| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmlift2.b | ⊢ 𝐵  =  ∪  𝐶 | 
						
							| 2 |  | cvmlift2.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 3 |  | cvmlift2.g | ⊢ ( 𝜑  →  𝐺  ∈  ( ( II  ×t  II )  Cn  𝐽 ) ) | 
						
							| 4 |  | cvmlift2.p | ⊢ ( 𝜑  →  𝑃  ∈  𝐵 ) | 
						
							| 5 |  | cvmlift2.i | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑃 )  =  ( 0 𝐺 0 ) ) | 
						
							| 6 |  | cvmlift2.h | ⊢ 𝐻  =  ( ℩ 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑧 𝐺 0 ) )  ∧  ( 𝑓 ‘ 0 )  =  𝑃 ) ) | 
						
							| 7 |  | cvmlift2.k | ⊢ 𝐾  =  ( 𝑥  ∈  ( 0 [,] 1 ) ,  𝑦  ∈  ( 0 [,] 1 )  ↦  ( ( ℩ 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑥 𝐺 𝑧 ) )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝐻 ‘ 𝑥 ) ) ) ‘ 𝑦 ) ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑎  =  𝑧  →  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑎 )  =  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑧 ) ) | 
						
							| 9 | 8 | eleq2d | ⊢ ( 𝑎  =  𝑧  →  ( 𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑎 )  ↔  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑧 ) ) ) | 
						
							| 10 | 9 | cbvrabv | ⊢ { 𝑎  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑎 ) }  =  { 𝑧  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑧 ) } | 
						
							| 11 |  | sneq | ⊢ ( 𝑧  =  𝑏  →  { 𝑧 }  =  { 𝑏 } ) | 
						
							| 12 | 11 | xpeq2d | ⊢ ( 𝑧  =  𝑏  →  ( ( 0 [,] 1 )  ×  { 𝑧 } )  =  ( ( 0 [,] 1 )  ×  { 𝑏 } ) ) | 
						
							| 13 | 12 | sseq1d | ⊢ ( 𝑧  =  𝑏  →  ( ( ( 0 [,] 1 )  ×  { 𝑧 } )  ⊆  { 𝑎  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑎 ) }  ↔  ( ( 0 [,] 1 )  ×  { 𝑏 } )  ⊆  { 𝑎  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑎 ) } ) ) | 
						
							| 14 | 13 | cbvrabv | ⊢ { 𝑧  ∈  ( 0 [,] 1 )  ∣  ( ( 0 [,] 1 )  ×  { 𝑧 } )  ⊆  { 𝑎  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑎 ) } }  =  { 𝑏  ∈  ( 0 [,] 1 )  ∣  ( ( 0 [,] 1 )  ×  { 𝑏 } )  ⊆  { 𝑎  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑎 ) } } | 
						
							| 15 |  | simpr | ⊢ ( ( 𝑐  =  𝑟  ∧  𝑑  =  𝑡 )  →  𝑑  =  𝑡 ) | 
						
							| 16 | 15 | eleq1d | ⊢ ( ( 𝑐  =  𝑟  ∧  𝑑  =  𝑡 )  →  ( 𝑑  ∈  ( 0 [,] 1 )  ↔  𝑡  ∈  ( 0 [,] 1 ) ) ) | 
						
							| 17 |  | xpeq1 | ⊢ ( 𝑣  =  𝑢  →  ( 𝑣  ×  { 𝑏 } )  =  ( 𝑢  ×  { 𝑏 } ) ) | 
						
							| 18 | 17 | sseq1d | ⊢ ( 𝑣  =  𝑢  →  ( ( 𝑣  ×  { 𝑏 } )  ⊆  { 𝑎  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑎 ) }  ↔  ( 𝑢  ×  { 𝑏 } )  ⊆  { 𝑎  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑎 ) } ) ) | 
						
							| 19 |  | xpeq1 | ⊢ ( 𝑣  =  𝑢  →  ( 𝑣  ×  { 𝑑 } )  =  ( 𝑢  ×  { 𝑑 } ) ) | 
						
							| 20 | 19 | sseq1d | ⊢ ( 𝑣  =  𝑢  →  ( ( 𝑣  ×  { 𝑑 } )  ⊆  { 𝑎  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑎 ) }  ↔  ( 𝑢  ×  { 𝑑 } )  ⊆  { 𝑎  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑎 ) } ) ) | 
						
							| 21 | 18 20 | bibi12d | ⊢ ( 𝑣  =  𝑢  →  ( ( ( 𝑣  ×  { 𝑏 } )  ⊆  { 𝑎  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑎 ) }  ↔  ( 𝑣  ×  { 𝑑 } )  ⊆  { 𝑎  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑎 ) } )  ↔  ( ( 𝑢  ×  { 𝑏 } )  ⊆  { 𝑎  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑎 ) }  ↔  ( 𝑢  ×  { 𝑑 } )  ⊆  { 𝑎  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑎 ) } ) ) ) | 
						
							| 22 | 21 | cbvrexvw | ⊢ ( ∃ 𝑣  ∈  ( ( nei ‘ II ) ‘ { 𝑐 } ) ( ( 𝑣  ×  { 𝑏 } )  ⊆  { 𝑎  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑎 ) }  ↔  ( 𝑣  ×  { 𝑑 } )  ⊆  { 𝑎  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑎 ) } )  ↔  ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑐 } ) ( ( 𝑢  ×  { 𝑏 } )  ⊆  { 𝑎  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑎 ) }  ↔  ( 𝑢  ×  { 𝑑 } )  ⊆  { 𝑎  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑎 ) } ) ) | 
						
							| 23 |  | simpl | ⊢ ( ( 𝑐  =  𝑟  ∧  𝑑  =  𝑡 )  →  𝑐  =  𝑟 ) | 
						
							| 24 | 23 | sneqd | ⊢ ( ( 𝑐  =  𝑟  ∧  𝑑  =  𝑡 )  →  { 𝑐 }  =  { 𝑟 } ) | 
						
							| 25 | 24 | fveq2d | ⊢ ( ( 𝑐  =  𝑟  ∧  𝑑  =  𝑡 )  →  ( ( nei ‘ II ) ‘ { 𝑐 } )  =  ( ( nei ‘ II ) ‘ { 𝑟 } ) ) | 
						
							| 26 | 15 | sneqd | ⊢ ( ( 𝑐  =  𝑟  ∧  𝑑  =  𝑡 )  →  { 𝑑 }  =  { 𝑡 } ) | 
						
							| 27 | 26 | xpeq2d | ⊢ ( ( 𝑐  =  𝑟  ∧  𝑑  =  𝑡 )  →  ( 𝑢  ×  { 𝑑 } )  =  ( 𝑢  ×  { 𝑡 } ) ) | 
						
							| 28 | 27 | sseq1d | ⊢ ( ( 𝑐  =  𝑟  ∧  𝑑  =  𝑡 )  →  ( ( 𝑢  ×  { 𝑑 } )  ⊆  { 𝑎  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑎 ) }  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  { 𝑎  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑎 ) } ) ) | 
						
							| 29 | 28 | bibi2d | ⊢ ( ( 𝑐  =  𝑟  ∧  𝑑  =  𝑡 )  →  ( ( ( 𝑢  ×  { 𝑏 } )  ⊆  { 𝑎  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑎 ) }  ↔  ( 𝑢  ×  { 𝑑 } )  ⊆  { 𝑎  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑎 ) } )  ↔  ( ( 𝑢  ×  { 𝑏 } )  ⊆  { 𝑎  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑎 ) }  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  { 𝑎  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑎 ) } ) ) ) | 
						
							| 30 | 25 29 | rexeqbidv | ⊢ ( ( 𝑐  =  𝑟  ∧  𝑑  =  𝑡 )  →  ( ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑐 } ) ( ( 𝑢  ×  { 𝑏 } )  ⊆  { 𝑎  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑎 ) }  ↔  ( 𝑢  ×  { 𝑑 } )  ⊆  { 𝑎  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑎 ) } )  ↔  ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑏 } )  ⊆  { 𝑎  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑎 ) }  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  { 𝑎  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑎 ) } ) ) ) | 
						
							| 31 | 22 30 | bitrid | ⊢ ( ( 𝑐  =  𝑟  ∧  𝑑  =  𝑡 )  →  ( ∃ 𝑣  ∈  ( ( nei ‘ II ) ‘ { 𝑐 } ) ( ( 𝑣  ×  { 𝑏 } )  ⊆  { 𝑎  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑎 ) }  ↔  ( 𝑣  ×  { 𝑑 } )  ⊆  { 𝑎  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑎 ) } )  ↔  ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑏 } )  ⊆  { 𝑎  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑎 ) }  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  { 𝑎  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑎 ) } ) ) ) | 
						
							| 32 | 16 31 | anbi12d | ⊢ ( ( 𝑐  =  𝑟  ∧  𝑑  =  𝑡 )  →  ( ( 𝑑  ∈  ( 0 [,] 1 )  ∧  ∃ 𝑣  ∈  ( ( nei ‘ II ) ‘ { 𝑐 } ) ( ( 𝑣  ×  { 𝑏 } )  ⊆  { 𝑎  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑎 ) }  ↔  ( 𝑣  ×  { 𝑑 } )  ⊆  { 𝑎  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑎 ) } ) )  ↔  ( 𝑡  ∈  ( 0 [,] 1 )  ∧  ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑏 } )  ⊆  { 𝑎  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑎 ) }  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  { 𝑎  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑎 ) } ) ) ) ) | 
						
							| 33 | 32 | cbvopabv | ⊢ { 〈 𝑐 ,  𝑑 〉  ∣  ( 𝑑  ∈  ( 0 [,] 1 )  ∧  ∃ 𝑣  ∈  ( ( nei ‘ II ) ‘ { 𝑐 } ) ( ( 𝑣  ×  { 𝑏 } )  ⊆  { 𝑎  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑎 ) }  ↔  ( 𝑣  ×  { 𝑑 } )  ⊆  { 𝑎  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑎 ) } ) ) }  =  { 〈 𝑟 ,  𝑡 〉  ∣  ( 𝑡  ∈  ( 0 [,] 1 )  ∧  ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑟 } ) ( ( 𝑢  ×  { 𝑏 } )  ⊆  { 𝑎  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑎 ) }  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  { 𝑎  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ∣  𝐾  ∈  ( ( ( II  ×t  II )  CnP  𝐶 ) ‘ 𝑎 ) } ) ) } | 
						
							| 34 | 1 2 3 4 5 6 7 10 14 33 | cvmlift2lem12 | ⊢ ( 𝜑  →  𝐾  ∈  ( ( II  ×t  II )  Cn  𝐶 ) ) | 
						
							| 35 | 1 2 3 4 5 6 7 | cvmlift2lem7 | ⊢ ( 𝜑  →  ( 𝐹  ∘  𝐾 )  =  𝐺 ) | 
						
							| 36 |  | 0elunit | ⊢ 0  ∈  ( 0 [,] 1 ) | 
						
							| 37 | 1 2 3 4 5 6 7 | cvmlift2lem8 | ⊢ ( ( 𝜑  ∧  0  ∈  ( 0 [,] 1 ) )  →  ( 0 𝐾 0 )  =  ( 𝐻 ‘ 0 ) ) | 
						
							| 38 | 36 37 | mpan2 | ⊢ ( 𝜑  →  ( 0 𝐾 0 )  =  ( 𝐻 ‘ 0 ) ) | 
						
							| 39 | 1 2 3 4 5 6 | cvmlift2lem2 | ⊢ ( 𝜑  →  ( 𝐻  ∈  ( II  Cn  𝐶 )  ∧  ( 𝐹  ∘  𝐻 )  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑧 𝐺 0 ) )  ∧  ( 𝐻 ‘ 0 )  =  𝑃 ) ) | 
						
							| 40 | 39 | simp3d | ⊢ ( 𝜑  →  ( 𝐻 ‘ 0 )  =  𝑃 ) | 
						
							| 41 | 38 40 | eqtrd | ⊢ ( 𝜑  →  ( 0 𝐾 0 )  =  𝑃 ) | 
						
							| 42 |  | coeq2 | ⊢ ( 𝑔  =  𝐾  →  ( 𝐹  ∘  𝑔 )  =  ( 𝐹  ∘  𝐾 ) ) | 
						
							| 43 | 42 | eqeq1d | ⊢ ( 𝑔  =  𝐾  →  ( ( 𝐹  ∘  𝑔 )  =  𝐺  ↔  ( 𝐹  ∘  𝐾 )  =  𝐺 ) ) | 
						
							| 44 |  | oveq | ⊢ ( 𝑔  =  𝐾  →  ( 0 𝑔 0 )  =  ( 0 𝐾 0 ) ) | 
						
							| 45 | 44 | eqeq1d | ⊢ ( 𝑔  =  𝐾  →  ( ( 0 𝑔 0 )  =  𝑃  ↔  ( 0 𝐾 0 )  =  𝑃 ) ) | 
						
							| 46 | 43 45 | anbi12d | ⊢ ( 𝑔  =  𝐾  →  ( ( ( 𝐹  ∘  𝑔 )  =  𝐺  ∧  ( 0 𝑔 0 )  =  𝑃 )  ↔  ( ( 𝐹  ∘  𝐾 )  =  𝐺  ∧  ( 0 𝐾 0 )  =  𝑃 ) ) ) | 
						
							| 47 | 46 | rspcev | ⊢ ( ( 𝐾  ∈  ( ( II  ×t  II )  Cn  𝐶 )  ∧  ( ( 𝐹  ∘  𝐾 )  =  𝐺  ∧  ( 0 𝐾 0 )  =  𝑃 ) )  →  ∃ 𝑔  ∈  ( ( II  ×t  II )  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  𝐺  ∧  ( 0 𝑔 0 )  =  𝑃 ) ) | 
						
							| 48 | 34 35 41 47 | syl12anc | ⊢ ( 𝜑  →  ∃ 𝑔  ∈  ( ( II  ×t  II )  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  𝐺  ∧  ( 0 𝑔 0 )  =  𝑃 ) ) | 
						
							| 49 |  | iitop | ⊢ II  ∈  Top | 
						
							| 50 |  | iiuni | ⊢ ( 0 [,] 1 )  =  ∪  II | 
						
							| 51 | 49 49 50 50 | txunii | ⊢ ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  =  ∪  ( II  ×t  II ) | 
						
							| 52 |  | iiconn | ⊢ II  ∈  Conn | 
						
							| 53 |  | txconn | ⊢ ( ( II  ∈  Conn  ∧  II  ∈  Conn )  →  ( II  ×t  II )  ∈  Conn ) | 
						
							| 54 | 52 52 53 | mp2an | ⊢ ( II  ×t  II )  ∈  Conn | 
						
							| 55 | 54 | a1i | ⊢ ( 𝜑  →  ( II  ×t  II )  ∈  Conn ) | 
						
							| 56 |  | iinllyconn | ⊢ II  ∈  𝑛-Locally  Conn | 
						
							| 57 |  | txconn | ⊢ ( ( 𝑥  ∈  Conn  ∧  𝑦  ∈  Conn )  →  ( 𝑥  ×t  𝑦 )  ∈  Conn ) | 
						
							| 58 | 57 | txnlly | ⊢ ( ( II  ∈  𝑛-Locally  Conn  ∧  II  ∈  𝑛-Locally  Conn )  →  ( II  ×t  II )  ∈  𝑛-Locally  Conn ) | 
						
							| 59 | 56 56 58 | mp2an | ⊢ ( II  ×t  II )  ∈  𝑛-Locally  Conn | 
						
							| 60 | 59 | a1i | ⊢ ( 𝜑  →  ( II  ×t  II )  ∈  𝑛-Locally  Conn ) | 
						
							| 61 |  | opelxpi | ⊢ ( ( 0  ∈  ( 0 [,] 1 )  ∧  0  ∈  ( 0 [,] 1 ) )  →  〈 0 ,  0 〉  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 62 | 36 36 61 | mp2an | ⊢ 〈 0 ,  0 〉  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) | 
						
							| 63 | 62 | a1i | ⊢ ( 𝜑  →  〈 0 ,  0 〉  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 64 |  | df-ov | ⊢ ( 0 𝐺 0 )  =  ( 𝐺 ‘ 〈 0 ,  0 〉 ) | 
						
							| 65 | 5 64 | eqtrdi | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 〈 0 ,  0 〉 ) ) | 
						
							| 66 | 1 51 2 55 60 63 3 4 65 | cvmliftmo | ⊢ ( 𝜑  →  ∃* 𝑔  ∈  ( ( II  ×t  II )  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  𝐺  ∧  ( 𝑔 ‘ 〈 0 ,  0 〉 )  =  𝑃 ) ) | 
						
							| 67 |  | df-ov | ⊢ ( 0 𝑔 0 )  =  ( 𝑔 ‘ 〈 0 ,  0 〉 ) | 
						
							| 68 | 67 | eqeq1i | ⊢ ( ( 0 𝑔 0 )  =  𝑃  ↔  ( 𝑔 ‘ 〈 0 ,  0 〉 )  =  𝑃 ) | 
						
							| 69 | 68 | anbi2i | ⊢ ( ( ( 𝐹  ∘  𝑔 )  =  𝐺  ∧  ( 0 𝑔 0 )  =  𝑃 )  ↔  ( ( 𝐹  ∘  𝑔 )  =  𝐺  ∧  ( 𝑔 ‘ 〈 0 ,  0 〉 )  =  𝑃 ) ) | 
						
							| 70 | 69 | rmobii | ⊢ ( ∃* 𝑔  ∈  ( ( II  ×t  II )  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  𝐺  ∧  ( 0 𝑔 0 )  =  𝑃 )  ↔  ∃* 𝑔  ∈  ( ( II  ×t  II )  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  𝐺  ∧  ( 𝑔 ‘ 〈 0 ,  0 〉 )  =  𝑃 ) ) | 
						
							| 71 | 66 70 | sylibr | ⊢ ( 𝜑  →  ∃* 𝑔  ∈  ( ( II  ×t  II )  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  𝐺  ∧  ( 0 𝑔 0 )  =  𝑃 ) ) | 
						
							| 72 |  | reu5 | ⊢ ( ∃! 𝑔  ∈  ( ( II  ×t  II )  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  𝐺  ∧  ( 0 𝑔 0 )  =  𝑃 )  ↔  ( ∃ 𝑔  ∈  ( ( II  ×t  II )  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  𝐺  ∧  ( 0 𝑔 0 )  =  𝑃 )  ∧  ∃* 𝑔  ∈  ( ( II  ×t  II )  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  𝐺  ∧  ( 0 𝑔 0 )  =  𝑃 ) ) ) | 
						
							| 73 | 48 71 72 | sylanbrc | ⊢ ( 𝜑  →  ∃! 𝑔  ∈  ( ( II  ×t  II )  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  𝐺  ∧  ( 0 𝑔 0 )  =  𝑃 ) ) |