| Step |
Hyp |
Ref |
Expression |
| 1 |
|
txlly.1 |
⊢ ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑗 ×t 𝑘 ) ∈ 𝐴 ) |
| 2 |
|
nllytop |
⊢ ( 𝑅 ∈ 𝑛-Locally 𝐴 → 𝑅 ∈ Top ) |
| 3 |
|
nllytop |
⊢ ( 𝑆 ∈ 𝑛-Locally 𝐴 → 𝑆 ∈ Top ) |
| 4 |
|
txtop |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) |
| 5 |
2 3 4
|
syl2an |
⊢ ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) |
| 6 |
|
eltx |
⊢ ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) → ( 𝑥 ∈ ( 𝑅 ×t 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ 𝑅 ∃ 𝑣 ∈ 𝑆 ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) |
| 7 |
|
simpll |
⊢ ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) → 𝑅 ∈ 𝑛-Locally 𝐴 ) |
| 8 |
|
simprll |
⊢ ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) → 𝑢 ∈ 𝑅 ) |
| 9 |
|
simprrl |
⊢ ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) → 𝑦 ∈ ( 𝑢 × 𝑣 ) ) |
| 10 |
|
xp1st |
⊢ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) → ( 1st ‘ 𝑦 ) ∈ 𝑢 ) |
| 11 |
9 10
|
syl |
⊢ ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) → ( 1st ‘ 𝑦 ) ∈ 𝑢 ) |
| 12 |
|
nlly2i |
⊢ ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑢 ∈ 𝑅 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑢 ) → ∃ 𝑎 ∈ 𝒫 𝑢 ∃ 𝑟 ∈ 𝑅 ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ) |
| 13 |
7 8 11 12
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) → ∃ 𝑎 ∈ 𝒫 𝑢 ∃ 𝑟 ∈ 𝑅 ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ) |
| 14 |
|
simplr |
⊢ ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) → 𝑆 ∈ 𝑛-Locally 𝐴 ) |
| 15 |
|
simprlr |
⊢ ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) → 𝑣 ∈ 𝑆 ) |
| 16 |
|
xp2nd |
⊢ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) → ( 2nd ‘ 𝑦 ) ∈ 𝑣 ) |
| 17 |
9 16
|
syl |
⊢ ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) → ( 2nd ‘ 𝑦 ) ∈ 𝑣 ) |
| 18 |
|
nlly2i |
⊢ ( ( 𝑆 ∈ 𝑛-Locally 𝐴 ∧ 𝑣 ∈ 𝑆 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ) → ∃ 𝑏 ∈ 𝒫 𝑣 ∃ 𝑠 ∈ 𝑆 ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) |
| 19 |
14 15 17 18
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) → ∃ 𝑏 ∈ 𝒫 𝑣 ∃ 𝑠 ∈ 𝑆 ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) |
| 20 |
|
reeanv |
⊢ ( ∃ 𝑎 ∈ 𝒫 𝑢 ∃ 𝑏 ∈ 𝒫 𝑣 ( ∃ 𝑟 ∈ 𝑅 ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ∃ 𝑠 ∈ 𝑆 ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ↔ ( ∃ 𝑎 ∈ 𝒫 𝑢 ∃ 𝑟 ∈ 𝑅 ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ∃ 𝑏 ∈ 𝒫 𝑣 ∃ 𝑠 ∈ 𝑆 ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) |
| 21 |
|
reeanv |
⊢ ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ↔ ( ∃ 𝑟 ∈ 𝑅 ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ∃ 𝑠 ∈ 𝑆 ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) |
| 22 |
5
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) |
| 23 |
2
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) → 𝑅 ∈ Top ) |
| 24 |
23
|
ad2antrr |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → 𝑅 ∈ Top ) |
| 25 |
14 3
|
syl |
⊢ ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) → 𝑆 ∈ Top ) |
| 26 |
25
|
ad2antrr |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → 𝑆 ∈ Top ) |
| 27 |
|
simprrl |
⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) → 𝑟 ∈ 𝑅 ) |
| 28 |
27
|
adantr |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → 𝑟 ∈ 𝑅 ) |
| 29 |
|
simprrr |
⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) → 𝑠 ∈ 𝑆 ) |
| 30 |
29
|
adantr |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → 𝑠 ∈ 𝑆 ) |
| 31 |
|
txopn |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( 𝑟 × 𝑠 ) ∈ ( 𝑅 ×t 𝑆 ) ) |
| 32 |
24 26 28 30 31
|
syl22anc |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → ( 𝑟 × 𝑠 ) ∈ ( 𝑅 ×t 𝑆 ) ) |
| 33 |
9
|
ad2antrr |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → 𝑦 ∈ ( 𝑢 × 𝑣 ) ) |
| 34 |
|
1st2nd2 |
⊢ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) → 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) |
| 35 |
33 34
|
syl |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) |
| 36 |
|
simprl1 |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → ( 1st ‘ 𝑦 ) ∈ 𝑟 ) |
| 37 |
|
simprr1 |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → ( 2nd ‘ 𝑦 ) ∈ 𝑠 ) |
| 38 |
36 37
|
opelxpd |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ∈ ( 𝑟 × 𝑠 ) ) |
| 39 |
35 38
|
eqeltrd |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → 𝑦 ∈ ( 𝑟 × 𝑠 ) ) |
| 40 |
|
opnneip |
⊢ ( ( ( 𝑅 ×t 𝑆 ) ∈ Top ∧ ( 𝑟 × 𝑠 ) ∈ ( 𝑅 ×t 𝑆 ) ∧ 𝑦 ∈ ( 𝑟 × 𝑠 ) ) → ( 𝑟 × 𝑠 ) ∈ ( ( nei ‘ ( 𝑅 ×t 𝑆 ) ) ‘ { 𝑦 } ) ) |
| 41 |
22 32 39 40
|
syl3anc |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → ( 𝑟 × 𝑠 ) ∈ ( ( nei ‘ ( 𝑅 ×t 𝑆 ) ) ‘ { 𝑦 } ) ) |
| 42 |
|
simprl2 |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → 𝑟 ⊆ 𝑎 ) |
| 43 |
|
simprr2 |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → 𝑠 ⊆ 𝑏 ) |
| 44 |
|
xpss12 |
⊢ ( ( 𝑟 ⊆ 𝑎 ∧ 𝑠 ⊆ 𝑏 ) → ( 𝑟 × 𝑠 ) ⊆ ( 𝑎 × 𝑏 ) ) |
| 45 |
42 43 44
|
syl2anc |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → ( 𝑟 × 𝑠 ) ⊆ ( 𝑎 × 𝑏 ) ) |
| 46 |
|
simprll |
⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) → 𝑎 ∈ 𝒫 𝑢 ) |
| 47 |
46
|
adantr |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → 𝑎 ∈ 𝒫 𝑢 ) |
| 48 |
47
|
elpwid |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → 𝑎 ⊆ 𝑢 ) |
| 49 |
8
|
ad2antrr |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → 𝑢 ∈ 𝑅 ) |
| 50 |
|
elssuni |
⊢ ( 𝑢 ∈ 𝑅 → 𝑢 ⊆ ∪ 𝑅 ) |
| 51 |
49 50
|
syl |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → 𝑢 ⊆ ∪ 𝑅 ) |
| 52 |
48 51
|
sstrd |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → 𝑎 ⊆ ∪ 𝑅 ) |
| 53 |
|
simprlr |
⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) → 𝑏 ∈ 𝒫 𝑣 ) |
| 54 |
53
|
adantr |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → 𝑏 ∈ 𝒫 𝑣 ) |
| 55 |
54
|
elpwid |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → 𝑏 ⊆ 𝑣 ) |
| 56 |
15
|
ad2antrr |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → 𝑣 ∈ 𝑆 ) |
| 57 |
|
elssuni |
⊢ ( 𝑣 ∈ 𝑆 → 𝑣 ⊆ ∪ 𝑆 ) |
| 58 |
56 57
|
syl |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → 𝑣 ⊆ ∪ 𝑆 ) |
| 59 |
55 58
|
sstrd |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → 𝑏 ⊆ ∪ 𝑆 ) |
| 60 |
|
xpss12 |
⊢ ( ( 𝑎 ⊆ ∪ 𝑅 ∧ 𝑏 ⊆ ∪ 𝑆 ) → ( 𝑎 × 𝑏 ) ⊆ ( ∪ 𝑅 × ∪ 𝑆 ) ) |
| 61 |
52 59 60
|
syl2anc |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → ( 𝑎 × 𝑏 ) ⊆ ( ∪ 𝑅 × ∪ 𝑆 ) ) |
| 62 |
|
eqid |
⊢ ∪ 𝑅 = ∪ 𝑅 |
| 63 |
|
eqid |
⊢ ∪ 𝑆 = ∪ 𝑆 |
| 64 |
62 63
|
txuni |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( ∪ 𝑅 × ∪ 𝑆 ) = ∪ ( 𝑅 ×t 𝑆 ) ) |
| 65 |
24 26 64
|
syl2anc |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → ( ∪ 𝑅 × ∪ 𝑆 ) = ∪ ( 𝑅 ×t 𝑆 ) ) |
| 66 |
61 65
|
sseqtrd |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → ( 𝑎 × 𝑏 ) ⊆ ∪ ( 𝑅 ×t 𝑆 ) ) |
| 67 |
|
eqid |
⊢ ∪ ( 𝑅 ×t 𝑆 ) = ∪ ( 𝑅 ×t 𝑆 ) |
| 68 |
67
|
ssnei2 |
⊢ ( ( ( ( 𝑅 ×t 𝑆 ) ∈ Top ∧ ( 𝑟 × 𝑠 ) ∈ ( ( nei ‘ ( 𝑅 ×t 𝑆 ) ) ‘ { 𝑦 } ) ) ∧ ( ( 𝑟 × 𝑠 ) ⊆ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ∪ ( 𝑅 ×t 𝑆 ) ) ) → ( 𝑎 × 𝑏 ) ∈ ( ( nei ‘ ( 𝑅 ×t 𝑆 ) ) ‘ { 𝑦 } ) ) |
| 69 |
22 41 45 66 68
|
syl22anc |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → ( 𝑎 × 𝑏 ) ∈ ( ( nei ‘ ( 𝑅 ×t 𝑆 ) ) ‘ { 𝑦 } ) ) |
| 70 |
|
xpss12 |
⊢ ( ( 𝑎 ⊆ 𝑢 ∧ 𝑏 ⊆ 𝑣 ) → ( 𝑎 × 𝑏 ) ⊆ ( 𝑢 × 𝑣 ) ) |
| 71 |
48 55 70
|
syl2anc |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → ( 𝑎 × 𝑏 ) ⊆ ( 𝑢 × 𝑣 ) ) |
| 72 |
|
simprrr |
⊢ ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) → ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) |
| 73 |
72
|
ad2antrr |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) |
| 74 |
71 73
|
sstrd |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → ( 𝑎 × 𝑏 ) ⊆ 𝑥 ) |
| 75 |
|
vex |
⊢ 𝑥 ∈ V |
| 76 |
75
|
elpw2 |
⊢ ( ( 𝑎 × 𝑏 ) ∈ 𝒫 𝑥 ↔ ( 𝑎 × 𝑏 ) ⊆ 𝑥 ) |
| 77 |
74 76
|
sylibr |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → ( 𝑎 × 𝑏 ) ∈ 𝒫 𝑥 ) |
| 78 |
69 77
|
elind |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → ( 𝑎 × 𝑏 ) ∈ ( ( ( nei ‘ ( 𝑅 ×t 𝑆 ) ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ) |
| 79 |
|
txrest |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ) → ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑎 × 𝑏 ) ) = ( ( 𝑅 ↾t 𝑎 ) ×t ( 𝑆 ↾t 𝑏 ) ) ) |
| 80 |
24 26 47 54 79
|
syl22anc |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑎 × 𝑏 ) ) = ( ( 𝑅 ↾t 𝑎 ) ×t ( 𝑆 ↾t 𝑏 ) ) ) |
| 81 |
|
simprl3 |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) |
| 82 |
|
simprr3 |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) |
| 83 |
1
|
caovcl |
⊢ ( ( ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) → ( ( 𝑅 ↾t 𝑎 ) ×t ( 𝑆 ↾t 𝑏 ) ) ∈ 𝐴 ) |
| 84 |
81 82 83
|
syl2anc |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → ( ( 𝑅 ↾t 𝑎 ) ×t ( 𝑆 ↾t 𝑏 ) ) ∈ 𝐴 ) |
| 85 |
80 84
|
eqeltrd |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑎 × 𝑏 ) ) ∈ 𝐴 ) |
| 86 |
|
oveq2 |
⊢ ( 𝑧 = ( 𝑎 × 𝑏 ) → ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) = ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑎 × 𝑏 ) ) ) |
| 87 |
86
|
eleq1d |
⊢ ( 𝑧 = ( 𝑎 × 𝑏 ) → ( ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ↔ ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑎 × 𝑏 ) ) ∈ 𝐴 ) ) |
| 88 |
87
|
rspcev |
⊢ ( ( ( 𝑎 × 𝑏 ) ∈ ( ( ( nei ‘ ( 𝑅 ×t 𝑆 ) ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ∧ ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑎 × 𝑏 ) ) ∈ 𝐴 ) → ∃ 𝑧 ∈ ( ( ( nei ‘ ( 𝑅 ×t 𝑆 ) ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ) |
| 89 |
78 85 88
|
syl2anc |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → ∃ 𝑧 ∈ ( ( ( nei ‘ ( 𝑅 ×t 𝑆 ) ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ) |
| 90 |
89
|
ex |
⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) → ( ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) → ∃ 𝑧 ∈ ( ( ( nei ‘ ( 𝑅 ×t 𝑆 ) ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ) ) |
| 91 |
90
|
anassrs |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) → ∃ 𝑧 ∈ ( ( ( nei ‘ ( 𝑅 ×t 𝑆 ) ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ) ) |
| 92 |
91
|
rexlimdvva |
⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ) → ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) → ∃ 𝑧 ∈ ( ( ( nei ‘ ( 𝑅 ×t 𝑆 ) ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ) ) |
| 93 |
21 92
|
biimtrrid |
⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ) → ( ( ∃ 𝑟 ∈ 𝑅 ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ∃ 𝑠 ∈ 𝑆 ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) → ∃ 𝑧 ∈ ( ( ( nei ‘ ( 𝑅 ×t 𝑆 ) ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ) ) |
| 94 |
93
|
rexlimdvva |
⊢ ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) → ( ∃ 𝑎 ∈ 𝒫 𝑢 ∃ 𝑏 ∈ 𝒫 𝑣 ( ∃ 𝑟 ∈ 𝑅 ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ∃ 𝑠 ∈ 𝑆 ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) → ∃ 𝑧 ∈ ( ( ( nei ‘ ( 𝑅 ×t 𝑆 ) ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ) ) |
| 95 |
20 94
|
biimtrrid |
⊢ ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) → ( ( ∃ 𝑎 ∈ 𝒫 𝑢 ∃ 𝑟 ∈ 𝑅 ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ∃ 𝑏 ∈ 𝒫 𝑣 ∃ 𝑠 ∈ 𝑆 ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) → ∃ 𝑧 ∈ ( ( ( nei ‘ ( 𝑅 ×t 𝑆 ) ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ) ) |
| 96 |
13 19 95
|
mp2and |
⊢ ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) → ∃ 𝑧 ∈ ( ( ( nei ‘ ( 𝑅 ×t 𝑆 ) ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ) |
| 97 |
96
|
expr |
⊢ ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ) → ( ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) → ∃ 𝑧 ∈ ( ( ( nei ‘ ( 𝑅 ×t 𝑆 ) ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ) ) |
| 98 |
97
|
rexlimdvva |
⊢ ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) → ( ∃ 𝑢 ∈ 𝑅 ∃ 𝑣 ∈ 𝑆 ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) → ∃ 𝑧 ∈ ( ( ( nei ‘ ( 𝑅 ×t 𝑆 ) ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ) ) |
| 99 |
98
|
ralimdv |
⊢ ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) → ( ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ 𝑅 ∃ 𝑣 ∈ 𝑆 ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) → ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ ( ( ( nei ‘ ( 𝑅 ×t 𝑆 ) ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ) ) |
| 100 |
6 99
|
sylbid |
⊢ ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) → ( 𝑥 ∈ ( 𝑅 ×t 𝑆 ) → ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ ( ( ( nei ‘ ( 𝑅 ×t 𝑆 ) ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ) ) |
| 101 |
100
|
ralrimiv |
⊢ ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) → ∀ 𝑥 ∈ ( 𝑅 ×t 𝑆 ) ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ ( ( ( nei ‘ ( 𝑅 ×t 𝑆 ) ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ) |
| 102 |
|
isnlly |
⊢ ( ( 𝑅 ×t 𝑆 ) ∈ 𝑛-Locally 𝐴 ↔ ( ( 𝑅 ×t 𝑆 ) ∈ Top ∧ ∀ 𝑥 ∈ ( 𝑅 ×t 𝑆 ) ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ ( ( ( nei ‘ ( 𝑅 ×t 𝑆 ) ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ) ) |
| 103 |
5 101 102
|
sylanbrc |
⊢ ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) → ( 𝑅 ×t 𝑆 ) ∈ 𝑛-Locally 𝐴 ) |