Metamath Proof Explorer


Theorem cvmlift2lem13

Description: Lemma for cvmlift2 . (Contributed by Mario Carneiro, 7-May-2015)

Ref Expression
Hypotheses cvmlift2.b B=C
cvmlift2.f φFCCovMapJ
cvmlift2.g φGII×tIICnJ
cvmlift2.p φPB
cvmlift2.i φFP=0G0
cvmlift2.h H=ιfIICnC|Ff=z01zG0f0=P
cvmlift2.k K=x01,y01ιfIICnC|Ff=z01xGzf0=Hxy
Assertion cvmlift2lem13 φ∃!gII×tIICnCFg=G0g0=P

Proof

Step Hyp Ref Expression
1 cvmlift2.b B=C
2 cvmlift2.f φFCCovMapJ
3 cvmlift2.g φGII×tIICnJ
4 cvmlift2.p φPB
5 cvmlift2.i φFP=0G0
6 cvmlift2.h H=ιfIICnC|Ff=z01zG0f0=P
7 cvmlift2.k K=x01,y01ιfIICnC|Ff=z01xGzf0=Hxy
8 fveq2 a=zII×tIICnPCa=II×tIICnPCz
9 8 eleq2d a=zKII×tIICnPCaKII×tIICnPCz
10 9 cbvrabv a01×01|KII×tIICnPCa=z01×01|KII×tIICnPCz
11 sneq z=bz=b
12 11 xpeq2d z=b01×z=01×b
13 12 sseq1d z=b01×za01×01|KII×tIICnPCa01×ba01×01|KII×tIICnPCa
14 13 cbvrabv z01|01×za01×01|KII×tIICnPCa=b01|01×ba01×01|KII×tIICnPCa
15 simpr c=rd=td=t
16 15 eleq1d c=rd=td01t01
17 xpeq1 v=uv×b=u×b
18 17 sseq1d v=uv×ba01×01|KII×tIICnPCau×ba01×01|KII×tIICnPCa
19 xpeq1 v=uv×d=u×d
20 19 sseq1d v=uv×da01×01|KII×tIICnPCau×da01×01|KII×tIICnPCa
21 18 20 bibi12d v=uv×ba01×01|KII×tIICnPCav×da01×01|KII×tIICnPCau×ba01×01|KII×tIICnPCau×da01×01|KII×tIICnPCa
22 21 cbvrexvw vneiIIcv×ba01×01|KII×tIICnPCav×da01×01|KII×tIICnPCauneiIIcu×ba01×01|KII×tIICnPCau×da01×01|KII×tIICnPCa
23 simpl c=rd=tc=r
24 23 sneqd c=rd=tc=r
25 24 fveq2d c=rd=tneiIIc=neiIIr
26 15 sneqd c=rd=td=t
27 26 xpeq2d c=rd=tu×d=u×t
28 27 sseq1d c=rd=tu×da01×01|KII×tIICnPCau×ta01×01|KII×tIICnPCa
29 28 bibi2d c=rd=tu×ba01×01|KII×tIICnPCau×da01×01|KII×tIICnPCau×ba01×01|KII×tIICnPCau×ta01×01|KII×tIICnPCa
30 25 29 rexeqbidv c=rd=tuneiIIcu×ba01×01|KII×tIICnPCau×da01×01|KII×tIICnPCauneiIIru×ba01×01|KII×tIICnPCau×ta01×01|KII×tIICnPCa
31 22 30 bitrid c=rd=tvneiIIcv×ba01×01|KII×tIICnPCav×da01×01|KII×tIICnPCauneiIIru×ba01×01|KII×tIICnPCau×ta01×01|KII×tIICnPCa
32 16 31 anbi12d c=rd=td01vneiIIcv×ba01×01|KII×tIICnPCav×da01×01|KII×tIICnPCat01uneiIIru×ba01×01|KII×tIICnPCau×ta01×01|KII×tIICnPCa
33 32 cbvopabv cd|d01vneiIIcv×ba01×01|KII×tIICnPCav×da01×01|KII×tIICnPCa=rt|t01uneiIIru×ba01×01|KII×tIICnPCau×ta01×01|KII×tIICnPCa
34 1 2 3 4 5 6 7 10 14 33 cvmlift2lem12 φKII×tIICnC
35 1 2 3 4 5 6 7 cvmlift2lem7 φFK=G
36 0elunit 001
37 1 2 3 4 5 6 7 cvmlift2lem8 φ0010K0=H0
38 36 37 mpan2 φ0K0=H0
39 1 2 3 4 5 6 cvmlift2lem2 φHIICnCFH=z01zG0H0=P
40 39 simp3d φH0=P
41 38 40 eqtrd φ0K0=P
42 coeq2 g=KFg=FK
43 42 eqeq1d g=KFg=GFK=G
44 oveq g=K0g0=0K0
45 44 eqeq1d g=K0g0=P0K0=P
46 43 45 anbi12d g=KFg=G0g0=PFK=G0K0=P
47 46 rspcev KII×tIICnCFK=G0K0=PgII×tIICnCFg=G0g0=P
48 34 35 41 47 syl12anc φgII×tIICnCFg=G0g0=P
49 iitop IITop
50 iiuni 01=II
51 49 49 50 50 txunii 01×01=II×tII
52 iiconn IIConn
53 txconn IIConnIIConnII×tIIConn
54 52 52 53 mp2an II×tIIConn
55 54 a1i φII×tIIConn
56 iinllyconn IIN-Locally Conn
57 txconn xConnyConnx×tyConn
58 57 txnlly IIN-Locally Conn IIN-Locally Conn II×tIIN-Locally Conn
59 56 56 58 mp2an II×tIIN-Locally Conn
60 59 a1i φII×tIIN-Locally Conn
61 opelxpi 0010010001×01
62 36 36 61 mp2an 0001×01
63 62 a1i φ0001×01
64 df-ov 0G0=G00
65 5 64 eqtrdi φFP=G00
66 1 51 2 55 60 63 3 4 65 cvmliftmo φ*gII×tIICnCFg=Gg00=P
67 df-ov 0g0=g00
68 67 eqeq1i 0g0=Pg00=P
69 68 anbi2i Fg=G0g0=PFg=Gg00=P
70 69 rmobii *gII×tIICnCFg=G0g0=P*gII×tIICnCFg=Gg00=P
71 66 70 sylibr φ*gII×tIICnCFg=G0g0=P
72 reu5 ∃!gII×tIICnCFg=G0g0=PgII×tIICnCFg=G0g0=P*gII×tIICnCFg=G0g0=P
73 48 71 72 sylanbrc φ∃!gII×tIICnCFg=G0g0=P