
36 |
|
df-xp |
⊢ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) = { 〈 𝑟 , 𝑡 〉 ∣ ( 𝑟 ∈ ( 0 [,] 1 ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) } |
37 |
35 10 36
|
3sstr4i |
⊢ 𝑆 ⊆ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) |
38 |
22 22 16 16
|
txunii |
⊢ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) = ∪ ( II ×t II ) |
39 |
38
|
ntropn |
⊢ ( ( ( II ×t II ) ∈ Top ∧ 𝑆 ⊆ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) → ( ( int ‘ ( II ×t II ) ) ‘ 𝑆 ) ∈ ( II ×t II ) ) |
40 |
24 37 39
|
mp2an |
⊢ ( ( int ‘ ( II ×t II ) ) ‘ 𝑆 ) ∈ ( II ×t II ) |
41 |
40
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 [,] 1 ) ) → ( ( int ‘ ( II ×t II ) ) ‘ 𝑆 ) ∈ ( II ×t II ) ) |
42 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ) → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
43 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ) → 𝐺 ∈ ( ( II ×t II ) Cn 𝐽 ) ) |
44 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ) → 𝑃 ∈ 𝐵 ) |
45 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ) → ( 𝐹 ‘ 𝑃 ) = ( 0 𝐺 0 ) ) |
46 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑐 ∈ 𝑠 ( ∀ 𝑑 ∈ ( 𝑠 ∖ { 𝑐 } ) ( 𝑐 ∩ 𝑑 ) = ∅ ∧ ( 𝐹 ↾ 𝑐 ) ∈ ( ( 𝐶 ↾t 𝑐 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } ) = ( 𝑘 ∈ 𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑐 ∈ 𝑠 ( ∀ 𝑑 ∈ ( 𝑠 ∖ { 𝑐 } ) ( 𝑐 ∩ 𝑑 ) = ∅ ∧ ( 𝐹 ↾ 𝑐 ) ∈ ( ( 𝐶 ↾t 𝑐 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } ) |
47 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ) → 𝑏 ∈ ( 0 [,] 1 ) ) |
48 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ) → 𝑎 ∈ ( 0 [,] 1 ) ) |
49 |
1 42 43 44 45 6 7 46 47 48
|
cvmlift2lem10 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ) → ∃ 𝑢 ∈ II ∃ 𝑣 ∈ II ( 𝑏 ∈ 𝑢 ∧ 𝑎 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) |
50 |
24
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑏 ∈ 𝑢 ∧ 𝑎 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) → ( II ×t II ) ∈ Top ) |
51 |
37
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑏 ∈ 𝑢 ∧ 𝑎 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) → 𝑆 ⊆ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
52 |
22
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑏 ∈ 𝑢 ∧ 𝑎 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) → II ∈ Top ) |
53 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑏 ∈ 𝑢 ∧ 𝑎 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) → 𝑢 ∈ II ) |
54 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑏 ∈ 𝑢 ∧ 𝑎 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) → 𝑣 ∈ II ) |
55 |
|
txopn |
⊢ ( ( ( II ∈ Top ∧ II ∈ Top ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) → ( 𝑢 × 𝑣 ) ∈ ( II ×t II ) ) |
56 |
52 52 53 54 55
|
syl22anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑏 ∈ 𝑢 ∧ 𝑎 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) → ( 𝑢 × 𝑣 ) ∈ ( II ×t II ) ) |
57 |
|
simpr |
⊢ ( ( 𝑟 ∈ 𝑢 ∧ 𝑡 ∈ 𝑣 ) → 𝑡 ∈ 𝑣 ) |
58 |
|
elunii |
⊢ ( ( 𝑡 ∈ 𝑣 ∧ 𝑣 ∈ II ) → 𝑡 ∈ ∪ II ) |
59 |
58 16
|
eleqtrrdi |
⊢ ( ( 𝑡 ∈ 𝑣 ∧ 𝑣 ∈ II ) → 𝑡 ∈ ( 0 [,] 1 ) ) |
60 |
57 54 59
|
syl2anr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑏 ∈ 𝑢 ∧ 𝑎 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 𝑡 ∈ 𝑣 ) ) → 𝑡 ∈ ( 0 [,] 1 ) ) |
61 |
22
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑏 ∈ 𝑢 ∧ 𝑎 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 𝑡 ∈ 𝑣 ) ) → II ∈ Top ) |
62 |
53
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑏 ∈ 𝑢 ∧ 𝑎 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 𝑡 ∈ 𝑣 ) ) → 𝑢 ∈ II ) |
63 |
|
simprl |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑏 ∈ 𝑢 ∧ 𝑎 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 𝑡 ∈ 𝑣 ) ) → 𝑟 ∈ 𝑢 ) |
64 |
|
opnneip |
⊢ ( ( II ∈ Top ∧ 𝑢 ∈ II ∧ 𝑟 ∈ 𝑢 ) → 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ) |
65 |
61 62 63 64
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑏 ∈ 𝑢 ∧ 𝑎 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 𝑡 ∈ 𝑣 ) ) → 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ) |
66 |
42
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑏 ∈ 𝑢 ∧ 𝑎 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 𝑡 ∈ 𝑣 ) ) → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
67 |
43
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑏 ∈ 𝑢 ∧ 𝑎 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 𝑡 ∈ 𝑣 ) ) → 𝐺 ∈ ( ( II ×t II ) Cn 𝐽 ) ) |
68 |
44
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑏 ∈ 𝑢 ∧ 𝑎 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 𝑡 ∈ 𝑣 ) ) → 𝑃 ∈ 𝐵 ) |
69 |
45
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑏 ∈ 𝑢 ∧ 𝑎 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 𝑡 ∈ 𝑣 ) ) → ( 𝐹 ‘ 𝑃 ) = ( 0 𝐺 0 ) ) |
70 |
54
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑏 ∈ 𝑢 ∧ 𝑎 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 𝑡 ∈ 𝑣 ) ) → 𝑣 ∈ II ) |
71 |
|
simplr2 |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑏 ∈ 𝑢 ∧ 𝑎 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 𝑡 ∈ 𝑣 ) ) → 𝑎 ∈ 𝑣 ) |
72 |
|
simprr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑏 ∈ 𝑢 ∧ 𝑎 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 𝑡 ∈ 𝑣 ) ) → 𝑡 ∈ 𝑣 ) |
73 |
|
sneq |
⊢ ( 𝑐 = 𝑤 → { 𝑐 } = { 𝑤 } ) |
74 |
73
|
xpeq2d |
⊢ ( 𝑐 = 𝑤 → ( 𝑢 × { 𝑐 } ) = ( 𝑢 × { 𝑤 } ) ) |
75 |
74
|
reseq2d |
⊢ ( 𝑐 = 𝑤 → ( 𝐾 ↾ ( 𝑢 × { 𝑐 } ) ) = ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ) |
76 |
74
|
oveq2d |
⊢ ( 𝑐 = 𝑤 → ( ( II ×t II ) ↾t ( 𝑢 × { 𝑐 } ) ) = ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) ) |
77 |
76
|
oveq1d |
⊢ ( 𝑐 = 𝑤 → ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑐 } ) ) Cn 𝐶 ) = ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) ) |
78 |
75 77
|
eleq12d |
⊢ ( 𝑐 = 𝑤 → ( ( 𝐾 ↾ ( 𝑢 × { 𝑐 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑐 } ) ) Cn 𝐶 ) ↔ ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) ) ) |
79 |
78
|
cbvrexvw |
⊢ ( ∃ 𝑐 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑐 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑐 } ) ) Cn 𝐶 ) ↔ ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) ) |
80 |
|
simplr3 |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑏 ∈ 𝑢 ∧ 𝑎 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 𝑡 ∈ 𝑣 ) ) → ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) |
81 |
79 80
|
syl5bi |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑏 ∈ 𝑢 ∧ 𝑎 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 𝑡 ∈ 𝑣 ) ) → ( ∃ 𝑐 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑐 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑐 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) |
82 |
1 66 67 68 69 6 7 8 62 70 71 72 81
|
cvmlift2lem11 |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑏 ∈ 𝑢 ∧ 𝑎 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 𝑡 ∈ 𝑣 ) ) → ( ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 → ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ) ) |
83 |
1 66 67 68 69 6 7 8 62 70 72 71 81
|
cvmlift2lem11 |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑏 ∈ 𝑢 ∧ 𝑎 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 𝑡 ∈ 𝑣 ) ) → ( ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 → ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ) ) |
84 |
82 83
|
impbid |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑏 ∈ 𝑢 ∧ 𝑎 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 𝑡 ∈ 𝑣 ) ) → ( ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ) ) |
85 |
|
rspe |
⊢ ( ( 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ∧ ( ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ) ) → ∃ 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ) ) |
86 |
65 84 85
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑏 ∈ 𝑢 ∧ 𝑎 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 𝑡 ∈ 𝑣 ) ) → ∃ 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ) ) |
87 |
60 86
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑏 ∈ 𝑢 ∧ 𝑎 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 𝑡 ∈ 𝑣 ) ) → ( 𝑡 ∈ ( 0 [,] 1 ) ∧ ∃ 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ) ) ) |
88 |
87
|
ex |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑏 ∈ 𝑢 ∧ 𝑎 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) → ( ( 𝑟 ∈ 𝑢 ∧ 𝑡 ∈ 𝑣 ) → ( 𝑡 ∈ ( 0 [,] 1 ) ∧ ∃ 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ) ) ) ) |
89 |
88
|
alrimivv |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑏 ∈ 𝑢 ∧ 𝑎 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) → ∀ 𝑟 ∀ 𝑡 ( ( 𝑟 ∈ 𝑢 ∧ 𝑡 ∈ 𝑣 ) → ( 𝑡 ∈ ( 0 [,] 1 ) ∧ ∃ 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ) ) ) ) |
90 |
|
df-xp |
⊢ ( 𝑢 × 𝑣 ) = { 〈 𝑟 , 𝑡 〉 ∣ ( 𝑟 ∈ 𝑢 ∧ 𝑡 ∈ 𝑣 ) } |
91 |
90 10
|
sseq12i |
⊢ ( ( 𝑢 × 𝑣 ) ⊆ 𝑆 ↔ { 〈 𝑟 , 𝑡 〉 ∣ ( 𝑟 ∈ 𝑢 ∧ 𝑡 ∈ 𝑣 ) } ⊆ { 〈 𝑟 , 𝑡 〉 ∣ ( 𝑡 ∈ ( 0 [,] 1 ) ∧ ∃ 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ) ) } ) |
92 |
|
ssopab2bw |
⊢ ( { 〈 𝑟 , 𝑡 〉 ∣ ( 𝑟 ∈ 𝑢 ∧ 𝑡 ∈ 𝑣 ) } ⊆ { 〈 𝑟 , 𝑡 〉 ∣ ( 𝑡 ∈ ( 0 [,] 1 ) ∧ ∃ 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ) ) } ↔ ∀ 𝑟 ∀ 𝑡 ( ( 𝑟 ∈ 𝑢 ∧ 𝑡 ∈ 𝑣 ) → ( 𝑡 ∈ ( 0 [,] 1 ) ∧ ∃ 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ) ) ) ) |
93 |
91 92
|
bitri |
⊢ ( ( 𝑢 × 𝑣 ) ⊆ 𝑆 ↔ ∀ 𝑟 ∀ 𝑡 ( ( 𝑟 ∈ 𝑢 ∧ 𝑡 ∈ 𝑣 ) → ( 𝑡 ∈ ( 0 [,] 1 ) ∧ ∃ 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ) ) ) ) |
94 |
89 93
|
sylibr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑏 ∈ 𝑢 ∧ 𝑎 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) → ( 𝑢 × 𝑣 ) ⊆ 𝑆 ) |
95 |
38
|
ssntr |
⊢ ( ( ( ( II ×t II ) ∈ Top ∧ 𝑆 ⊆ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ∧ ( ( 𝑢 × 𝑣 ) ∈ ( II ×t II ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑆 ) ) → ( 𝑢 × 𝑣 ) ⊆ ( ( int ‘ ( II ×t II ) ) ‘ 𝑆 ) ) |
96 |
50 51 56 94 95
|
syl22anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑏 ∈ 𝑢 ∧ 𝑎 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) → ( 𝑢 × 𝑣 ) ⊆ ( ( int ‘ ( II ×t II ) ) ‘ 𝑆 ) ) |
97 |
|
simpr1 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑏 ∈ 𝑢 ∧ 𝑎 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) → 𝑏 ∈ 𝑢 ) |
98 |
|
simpr2 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑏 ∈ 𝑢 ∧ 𝑎 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) → 𝑎 ∈ 𝑣 ) |
99 |
|
opelxpi |
⊢ ( ( 𝑏 ∈ 𝑢 ∧ 𝑎 ∈ 𝑣 ) → 〈 𝑏 , 𝑎 〉 ∈ ( 𝑢 × 𝑣 ) ) |
100 |
97 98 99
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑏 ∈ 𝑢 ∧ 𝑎 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) → 〈 𝑏 , 𝑎 〉 ∈ ( 𝑢 × 𝑣 ) ) |
101 |
96 100
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑏 ∈ 𝑢 ∧ 𝑎 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) → 〈 𝑏 , 𝑎 〉 ∈ ( ( int ‘ ( II ×t II ) ) ‘ 𝑆 ) ) |
102 |
101
|
ex |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) → ( ( 𝑏 ∈ 𝑢 ∧ 𝑎 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) → 〈 𝑏 , 𝑎 〉 ∈ ( ( int ‘ ( II ×t II ) ) ‘ 𝑆 ) ) ) |
103 |
102
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ) → ( ∃ 𝑢 ∈ II ∃ 𝑣 ∈ II ( 𝑏 ∈ 𝑢 ∧ 𝑎 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) → 〈 𝑏 , 𝑎 〉 ∈ ( ( int ‘ ( II ×t II ) ) ‘ 𝑆 ) ) ) |
104 |
49 103
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ) → 〈 𝑏 , 𝑎 〉 ∈ ( ( int ‘ ( II ×t II ) ) ‘ 𝑆 ) ) |
105 |
|
vex |
⊢ 𝑎 ∈ V |
106 |
|
opeq2 |
⊢ ( 𝑤 = 𝑎 → 〈 𝑏 , 𝑤 〉 = 〈 𝑏 , 𝑎 〉 ) |
107 |
106
|
eleq1d |
⊢ ( 𝑤 = 𝑎 → ( 〈 𝑏 , 𝑤 〉 ∈ ( ( int ‘ ( II ×t II ) ) ‘ 𝑆 ) ↔ 〈 𝑏 , 𝑎 〉 ∈ ( ( int ‘ ( II ×t II ) ) ‘ 𝑆 ) ) ) |
108 |
105 107
|
ralsn |
⊢ ( ∀ 𝑤 ∈ { 𝑎 } 〈 𝑏 , 𝑤 〉 ∈ ( ( int ‘ ( II ×t II ) ) ‘ 𝑆 ) ↔ 〈 𝑏 , 𝑎 〉 ∈ ( ( int ‘ ( II ×t II ) ) ‘ 𝑆 ) ) |
109 |
104 108
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ) → ∀ 𝑤 ∈ { 𝑎 } 〈 𝑏 , 𝑤 〉 ∈ ( ( int ‘ ( II ×t II ) ) ‘ 𝑆 ) ) |
110 |
109
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 0 [,] 1 ) ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) → ∀ 𝑤 ∈ { 𝑎 } 〈 𝑏 , 𝑤 〉 ∈ ( ( int ‘ ( II ×t II ) ) ‘ 𝑆 ) ) |
111 |
110
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 [,] 1 ) ) → ∀ 𝑏 ∈ ( 0 [,] 1 ) ∀ 𝑤 ∈ { 𝑎 } 〈 𝑏 , 𝑤 〉 ∈ ( ( int ‘ ( II ×t II ) ) ‘ 𝑆 ) ) |
112 |
|
dfss3 |
⊢ ( ( ( 0 [,] 1 ) × { 𝑎 } ) ⊆ ( ( int ‘ ( II ×t II ) ) ‘ 𝑆 ) ↔ ∀ 𝑢 ∈ ( ( 0 [,] 1 ) × { 𝑎 } ) 𝑢 ∈ ( ( int ‘ ( II ×t II ) ) ‘ 𝑆 ) ) |
113 |
|
eleq1 |
⊢ ( 𝑢 = 〈 𝑏 , 𝑤 〉 → ( 𝑢 ∈ ( ( int ‘ ( II ×t II ) ) ‘ 𝑆 ) ↔ 〈 𝑏 , 𝑤 〉 ∈ ( ( int ‘ ( II ×t II ) ) ‘ 𝑆 ) ) ) |
114 |
113
|
ralxp |
⊢ ( ∀ 𝑢 ∈ ( ( 0 [,] 1 ) × { 𝑎 } ) 𝑢 ∈ ( ( int ‘ ( II ×t II ) ) ‘ 𝑆 ) ↔ ∀ 𝑏 ∈ ( 0 [,] 1 ) ∀ 𝑤 ∈ { 𝑎 } 〈 𝑏 , 𝑤 〉 ∈ ( ( int ‘ ( II ×t II ) ) ‘ 𝑆 ) ) |
115 |
112 114
|
bitri |
⊢ ( ( ( 0 [,] 1 ) × { 𝑎 } ) ⊆ ( ( int ‘ ( II ×t II ) ) ‘ 𝑆 ) ↔ ∀ 𝑏 ∈ ( 0 [,] 1 ) ∀ 𝑤 ∈ { 𝑎 } 〈 𝑏 , 𝑤 〉 ∈ ( ( int ‘ ( II ×t II ) ) ‘ 𝑆 ) ) |
116 |
111 115
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 [,] 1 ) ) → ( ( 0 [,] 1 ) × { 𝑎 } ) ⊆ ( ( int ‘ ( II ×t II ) ) ‘ 𝑆 ) ) |
117 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 [,] 1 ) ) → 𝑎 ∈ ( 0 [,] 1 ) ) |
118 |
16 16 21 23 41 116 117
|
txtube |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 [,] 1 ) ) → ∃ 𝑣 ∈ II ( 𝑎 ∈ 𝑣 ∧ ( ( 0 [,] 1 ) × 𝑣 ) ⊆ ( ( int ‘ ( II ×t II ) ) ‘ 𝑆 ) ) ) |
119 |
38
|
ntrss2 |
⊢ ( ( ( II ×t II ) ∈ Top ∧ 𝑆 ⊆ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) → ( ( int ‘ ( II ×t II ) ) ‘ 𝑆 ) ⊆ 𝑆 ) |
120 |
24 37 119
|
mp2an |
⊢ ( ( int ‘ ( II ×t II ) ) ‘ 𝑆 ) ⊆ 𝑆 |
121 |
|
sstr |
⊢ ( ( ( ( 0 [,] 1 ) × 𝑣 ) ⊆ ( ( int ‘ ( II ×t II ) ) ‘ 𝑆 ) ∧ ( ( int ‘ ( II ×t II ) ) ‘ 𝑆 ) ⊆ 𝑆 ) → ( ( 0 [,] 1 ) × 𝑣 ) ⊆ 𝑆 ) |
122 |
120 121
|
mpan2 |
⊢ ( ( ( 0 [,] 1 ) × 𝑣 ) ⊆ ( ( int ‘ ( II ×t II ) ) ‘ 𝑆 ) → ( ( 0 [,] 1 ) × 𝑣 ) ⊆ 𝑆 ) |
123 |
|
df-xp |
⊢ ( ( 0 [,] 1 ) × 𝑣 ) = { 〈 𝑟 , 𝑡 〉 ∣ ( 𝑟 ∈ ( 0 [,] 1 ) ∧ 𝑡 ∈ 𝑣 ) } |
124 |
123 10
|
sseq12i |
⊢ ( ( ( 0 [,] 1 ) × 𝑣 ) ⊆ 𝑆 ↔ { 〈 𝑟 , 𝑡 〉 ∣ ( 𝑟 ∈ ( 0 [,] 1 ) ∧ 𝑡 ∈ 𝑣 ) } ⊆ { 〈 𝑟 , 𝑡 〉 ∣ ( 𝑡 ∈ ( 0 [,] 1 ) ∧ ∃ 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ) ) } ) |
125 |
|
ssopab2bw |
⊢ ( { 〈 𝑟 , 𝑡 〉 ∣ ( 𝑟 ∈ ( 0 [,] 1 ) ∧ 𝑡 ∈ 𝑣 ) } ⊆ { 〈 𝑟 , 𝑡 〉 ∣ ( 𝑡 ∈ ( 0 [,] 1 ) ∧ ∃ 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ) ) } ↔ ∀ 𝑟 ∀ 𝑡 ( ( 𝑟 ∈ ( 0 [,] 1 ) ∧ 𝑡 ∈ 𝑣 ) → ( 𝑡 ∈ ( 0 [,] 1 ) ∧ ∃ 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ) ) ) ) |
126 |
|
r2al |
⊢ ( ∀ 𝑟 ∈ ( 0 [,] 1 ) ∀ 𝑡 ∈ 𝑣 ( 𝑡 ∈ ( 0 [,] 1 ) ∧ ∃ 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ) ) ↔ ∀ 𝑟 ∀ 𝑡 ( ( 𝑟 ∈ ( 0 [,] 1 ) ∧ 𝑡 ∈ 𝑣 ) → ( 𝑡 ∈ ( 0 [,] 1 ) ∧ ∃ 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ) ) ) ) |
127 |
|
ralcom |
⊢ ( ∀ 𝑟 ∈ ( 0 [,] 1 ) ∀ 𝑡 ∈ 𝑣 ( 𝑡 ∈ ( 0 [,] 1 ) ∧ ∃ 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ) ) ↔ ∀ 𝑡 ∈ 𝑣 ∀ 𝑟 ∈ ( 0 [,] 1 ) ( 𝑡 ∈ ( 0 [,] 1 ) ∧ ∃ 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ) ) ) |
128 |
125 126 127
|
3bitr2i |
⊢ ( { 〈 𝑟 , 𝑡 〉 ∣ ( 𝑟 ∈ ( 0 [,] 1 ) ∧ 𝑡 ∈ 𝑣 ) } ⊆ { 〈 𝑟 , 𝑡 〉 ∣ ( 𝑡 ∈ ( 0 [,] 1 ) ∧ ∃ 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ) ) } ↔ ∀ 𝑡 ∈ 𝑣 ∀ 𝑟 ∈ ( 0 [,] 1 ) ( 𝑡 ∈ ( 0 [,] 1 ) ∧ ∃ 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ) ) ) |
129 |
124 128
|
bitri |
⊢ ( ( ( 0 [,] 1 ) × 𝑣 ) ⊆ 𝑆 ↔ ∀ 𝑡 ∈ 𝑣 ∀ 𝑟 ∈ ( 0 [,] 1 ) ( 𝑡 ∈ ( 0 [,] 1 ) ∧ ∃ 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ) ) ) |
130 |
122 129
|
sylib |
⊢ ( ( ( 0 [,] 1 ) × 𝑣 ) ⊆ ( ( int ‘ ( II ×t II ) ) ‘ 𝑆 ) → ∀ 𝑡 ∈ 𝑣 ∀ 𝑟 ∈ ( 0 [,] 1 ) ( 𝑡 ∈ ( 0 [,] 1 ) ∧ ∃ 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ) ) ) |
131 |
|
simpr |
⊢ ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ ∃ 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ) ) → ∃ 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ) ) |
132 |
131
|
ralimi |
⊢ ( ∀ 𝑟 ∈ ( 0 [,] 1 ) ( 𝑡 ∈ ( 0 [,] 1 ) ∧ ∃ 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ) ) → ∀ 𝑟 ∈ ( 0 [,] 1 ) ∃ 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ) ) |
133 |
|
cvmlift2lem1 |
⊢ ( ∀ 𝑟 ∈ ( 0 [,] 1 ) ∃ 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ) → ( ( ( 0 [,] 1 ) × { 𝑎 } ) ⊆ 𝑀 → ( ( 0 [,] 1 ) × { 𝑡 } ) ⊆ 𝑀 ) ) |
134 |
|
bicom |
⊢ ( ( ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ) ↔ ( ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ) ) |
135 |
134
|
rexbii |
⊢ ( ∃ 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ) ↔ ∃ 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ) ) |
136 |
135
|
ralbii |
⊢ ( ∀ 𝑟 ∈ ( 0 [,] 1 ) ∃ 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ) ↔ ∀ 𝑟 ∈ ( 0 [,] 1 ) ∃ 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ) ) |
137 |
|
cvmlift2lem1 |
⊢ ( ∀ 𝑟 ∈ ( 0 [,] 1 ) ∃ 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ) → ( ( ( 0 [,] 1 ) × { 𝑡 } ) ⊆ 𝑀 → ( ( 0 [,] 1 ) × { 𝑎 } ) ⊆ 𝑀 ) ) |
138 |
136 137
|
sylbi |
⊢ ( ∀ 𝑟 ∈ ( 0 [,] 1 ) ∃ 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ) → ( ( ( 0 [,] 1 ) × { 𝑡 } ) ⊆ 𝑀 → ( ( 0 [,] 1 ) × { 𝑎 } ) ⊆ 𝑀 ) ) |
139 |
133 138
|
impbid |
⊢ ( ∀ 𝑟 ∈ ( 0 [,] 1 ) ∃ 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ) → ( ( ( 0 [,] 1 ) × { 𝑎 } ) ⊆ 𝑀 ↔ ( ( 0 [,] 1 ) × { 𝑡 } ) ⊆ 𝑀 ) ) |
140 |
132 139
|
syl |
⊢ ( ∀ 𝑟 ∈ ( 0 [,] 1 ) ( 𝑡 ∈ ( 0 [,] 1 ) ∧ ∃ 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ) ) → ( ( ( 0 [,] 1 ) × { 𝑎 } ) ⊆ 𝑀 ↔ ( ( 0 [,] 1 ) × { 𝑡 } ) ⊆ 𝑀 ) ) |
141 |
9
|
rabeq2i |
⊢ ( 𝑎 ∈ 𝐴 ↔ ( 𝑎 ∈ ( 0 [,] 1 ) ∧ ( ( 0 [,] 1 ) × { 𝑎 } ) ⊆ 𝑀 ) ) |
142 |
141
|
baib |
⊢ ( 𝑎 ∈ ( 0 [,] 1 ) → ( 𝑎 ∈ 𝐴 ↔ ( ( 0 [,] 1 ) × { 𝑎 } ) ⊆ 𝑀 ) ) |
143 |
142
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 0 [,] 1 ) ) ∧ 𝑣 ∈ II ) ∧ 𝑡 ∈ 𝑣 ) → ( 𝑎 ∈ 𝐴 ↔ ( ( 0 [,] 1 ) × { 𝑎 } ) ⊆ 𝑀 ) ) |
144 |
|
elssuni |
⊢ ( 𝑣 ∈ II → 𝑣 ⊆ ∪ II ) |
145 |
144 16
|
sseqtrrdi |
⊢ ( 𝑣 ∈ II → 𝑣 ⊆ ( 0 [,] 1 ) ) |
146 |
145
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 0 [,] 1 ) ) ∧ 𝑣 ∈ II ) → 𝑣 ⊆ ( 0 [,] 1 ) ) |
147 |
146
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 0 [,] 1 ) ) ∧ 𝑣 ∈ II ) ∧ 𝑡 ∈ 𝑣 ) → 𝑡 ∈ ( 0 [,] 1 ) ) |
148 |
|
sneq |
⊢ ( 𝑎 = 𝑡 → { 𝑎 } = { 𝑡 } ) |
149 |
148
|
xpeq2d |
⊢ ( 𝑎 = 𝑡 → ( ( 0 [,] 1 ) × { 𝑎 } ) = ( ( 0 [,] 1 ) × { 𝑡 } ) ) |
150 |
149
|
sseq1d |
⊢ ( 𝑎 = 𝑡 → ( ( ( 0 [,] 1 ) × { 𝑎 } ) ⊆ 𝑀 ↔ ( ( 0 [,] 1 ) × { 𝑡 } ) ⊆ 𝑀 ) ) |
151 |
150 9
|
elrab2 |
⊢ ( 𝑡 ∈ 𝐴 ↔ ( 𝑡 ∈ ( 0 [,] 1 ) ∧ ( ( 0 [,] 1 ) × { 𝑡 } ) ⊆ 𝑀 ) ) |
152 |
151
|
baib |
⊢ ( 𝑡 ∈ ( 0 [,] 1 ) → ( 𝑡 ∈ 𝐴 ↔ ( ( 0 [,] 1 ) × { 𝑡 } ) ⊆ 𝑀 ) ) |
153 |
147 152
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 0 [,] 1 ) ) ∧ 𝑣 ∈ II ) ∧ 𝑡 ∈ 𝑣 ) → ( 𝑡 ∈ 𝐴 ↔ ( ( 0 [,] 1 ) × { 𝑡 } ) ⊆ 𝑀 ) ) |
154 |
143 153
|
bibi12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 0 [,] 1 ) ) ∧ 𝑣 ∈ II ) ∧ 𝑡 ∈ 𝑣 ) → ( ( 𝑎 ∈ 𝐴 ↔ 𝑡 ∈ 𝐴 ) ↔ ( ( ( 0 [,] 1 ) × { 𝑎 } ) ⊆ 𝑀 ↔ ( ( 0 [,] 1 ) × { 𝑡 } ) ⊆ 𝑀 ) ) ) |
155 |
140 154
|
syl5ibr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 0 [,] 1 ) ) ∧ 𝑣 ∈ II ) ∧ 𝑡 ∈ 𝑣 ) → ( ∀ 𝑟 ∈ ( 0 [,] 1 ) ( 𝑡 ∈ ( 0 [,] 1 ) ∧ ∃ 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ) ) → ( 𝑎 ∈ 𝐴 ↔ 𝑡 ∈ 𝐴 ) ) ) |
156 |
155
|
ralimdva |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 0 [,] 1 ) ) ∧ 𝑣 ∈ II ) → ( ∀ 𝑡 ∈ 𝑣 ∀ 𝑟 ∈ ( 0 [,] 1 ) ( 𝑡 ∈ ( 0 [,] 1 ) ∧ ∃ 𝑢 ∈ ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢 × { 𝑎 } ) ⊆ 𝑀 ↔ ( 𝑢 × { 𝑡 } ) ⊆ 𝑀 ) ) → ∀ 𝑡 ∈ 𝑣 ( 𝑎 ∈ 𝐴 ↔ 𝑡 ∈ 𝐴 ) ) ) |
157 |
130 156
|
syl5 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 0 [,] 1 ) ) ∧ 𝑣 ∈ II ) → ( ( ( 0 [,] 1 ) × 𝑣 ) ⊆ ( ( int ‘ ( II ×t II ) ) ‘ 𝑆 ) → ∀ 𝑡 ∈ 𝑣 ( 𝑎 ∈ 𝐴 ↔ 𝑡 ∈ 𝐴 ) ) ) |
158 |
157
|
anim2d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 0 [,] 1 ) ) ∧ 𝑣 ∈ II ) → ( ( 𝑎 ∈ 𝑣 ∧ ( ( 0 [,] 1 ) × 𝑣 ) ⊆ ( ( int ‘ ( II ×t II ) ) ‘ 𝑆 ) ) → ( 𝑎 ∈ 𝑣 ∧ ∀ 𝑡 ∈ 𝑣 ( 𝑎 ∈ 𝐴 ↔ 𝑡 ∈ 𝐴 ) ) ) ) |
159 |
158
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 [,] 1 ) ) → ( ∃ 𝑣 ∈ II ( 𝑎 ∈ 𝑣 ∧ ( ( 0 [,] 1 ) × 𝑣 ) ⊆ ( ( int ‘ ( II ×t II ) ) ‘ 𝑆 ) ) → ∃ 𝑣 ∈ II ( 𝑎 ∈ 𝑣 ∧ ∀ 𝑡 ∈ 𝑣 ( 𝑎 ∈ 𝐴 ↔ 𝑡 ∈ 𝐴 ) ) ) ) |
160 |
118 159
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 [,] 1 ) ) → ∃ 𝑣 ∈ II ( 𝑎 ∈ 𝑣 ∧ ∀ 𝑡 ∈ 𝑣 ( 𝑎 ∈ 𝐴 ↔ 𝑡 ∈ 𝐴 ) ) ) |
161 |
160
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( 0 [,] 1 ) ∃ 𝑣 ∈ II ( 𝑎 ∈ 𝑣 ∧ ∀ 𝑡 ∈ 𝑣 ( 𝑎 ∈ 𝐴 ↔ 𝑡 ∈ 𝐴 ) ) ) |
162 |
|
ssrab2 |
⊢ { 𝑎 ∈ ( 0 [,] 1 ) ∣ ( ( 0 [,] 1 ) × { 𝑎 } ) ⊆ 𝑀 } ⊆ ( 0 [,] 1 ) |
163 |
9 162
|
eqsstri |
⊢ 𝐴 ⊆ ( 0 [,] 1 ) |
164 |
16
|
isclo |
⊢ ( ( II ∈ Top ∧ 𝐴 ⊆ ( 0 [,] 1 ) ) → ( 𝐴 ∈ ( II ∩ ( Clsd ‘ II ) ) ↔ ∀ 𝑎 ∈ ( 0 [,] 1 ) ∃ 𝑣 ∈ II ( 𝑎 ∈ 𝑣 ∧ ∀ 𝑡 ∈ 𝑣 ( 𝑎 ∈ 𝐴 ↔ 𝑡 ∈ 𝐴 ) ) ) ) |
165 |
22 163 164
|
mp2an |
⊢ ( 𝐴 ∈ ( II ∩ ( Clsd ‘ II ) ) ↔ ∀ 𝑎 ∈ ( 0 [,] 1 ) ∃ 𝑣 ∈ II ( 𝑎 ∈ 𝑣 ∧ ∀ 𝑡 ∈ 𝑣 ( 𝑎 ∈ 𝐴 ↔ 𝑡 ∈ 𝐴 ) ) ) |
166 |
161 165
|
sylibr |
⊢ ( 𝜑 → 𝐴 ∈ ( II ∩ ( Clsd ‘ II ) ) ) |
167 |
19 166
|
sselid |
⊢ ( 𝜑 → 𝐴 ∈ II ) |
168 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
169 |
168
|
a1i |
⊢ ( 𝜑 → 0 ∈ ( 0 [,] 1 ) ) |
170 |
|
relxp |
⊢ Rel ( ( 0 [,] 1 ) × { 0 } ) |
171 |
170
|
a1i |
⊢ ( 𝜑 → Rel ( ( 0 [,] 1 ) × { 0 } ) ) |
172 |
|
opelxp |
⊢ ( 〈 𝑟 , 𝑎 〉 ∈ ( ( 0 [,] 1 ) × { 0 } ) ↔ ( 𝑟 ∈ ( 0 [,] 1 ) ∧ 𝑎 ∈ { 0 } ) ) |
173 |
|
id |
⊢ ( 𝑟 ∈ ( 0 [,] 1 ) → 𝑟 ∈ ( 0 [,] 1 ) ) |
174 |
|
opelxpi |
⊢ ( ( 𝑟 ∈ ( 0 [,] 1 ) ∧ 0 ∈ ( 0 [,] 1 ) ) → 〈 𝑟 , 0 〉 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
175 |
173 169 174
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) → 〈 𝑟 , 0 〉 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
176 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
177 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) → 𝐺 ∈ ( ( II ×t II ) Cn 𝐽 ) ) |
178 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) → 𝑃 ∈ 𝐵 ) |
179 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ 𝑃 ) = ( 0 𝐺 0 ) ) |
180 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) → 𝑟 ∈ ( 0 [,] 1 ) ) |
181 |
168
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) → 0 ∈ ( 0 [,] 1 ) ) |
182 |
1 176 177 178 179 6 7 46 180 181
|
cvmlift2lem10 |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) → ∃ 𝑢 ∈ II ∃ 𝑣 ∈ II ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) |
183 |
|
df-3an |
⊢ ( ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ↔ ( ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ) ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) ) |
184 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ) ) → 0 ∈ 𝑣 ) |
185 |
11
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ) ) → 𝐾 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝐵 ) |
186 |
185
|
ffnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ) ) → 𝐾 Fn ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
187 |
|
fnov |
⊢ ( 𝐾 Fn ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ↔ 𝐾 = ( 𝑏 ∈ ( 0 [,] 1 ) , 𝑤 ∈ ( 0 [,] 1 ) ↦ ( 𝑏 𝐾 𝑤 ) ) ) |
188 |
186 187
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ) ) → 𝐾 = ( 𝑏 ∈ ( 0 [,] 1 ) , 𝑤 ∈ ( 0 [,] 1 ) ↦ ( 𝑏 𝐾 𝑤 ) ) ) |
189 |
188
|
reseq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ) ) → ( 𝐾 ↾ ( 𝑢 × { 0 } ) ) = ( ( 𝑏 ∈ ( 0 [,] 1 ) , 𝑤 ∈ ( 0 [,] 1 ) ↦ ( 𝑏 𝐾 𝑤 ) ) ↾ ( 𝑢 × { 0 } ) ) ) |
190 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ) ) → 𝑢 ∈ II ) |
191 |
|
elssuni |
⊢ ( 𝑢 ∈ II → 𝑢 ⊆ ∪ II ) |
192 |
191 16
|
sseqtrrdi |
⊢ ( 𝑢 ∈ II → 𝑢 ⊆ ( 0 [,] 1 ) ) |
193 |
190 192
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ) ) → 𝑢 ⊆ ( 0 [,] 1 ) ) |
194 |
169
|
snssd |
⊢ ( 𝜑 → { 0 } ⊆ ( 0 [,] 1 ) ) |
195 |
194
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ) ) → { 0 } ⊆ ( 0 [,] 1 ) ) |
196 |
|
resmpo |
⊢ ( ( 𝑢 ⊆ ( 0 [,] 1 ) ∧ { 0 } ⊆ ( 0 [,] 1 ) ) → ( ( 𝑏 ∈ ( 0 [,] 1 ) , 𝑤 ∈ ( 0 [,] 1 ) ↦ ( 𝑏 𝐾 𝑤 ) ) ↾ ( 𝑢 × { 0 } ) ) = ( 𝑏 ∈ 𝑢 , 𝑤 ∈ { 0 } ↦ ( 𝑏 𝐾 𝑤 ) ) ) |
197 |
193 195 196
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ) ) → ( ( 𝑏 ∈ ( 0 [,] 1 ) , 𝑤 ∈ ( 0 [,] 1 ) ↦ ( 𝑏 𝐾 𝑤 ) ) ↾ ( 𝑢 × { 0 } ) ) = ( 𝑏 ∈ 𝑢 , 𝑤 ∈ { 0 } ↦ ( 𝑏 𝐾 𝑤 ) ) ) |
198 |
193
|
sselda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ) ) ∧ 𝑏 ∈ 𝑢 ) → 𝑏 ∈ ( 0 [,] 1 ) ) |
199 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ) ) → 𝜑 ) |
200 |
1 2 3 4 5 6 7
|
cvmlift2lem8 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 0 [,] 1 ) ) → ( 𝑏 𝐾 0 ) = ( 𝐻 ‘ 𝑏 ) ) |
201 |
199 200
|
sylan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ) ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) → ( 𝑏 𝐾 0 ) = ( 𝐻 ‘ 𝑏 ) ) |
202 |
198 201
|
syldan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ) ) ∧ 𝑏 ∈ 𝑢 ) → ( 𝑏 𝐾 0 ) = ( 𝐻 ‘ 𝑏 ) ) |
203 |
|
elsni |
⊢ ( 𝑤 ∈ { 0 } → 𝑤 = 0 ) |
204 |
203
|
oveq2d |
⊢ ( 𝑤 ∈ { 0 } → ( 𝑏 𝐾 𝑤 ) = ( 𝑏 𝐾 0 ) ) |
205 |
204
|
eqeq1d |
⊢ ( 𝑤 ∈ { 0 } → ( ( 𝑏 𝐾 𝑤 ) = ( 𝐻 ‘ 𝑏 ) ↔ ( 𝑏 𝐾 0 ) = ( 𝐻 ‘ 𝑏 ) ) ) |
206 |
202 205
|
syl5ibrcom |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ) ) ∧ 𝑏 ∈ 𝑢 ) → ( 𝑤 ∈ { 0 } → ( 𝑏 𝐾 𝑤 ) = ( 𝐻 ‘ 𝑏 ) ) ) |
207 |
206
|
3impia |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ) ) ∧ 𝑏 ∈ 𝑢 ∧ 𝑤 ∈ { 0 } ) → ( 𝑏 𝐾 𝑤 ) = ( 𝐻 ‘ 𝑏 ) ) |
208 |
207
|
mpoeq3dva |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ) ) → ( 𝑏 ∈ 𝑢 , 𝑤 ∈ { 0 } ↦ ( 𝑏 𝐾 𝑤 ) ) = ( 𝑏 ∈ 𝑢 , 𝑤 ∈ { 0 } ↦ ( 𝐻 ‘ 𝑏 ) ) ) |
209 |
189 197 208
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ) ) → ( 𝐾 ↾ ( 𝑢 × { 0 } ) ) = ( 𝑏 ∈ 𝑢 , 𝑤 ∈ { 0 } ↦ ( 𝐻 ‘ 𝑏 ) ) ) |
210 |
|
eqid |
⊢ ( II ↾t 𝑢 ) = ( II ↾t 𝑢 ) |
211 |
|
iitopon |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
212 |
211
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ) ) → II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ) |
213 |
|
eqid |
⊢ ( II ↾t { 0 } ) = ( II ↾t { 0 } ) |
214 |
212 212
|
cnmpt1st |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ) ) → ( 𝑏 ∈ ( 0 [,] 1 ) , 𝑤 ∈ ( 0 [,] 1 ) ↦ 𝑏 ) ∈ ( ( II ×t II ) Cn II ) ) |
215 |
1 2 3 4 5 6
|
cvmlift2lem2 |
⊢ ( 𝜑 → ( 𝐻 ∈ ( II Cn 𝐶 ) ∧ ( 𝐹 ∘ 𝐻 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑧 𝐺 0 ) ) ∧ ( 𝐻 ‘ 0 ) = 𝑃 ) ) |
216 |
215
|
simp1d |
⊢ ( 𝜑 → 𝐻 ∈ ( II Cn 𝐶 ) ) |
217 |
199 216
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ) ) → 𝐻 ∈ ( II Cn 𝐶 ) ) |
218 |
212 212 214 217
|
cnmpt21f |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ) ) → ( 𝑏 ∈ ( 0 [,] 1 ) , 𝑤 ∈ ( 0 [,] 1 ) ↦ ( 𝐻 ‘ 𝑏 ) ) ∈ ( ( II ×t II ) Cn 𝐶 ) ) |
219 |
210 212 193 213 212 195 218
|
cnmpt2res |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ) ) → ( 𝑏 ∈ 𝑢 , 𝑤 ∈ { 0 } ↦ ( 𝐻 ‘ 𝑏 ) ) ∈ ( ( ( II ↾t 𝑢 ) ×t ( II ↾t { 0 } ) ) Cn 𝐶 ) ) |
220 |
|
vex |
⊢ 𝑢 ∈ V |
221 |
|
snex |
⊢ { 0 } ∈ V |
222 |
|
txrest |
⊢ ( ( ( II ∈ Top ∧ II ∈ Top ) ∧ ( 𝑢 ∈ V ∧ { 0 } ∈ V ) ) → ( ( II ×t II ) ↾t ( 𝑢 × { 0 } ) ) = ( ( II ↾t 𝑢 ) ×t ( II ↾t { 0 } ) ) ) |
223 |
22 22 220 221 222
|
mp4an |
⊢ ( ( II ×t II ) ↾t ( 𝑢 × { 0 } ) ) = ( ( II ↾t 𝑢 ) ×t ( II ↾t { 0 } ) ) |
224 |
223
|
oveq1i |
⊢ ( ( ( II ×t II ) ↾t ( 𝑢 × { 0 } ) ) Cn 𝐶 ) = ( ( ( II ↾t 𝑢 ) ×t ( II ↾t { 0 } ) ) Cn 𝐶 ) |
225 |
219 224
|
eleqtrrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ) ) → ( 𝑏 ∈ 𝑢 , 𝑤 ∈ { 0 } ↦ ( 𝐻 ‘ 𝑏 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 0 } ) ) Cn 𝐶 ) ) |
226 |
209 225
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ) ) → ( 𝐾 ↾ ( 𝑢 × { 0 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 0 } ) ) Cn 𝐶 ) ) |
227 |
|
sneq |
⊢ ( 𝑤 = 0 → { 𝑤 } = { 0 } ) |
228 |
227
|
xpeq2d |
⊢ ( 𝑤 = 0 → ( 𝑢 × { 𝑤 } ) = ( 𝑢 × { 0 } ) ) |
229 |
228
|
reseq2d |
⊢ ( 𝑤 = 0 → ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) = ( 𝐾 ↾ ( 𝑢 × { 0 } ) ) ) |
230 |
228
|
oveq2d |
⊢ ( 𝑤 = 0 → ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) = ( ( II ×t II ) ↾t ( 𝑢 × { 0 } ) ) ) |
231 |
230
|
oveq1d |
⊢ ( 𝑤 = 0 → ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) = ( ( ( II ×t II ) ↾t ( 𝑢 × { 0 } ) ) Cn 𝐶 ) ) |
232 |
229 231
|
eleq12d |
⊢ ( 𝑤 = 0 → ( ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) ↔ ( 𝐾 ↾ ( 𝑢 × { 0 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 0 } ) ) Cn 𝐶 ) ) ) |
233 |
232
|
rspcev |
⊢ ( ( 0 ∈ 𝑣 ∧ ( 𝐾 ↾ ( 𝑢 × { 0 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 0 } ) ) Cn 𝐶 ) ) → ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) ) |
234 |
184 226 233
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ) ) → ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) ) |
235 |
|
opelxpi |
⊢ ( ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ) → 〈 𝑟 , 0 〉 ∈ ( 𝑢 × 𝑣 ) ) |
236 |
235
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ) ) → 〈 𝑟 , 0 〉 ∈ ( 𝑢 × 𝑣 ) ) |
237 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ) ) → 𝑣 ∈ II ) |
238 |
237 145
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ) ) → 𝑣 ⊆ ( 0 [,] 1 ) ) |
239 |
|
xpss12 |
⊢ ( ( 𝑢 ⊆ ( 0 [,] 1 ) ∧ 𝑣 ⊆ ( 0 [,] 1 ) ) → ( 𝑢 × 𝑣 ) ⊆ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
240 |
193 238 239
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ) ) → ( 𝑢 × 𝑣 ) ⊆ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
241 |
38
|
restuni |
⊢ ( ( ( II ×t II ) ∈ Top ∧ ( 𝑢 × 𝑣 ) ⊆ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) → ( 𝑢 × 𝑣 ) = ∪ ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) ) |
242 |
24 240 241
|
sylancr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ) ) → ( 𝑢 × 𝑣 ) = ∪ ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) ) |
243 |
236 242
|
eleqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ) ) → 〈 𝑟 , 0 〉 ∈ ∪ ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) ) |
244 |
|
eqid |
⊢ ∪ ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) = ∪ ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) |
245 |
244
|
cncnpi |
⊢ ( ( ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ∧ 〈 𝑟 , 0 〉 ∈ ∪ ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) CnP 𝐶 ) ‘ 〈 𝑟 , 0 〉 ) ) |
246 |
245
|
expcom |
⊢ ( 〈 𝑟 , 0 〉 ∈ ∪ ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) → ( ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) CnP 𝐶 ) ‘ 〈 𝑟 , 0 〉 ) ) ) |
247 |
243 246
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ) ) → ( ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) CnP 𝐶 ) ‘ 〈 𝑟 , 0 〉 ) ) ) |
248 |
24
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ) ) → ( II ×t II ) ∈ Top ) |
249 |
22
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ) ) → II ∈ Top ) |
250 |
249 249 190 237 55
|
syl22anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ) ) → ( 𝑢 × 𝑣 ) ∈ ( II ×t II ) ) |
251 |
|
isopn3i |
⊢ ( ( ( II ×t II ) ∈ Top ∧ ( 𝑢 × 𝑣 ) ∈ ( II ×t II ) ) → ( ( int ‘ ( II ×t II ) ) ‘ ( 𝑢 × 𝑣 ) ) = ( 𝑢 × 𝑣 ) ) |
252 |
24 250 251
|
sylancr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ) ) → ( ( int ‘ ( II ×t II ) ) ‘ ( 𝑢 × 𝑣 ) ) = ( 𝑢 × 𝑣 ) ) |
253 |
236 252
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ) ) → 〈 𝑟 , 0 〉 ∈ ( ( int ‘ ( II ×t II ) ) ‘ ( 𝑢 × 𝑣 ) ) ) |
254 |
38 1
|
cnprest |
⊢ ( ( ( ( II ×t II ) ∈ Top ∧ ( 𝑢 × 𝑣 ) ⊆ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ∧ ( 〈 𝑟 , 0 〉 ∈ ( ( int ‘ ( II ×t II ) ) ‘ ( 𝑢 × 𝑣 ) ) ∧ 𝐾 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝐵 ) ) → ( 𝐾 ∈ ( ( ( II ×t II ) CnP 𝐶 ) ‘ 〈 𝑟 , 0 〉 ) ↔ ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) CnP 𝐶 ) ‘ 〈 𝑟 , 0 〉 ) ) ) |
255 |
248 240 253 185 254
|
syl22anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ) ) → ( 𝐾 ∈ ( ( ( II ×t II ) CnP 𝐶 ) ‘ 〈 𝑟 , 0 〉 ) ↔ ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) CnP 𝐶 ) ‘ 〈 𝑟 , 0 〉 ) ) ) |
256 |
247 255
|
sylibrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ) ) → ( ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) → 𝐾 ∈ ( ( ( II ×t II ) CnP 𝐶 ) ‘ 〈 𝑟 , 0 〉 ) ) ) |
257 |
234 256
|
embantd |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) ∧ ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ) ) → ( ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) → 𝐾 ∈ ( ( ( II ×t II ) CnP 𝐶 ) ‘ 〈 𝑟 , 0 〉 ) ) ) |
258 |
257
|
expimpd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) → ( ( ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ) ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) → 𝐾 ∈ ( ( ( II ×t II ) CnP 𝐶 ) ‘ 〈 𝑟 , 0 〉 ) ) ) |
259 |
183 258
|
syl5bi |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 ∈ II ∧ 𝑣 ∈ II ) ) → ( ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) → 𝐾 ∈ ( ( ( II ×t II ) CnP 𝐶 ) ‘ 〈 𝑟 , 0 〉 ) ) ) |
260 |
259
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) → ( ∃ 𝑢 ∈ II ∃ 𝑣 ∈ II ( 𝑟 ∈ 𝑢 ∧ 0 ∈ 𝑣 ∧ ( ∃ 𝑤 ∈ 𝑣 ( 𝐾 ↾ ( 𝑢 × { 𝑤 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × { 𝑤 } ) ) Cn 𝐶 ) → ( 𝐾 ↾ ( 𝑢 × 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑢 × 𝑣 ) ) Cn 𝐶 ) ) ) → 𝐾 ∈ ( ( ( II ×t II ) CnP 𝐶 ) ‘ 〈 𝑟 , 0 〉 ) ) ) |
261 |
182 260
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) → 𝐾 ∈ ( ( ( II ×t II ) CnP 𝐶 ) ‘ 〈 𝑟 , 0 〉 ) ) |
262 |
|
fveq2 |
⊢ ( 𝑧 = 〈 𝑟 , 0 〉 → ( ( ( II ×t II ) CnP 𝐶 ) ‘ 𝑧 ) = ( ( ( II ×t II ) CnP 𝐶 ) ‘ 〈 𝑟 , 0 〉 ) ) |
263 |
262
|
eleq2d |
⊢ ( 𝑧 = 〈 𝑟 , 0 〉 → ( 𝐾 ∈ ( ( ( II ×t II ) CnP 𝐶 ) ‘ 𝑧 ) ↔ 𝐾 ∈ ( ( ( II ×t II ) CnP 𝐶 ) ‘ 〈 𝑟 , 0 〉 ) ) ) |
264 |
263 8
|
elrab2 |
⊢ ( 〈 𝑟 , 0 〉 ∈ 𝑀 ↔ ( 〈 𝑟 , 0 〉 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ∧ 𝐾 ∈ ( ( ( II ×t II ) CnP 𝐶 ) ‘ 〈 𝑟 , 0 〉 ) ) ) |
265 |
175 261 264
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) → 〈 𝑟 , 0 〉 ∈ 𝑀 ) |
266 |
|
elsni |
⊢ ( 𝑎 ∈ { 0 } → 𝑎 = 0 ) |
267 |
266
|
opeq2d |
⊢ ( 𝑎 ∈ { 0 } → 〈 𝑟 , 𝑎 〉 = 〈 𝑟 , 0 〉 ) |
268 |
267
|
eleq1d |
⊢ ( 𝑎 ∈ { 0 } → ( 〈 𝑟 , 𝑎 〉 ∈ 𝑀 ↔ 〈 𝑟 , 0 〉 ∈ 𝑀 ) ) |
269 |
265 268
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 0 [,] 1 ) ) → ( 𝑎 ∈ { 0 } → 〈 𝑟 , 𝑎 〉 ∈ 𝑀 ) ) |
270 |
269
|
expimpd |
⊢ ( 𝜑 → ( ( 𝑟 ∈ ( 0 [,] 1 ) ∧ 𝑎 ∈ { 0 } ) → 〈 𝑟 , 𝑎 〉 ∈ 𝑀 ) ) |
271 |
172 270
|
syl5bi |
⊢ ( 𝜑 → ( 〈 𝑟 , 𝑎 〉 ∈ ( ( 0 [,] 1 ) × { 0 } ) → 〈 𝑟 , 𝑎 〉 ∈ 𝑀 ) ) |
272 |
171 271
|
relssdv |
⊢ ( 𝜑 → ( ( 0 [,] 1 ) × { 0 } ) ⊆ 𝑀 ) |
273 |
|
sneq |
⊢ ( 𝑎 = 0 → { 𝑎 } = { 0 } ) |
274 |
273
|
xpeq2d |
⊢ ( 𝑎 = 0 → ( ( 0 [,] 1 ) × { 𝑎 } ) = ( ( 0 [,] 1 ) × { 0 } ) ) |
275 |
274
|
sseq1d |
⊢ ( 𝑎 = 0 → ( ( ( 0 [,] 1 ) × { 𝑎 } ) ⊆ 𝑀 ↔ ( ( 0 [,] 1 ) × { 0 } ) ⊆ 𝑀 ) ) |
276 |
275 9
|
elrab2 |
⊢ ( 0 ∈ 𝐴 ↔ ( 0 ∈ ( 0 [,] 1 ) ∧ ( ( 0 [,] 1 ) × { 0 } ) ⊆ 𝑀 ) ) |
277 |
169 272 276
|
sylanbrc |
⊢ ( 𝜑 → 0 ∈ 𝐴 ) |
278 |
277
|
ne0d |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
279 |
|
inss2 |
⊢ ( II ∩ ( Clsd ‘ II ) ) ⊆ ( Clsd ‘ II ) |
280 |
279 166
|
sselid |
⊢ ( 𝜑 → 𝐴 ∈ ( Clsd ‘ II ) ) |
281 |
16 18 167 278 280
|
connclo |
⊢ ( 𝜑 → 𝐴 = ( 0 [,] 1 ) ) |
282 |
281 9
|
eqtr3di |
⊢ ( 𝜑 → ( 0 [,] 1 ) = { 𝑎 ∈ ( 0 [,] 1 ) ∣ ( ( 0 [,] 1 ) × { 𝑎 } ) ⊆ 𝑀 } ) |
283 |
|
rabid2 |
⊢ ( ( 0 [,] 1 ) = { 𝑎 ∈ ( 0 [,] 1 ) ∣ ( ( 0 [,] 1 ) × { 𝑎 } ) ⊆ 𝑀 } ↔ ∀ 𝑎 ∈ ( 0 [,] 1 ) ( ( 0 [,] 1 ) × { 𝑎 } ) ⊆ 𝑀 ) |
284 |
282 283
|
sylib |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( 0 [,] 1 ) ( ( 0 [,] 1 ) × { 𝑎 } ) ⊆ 𝑀 ) |
285 |
|
iunss |
⊢ ( ∪ 𝑎 ∈ ( 0 [,] 1 ) ( ( 0 [,] 1 ) × { 𝑎 } ) ⊆ 𝑀 ↔ ∀ 𝑎 ∈ ( 0 [,] 1 ) ( ( 0 [,] 1 ) × { 𝑎 } ) ⊆ 𝑀 ) |
286 |
284 285
|
sylibr |
⊢ ( 𝜑 → ∪ 𝑎 ∈ ( 0 [,] 1 ) ( ( 0 [,] 1 ) × { 𝑎 } ) ⊆ 𝑀 ) |
287 |
15 286
|
eqsstrid |
⊢ ( 𝜑 → ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⊆ 𝑀 ) |
288 |
287 8
|
sseqtrdi |
⊢ ( 𝜑 → ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⊆ { 𝑧 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ∣ 𝐾 ∈ ( ( ( II ×t II ) CnP 𝐶 ) ‘ 𝑧 ) } ) |
289 |
|
ssrab |
⊢ ( ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⊆ { 𝑧 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ∣ 𝐾 ∈ ( ( ( II ×t II ) CnP 𝐶 ) ‘ 𝑧 ) } ↔ ( ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⊆ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ∧ ∀ 𝑧 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) 𝐾 ∈ ( ( ( II ×t II ) CnP 𝐶 ) ‘ 𝑧 ) ) ) |
290 |
289
|
simprbi |
⊢ ( ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⊆ { 𝑧 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ∣ 𝐾 ∈ ( ( ( II ×t II ) CnP 𝐶 ) ‘ 𝑧 ) } → ∀ 𝑧 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) 𝐾 ∈ ( ( ( II ×t II ) CnP 𝐶 ) ‘ 𝑧 ) ) |
291 |
288 290
|
syl |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) 𝐾 ∈ ( ( ( II ×t II ) CnP 𝐶 ) ‘ 𝑧 ) ) |
292 |
|
txtopon |
⊢ ( ( II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ∧ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ) → ( II ×t II ) ∈ ( TopOn ‘ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) |
293 |
211 211 292
|
mp2an |
⊢ ( II ×t II ) ∈ ( TopOn ‘ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
294 |
|
cvmtop1 |
⊢ ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → 𝐶 ∈ Top ) |
295 |
2 294
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ Top ) |
296 |
1
|
toptopon |
⊢ ( 𝐶 ∈ Top ↔ 𝐶 ∈ ( TopOn ‘ 𝐵 ) ) |
297 |
295 296
|
sylib |
⊢ ( 𝜑 → 𝐶 ∈ ( TopOn ‘ 𝐵 ) ) |
298 |
|
cncnp |
⊢ ( ( ( II ×t II ) ∈ ( TopOn ‘ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ∧ 𝐶 ∈ ( TopOn ‘ 𝐵 ) ) → ( 𝐾 ∈ ( ( II ×t II ) Cn 𝐶 ) ↔ ( 𝐾 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝐵 ∧ ∀ 𝑧 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) 𝐾 ∈ ( ( ( II ×t II ) CnP 𝐶 ) ‘ 𝑧 ) ) ) ) |
299 |
293 297 298
|
sylancr |
⊢ ( 𝜑 → ( 𝐾 ∈ ( ( II ×t II ) Cn 𝐶 ) ↔ ( 𝐾 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝐵 ∧ ∀ 𝑧 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) 𝐾 ∈ ( ( ( II ×t II ) CnP 𝐶 ) ‘ 𝑧 ) ) ) ) |
300 |
11 291 299
|
mpbir2and |
⊢ ( 𝜑 → 𝐾 ∈ ( ( II ×t II ) Cn 𝐶 ) ) |