| Step |
Hyp |
Ref |
Expression |
| 1 |
|
txtube.x |
⊢ 𝑋 = ∪ 𝑅 |
| 2 |
|
txtube.y |
⊢ 𝑌 = ∪ 𝑆 |
| 3 |
|
txtube.r |
⊢ ( 𝜑 → 𝑅 ∈ Comp ) |
| 4 |
|
txtube.s |
⊢ ( 𝜑 → 𝑆 ∈ Top ) |
| 5 |
|
txtube.w |
⊢ ( 𝜑 → 𝑈 ∈ ( 𝑅 ×t 𝑆 ) ) |
| 6 |
|
txtube.u |
⊢ ( 𝜑 → ( 𝑋 × { 𝐴 } ) ⊆ 𝑈 ) |
| 7 |
|
txtube.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑌 ) |
| 8 |
|
eleq1 |
⊢ ( 𝑦 = 〈 𝑥 , 𝐴 〉 → ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ↔ 〈 𝑥 , 𝐴 〉 ∈ ( 𝑢 × 𝑣 ) ) ) |
| 9 |
8
|
anbi1d |
⊢ ( 𝑦 = 〈 𝑥 , 𝐴 〉 → ( ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ↔ ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) ) |
| 10 |
9
|
2rexbidv |
⊢ ( 𝑦 = 〈 𝑥 , 𝐴 〉 → ( ∃ 𝑢 ∈ 𝑅 ∃ 𝑣 ∈ 𝑆 ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ↔ ∃ 𝑢 ∈ 𝑅 ∃ 𝑣 ∈ 𝑆 ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) ) |
| 11 |
|
eltx |
⊢ ( ( 𝑅 ∈ Comp ∧ 𝑆 ∈ Top ) → ( 𝑈 ∈ ( 𝑅 ×t 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑈 ∃ 𝑢 ∈ 𝑅 ∃ 𝑣 ∈ 𝑆 ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) ) |
| 12 |
3 4 11
|
syl2anc |
⊢ ( 𝜑 → ( 𝑈 ∈ ( 𝑅 ×t 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑈 ∃ 𝑢 ∈ 𝑅 ∃ 𝑣 ∈ 𝑆 ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) ) |
| 13 |
5 12
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑈 ∃ 𝑢 ∈ 𝑅 ∃ 𝑣 ∈ 𝑆 ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑦 ∈ 𝑈 ∃ 𝑢 ∈ 𝑅 ∃ 𝑣 ∈ 𝑆 ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) |
| 15 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑋 × { 𝐴 } ) ⊆ 𝑈 ) |
| 16 |
|
id |
⊢ ( 𝑥 ∈ 𝑋 → 𝑥 ∈ 𝑋 ) |
| 17 |
|
snidg |
⊢ ( 𝐴 ∈ 𝑌 → 𝐴 ∈ { 𝐴 } ) |
| 18 |
7 17
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ { 𝐴 } ) |
| 19 |
|
opelxpi |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ { 𝐴 } ) → 〈 𝑥 , 𝐴 〉 ∈ ( 𝑋 × { 𝐴 } ) ) |
| 20 |
16 18 19
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 〈 𝑥 , 𝐴 〉 ∈ ( 𝑋 × { 𝐴 } ) ) |
| 21 |
15 20
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 〈 𝑥 , 𝐴 〉 ∈ 𝑈 ) |
| 22 |
10 14 21
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑢 ∈ 𝑅 ∃ 𝑣 ∈ 𝑆 ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) |
| 23 |
|
opelxp |
⊢ ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑢 × 𝑣 ) ↔ ( 𝑥 ∈ 𝑢 ∧ 𝐴 ∈ 𝑣 ) ) |
| 24 |
23
|
anbi1i |
⊢ ( ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ↔ ( ( 𝑥 ∈ 𝑢 ∧ 𝐴 ∈ 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) |
| 25 |
|
anass |
⊢ ( ( ( 𝑥 ∈ 𝑢 ∧ 𝐴 ∈ 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ↔ ( 𝑥 ∈ 𝑢 ∧ ( 𝐴 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) ) |
| 26 |
24 25
|
bitri |
⊢ ( ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ↔ ( 𝑥 ∈ 𝑢 ∧ ( 𝐴 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) ) |
| 27 |
26
|
rexbii |
⊢ ( ∃ 𝑣 ∈ 𝑆 ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ↔ ∃ 𝑣 ∈ 𝑆 ( 𝑥 ∈ 𝑢 ∧ ( 𝐴 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) ) |
| 28 |
|
r19.42v |
⊢ ( ∃ 𝑣 ∈ 𝑆 ( 𝑥 ∈ 𝑢 ∧ ( 𝐴 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) ↔ ( 𝑥 ∈ 𝑢 ∧ ∃ 𝑣 ∈ 𝑆 ( 𝐴 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) ) |
| 29 |
27 28
|
bitri |
⊢ ( ∃ 𝑣 ∈ 𝑆 ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ↔ ( 𝑥 ∈ 𝑢 ∧ ∃ 𝑣 ∈ 𝑆 ( 𝐴 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) ) |
| 30 |
29
|
rexbii |
⊢ ( ∃ 𝑢 ∈ 𝑅 ∃ 𝑣 ∈ 𝑆 ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ↔ ∃ 𝑢 ∈ 𝑅 ( 𝑥 ∈ 𝑢 ∧ ∃ 𝑣 ∈ 𝑆 ( 𝐴 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) ) |
| 31 |
22 30
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑢 ∈ 𝑅 ( 𝑥 ∈ 𝑢 ∧ ∃ 𝑣 ∈ 𝑆 ( 𝐴 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) ) |
| 32 |
31
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑅 ( 𝑥 ∈ 𝑢 ∧ ∃ 𝑣 ∈ 𝑆 ( 𝐴 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) ) |
| 33 |
|
eleq2 |
⊢ ( 𝑣 = ( 𝑓 ‘ 𝑢 ) → ( 𝐴 ∈ 𝑣 ↔ 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ) ) |
| 34 |
|
xpeq2 |
⊢ ( 𝑣 = ( 𝑓 ‘ 𝑢 ) → ( 𝑢 × 𝑣 ) = ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ) |
| 35 |
34
|
sseq1d |
⊢ ( 𝑣 = ( 𝑓 ‘ 𝑢 ) → ( ( 𝑢 × 𝑣 ) ⊆ 𝑈 ↔ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) |
| 36 |
33 35
|
anbi12d |
⊢ ( 𝑣 = ( 𝑓 ‘ 𝑢 ) → ( ( 𝐴 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ↔ ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) |
| 37 |
1 36
|
cmpcovf |
⊢ ( ( 𝑅 ∈ Comp ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑅 ( 𝑥 ∈ 𝑢 ∧ ∃ 𝑣 ∈ 𝑆 ( 𝐴 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) ) → ∃ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ( 𝑋 = ∪ 𝑡 ∧ ∃ 𝑓 ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) |
| 38 |
3 32 37
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ( 𝑋 = ∪ 𝑡 ∧ ∃ 𝑓 ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) |
| 39 |
|
rint0 |
⊢ ( ran 𝑓 = ∅ → ( 𝑌 ∩ ∩ ran 𝑓 ) = 𝑌 ) |
| 40 |
39
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) ∧ ran 𝑓 = ∅ ) → ( 𝑌 ∩ ∩ ran 𝑓 ) = 𝑌 ) |
| 41 |
2
|
topopn |
⊢ ( 𝑆 ∈ Top → 𝑌 ∈ 𝑆 ) |
| 42 |
4 41
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ 𝑆 ) |
| 43 |
42
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) ∧ ran 𝑓 = ∅ ) → 𝑌 ∈ 𝑆 ) |
| 44 |
40 43
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) ∧ ran 𝑓 = ∅ ) → ( 𝑌 ∩ ∩ ran 𝑓 ) ∈ 𝑆 ) |
| 45 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) ∧ ran 𝑓 ≠ ∅ ) → 𝑆 ∈ Top ) |
| 46 |
|
simprrl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → 𝑓 : 𝑡 ⟶ 𝑆 ) |
| 47 |
46
|
frnd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → ran 𝑓 ⊆ 𝑆 ) |
| 48 |
47
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) ∧ ran 𝑓 ≠ ∅ ) → ran 𝑓 ⊆ 𝑆 ) |
| 49 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) ∧ ran 𝑓 ≠ ∅ ) → ran 𝑓 ≠ ∅ ) |
| 50 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) |
| 51 |
50
|
elin2d |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → 𝑡 ∈ Fin ) |
| 52 |
46
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → 𝑓 Fn 𝑡 ) |
| 53 |
|
dffn4 |
⊢ ( 𝑓 Fn 𝑡 ↔ 𝑓 : 𝑡 –onto→ ran 𝑓 ) |
| 54 |
52 53
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → 𝑓 : 𝑡 –onto→ ran 𝑓 ) |
| 55 |
|
fofi |
⊢ ( ( 𝑡 ∈ Fin ∧ 𝑓 : 𝑡 –onto→ ran 𝑓 ) → ran 𝑓 ∈ Fin ) |
| 56 |
51 54 55
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → ran 𝑓 ∈ Fin ) |
| 57 |
56
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) ∧ ran 𝑓 ≠ ∅ ) → ran 𝑓 ∈ Fin ) |
| 58 |
|
fiinopn |
⊢ ( 𝑆 ∈ Top → ( ( ran 𝑓 ⊆ 𝑆 ∧ ran 𝑓 ≠ ∅ ∧ ran 𝑓 ∈ Fin ) → ∩ ran 𝑓 ∈ 𝑆 ) ) |
| 59 |
58
|
imp |
⊢ ( ( 𝑆 ∈ Top ∧ ( ran 𝑓 ⊆ 𝑆 ∧ ran 𝑓 ≠ ∅ ∧ ran 𝑓 ∈ Fin ) ) → ∩ ran 𝑓 ∈ 𝑆 ) |
| 60 |
45 48 49 57 59
|
syl13anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) ∧ ran 𝑓 ≠ ∅ ) → ∩ ran 𝑓 ∈ 𝑆 ) |
| 61 |
|
elssuni |
⊢ ( ∩ ran 𝑓 ∈ 𝑆 → ∩ ran 𝑓 ⊆ ∪ 𝑆 ) |
| 62 |
60 61
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) ∧ ran 𝑓 ≠ ∅ ) → ∩ ran 𝑓 ⊆ ∪ 𝑆 ) |
| 63 |
62 2
|
sseqtrrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) ∧ ran 𝑓 ≠ ∅ ) → ∩ ran 𝑓 ⊆ 𝑌 ) |
| 64 |
|
sseqin2 |
⊢ ( ∩ ran 𝑓 ⊆ 𝑌 ↔ ( 𝑌 ∩ ∩ ran 𝑓 ) = ∩ ran 𝑓 ) |
| 65 |
63 64
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) ∧ ran 𝑓 ≠ ∅ ) → ( 𝑌 ∩ ∩ ran 𝑓 ) = ∩ ran 𝑓 ) |
| 66 |
65 60
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) ∧ ran 𝑓 ≠ ∅ ) → ( 𝑌 ∩ ∩ ran 𝑓 ) ∈ 𝑆 ) |
| 67 |
44 66
|
pm2.61dane |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → ( 𝑌 ∩ ∩ ran 𝑓 ) ∈ 𝑆 ) |
| 68 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → 𝐴 ∈ 𝑌 ) |
| 69 |
|
simprrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) |
| 70 |
|
simpl |
⊢ ( ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) → 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ) |
| 71 |
70
|
ralimi |
⊢ ( ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) → ∀ 𝑢 ∈ 𝑡 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ) |
| 72 |
69 71
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → ∀ 𝑢 ∈ 𝑡 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ) |
| 73 |
|
eliin |
⊢ ( 𝐴 ∈ 𝑌 → ( 𝐴 ∈ ∩ 𝑢 ∈ 𝑡 ( 𝑓 ‘ 𝑢 ) ↔ ∀ 𝑢 ∈ 𝑡 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ) ) |
| 74 |
68 73
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → ( 𝐴 ∈ ∩ 𝑢 ∈ 𝑡 ( 𝑓 ‘ 𝑢 ) ↔ ∀ 𝑢 ∈ 𝑡 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ) ) |
| 75 |
72 74
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → 𝐴 ∈ ∩ 𝑢 ∈ 𝑡 ( 𝑓 ‘ 𝑢 ) ) |
| 76 |
|
fniinfv |
⊢ ( 𝑓 Fn 𝑡 → ∩ 𝑢 ∈ 𝑡 ( 𝑓 ‘ 𝑢 ) = ∩ ran 𝑓 ) |
| 77 |
52 76
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → ∩ 𝑢 ∈ 𝑡 ( 𝑓 ‘ 𝑢 ) = ∩ ran 𝑓 ) |
| 78 |
75 77
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → 𝐴 ∈ ∩ ran 𝑓 ) |
| 79 |
68 78
|
elind |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → 𝐴 ∈ ( 𝑌 ∩ ∩ ran 𝑓 ) ) |
| 80 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → 𝑋 = ∪ 𝑡 ) |
| 81 |
|
uniiun |
⊢ ∪ 𝑡 = ∪ 𝑢 ∈ 𝑡 𝑢 |
| 82 |
80 81
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → 𝑋 = ∪ 𝑢 ∈ 𝑡 𝑢 ) |
| 83 |
82
|
xpeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → ( 𝑋 × ( 𝑌 ∩ ∩ ran 𝑓 ) ) = ( ∪ 𝑢 ∈ 𝑡 𝑢 × ( 𝑌 ∩ ∩ ran 𝑓 ) ) ) |
| 84 |
|
xpiundir |
⊢ ( ∪ 𝑢 ∈ 𝑡 𝑢 × ( 𝑌 ∩ ∩ ran 𝑓 ) ) = ∪ 𝑢 ∈ 𝑡 ( 𝑢 × ( 𝑌 ∩ ∩ ran 𝑓 ) ) |
| 85 |
83 84
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → ( 𝑋 × ( 𝑌 ∩ ∩ ran 𝑓 ) ) = ∪ 𝑢 ∈ 𝑡 ( 𝑢 × ( 𝑌 ∩ ∩ ran 𝑓 ) ) ) |
| 86 |
|
simpr |
⊢ ( ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) → ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) |
| 87 |
86
|
ralimi |
⊢ ( ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) → ∀ 𝑢 ∈ 𝑡 ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) |
| 88 |
69 87
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → ∀ 𝑢 ∈ 𝑡 ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) |
| 89 |
|
inss2 |
⊢ ( 𝑌 ∩ ∩ ran 𝑓 ) ⊆ ∩ ran 𝑓 |
| 90 |
76
|
adantr |
⊢ ( ( 𝑓 Fn 𝑡 ∧ 𝑢 ∈ 𝑡 ) → ∩ 𝑢 ∈ 𝑡 ( 𝑓 ‘ 𝑢 ) = ∩ ran 𝑓 ) |
| 91 |
|
iinss2 |
⊢ ( 𝑢 ∈ 𝑡 → ∩ 𝑢 ∈ 𝑡 ( 𝑓 ‘ 𝑢 ) ⊆ ( 𝑓 ‘ 𝑢 ) ) |
| 92 |
91
|
adantl |
⊢ ( ( 𝑓 Fn 𝑡 ∧ 𝑢 ∈ 𝑡 ) → ∩ 𝑢 ∈ 𝑡 ( 𝑓 ‘ 𝑢 ) ⊆ ( 𝑓 ‘ 𝑢 ) ) |
| 93 |
90 92
|
eqsstrrd |
⊢ ( ( 𝑓 Fn 𝑡 ∧ 𝑢 ∈ 𝑡 ) → ∩ ran 𝑓 ⊆ ( 𝑓 ‘ 𝑢 ) ) |
| 94 |
89 93
|
sstrid |
⊢ ( ( 𝑓 Fn 𝑡 ∧ 𝑢 ∈ 𝑡 ) → ( 𝑌 ∩ ∩ ran 𝑓 ) ⊆ ( 𝑓 ‘ 𝑢 ) ) |
| 95 |
|
xpss2 |
⊢ ( ( 𝑌 ∩ ∩ ran 𝑓 ) ⊆ ( 𝑓 ‘ 𝑢 ) → ( 𝑢 × ( 𝑌 ∩ ∩ ran 𝑓 ) ) ⊆ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ) |
| 96 |
|
sstr2 |
⊢ ( ( 𝑢 × ( 𝑌 ∩ ∩ ran 𝑓 ) ) ⊆ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) → ( ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 → ( 𝑢 × ( 𝑌 ∩ ∩ ran 𝑓 ) ) ⊆ 𝑈 ) ) |
| 97 |
94 95 96
|
3syl |
⊢ ( ( 𝑓 Fn 𝑡 ∧ 𝑢 ∈ 𝑡 ) → ( ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 → ( 𝑢 × ( 𝑌 ∩ ∩ ran 𝑓 ) ) ⊆ 𝑈 ) ) |
| 98 |
97
|
ralimdva |
⊢ ( 𝑓 Fn 𝑡 → ( ∀ 𝑢 ∈ 𝑡 ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 → ∀ 𝑢 ∈ 𝑡 ( 𝑢 × ( 𝑌 ∩ ∩ ran 𝑓 ) ) ⊆ 𝑈 ) ) |
| 99 |
52 88 98
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → ∀ 𝑢 ∈ 𝑡 ( 𝑢 × ( 𝑌 ∩ ∩ ran 𝑓 ) ) ⊆ 𝑈 ) |
| 100 |
|
iunss |
⊢ ( ∪ 𝑢 ∈ 𝑡 ( 𝑢 × ( 𝑌 ∩ ∩ ran 𝑓 ) ) ⊆ 𝑈 ↔ ∀ 𝑢 ∈ 𝑡 ( 𝑢 × ( 𝑌 ∩ ∩ ran 𝑓 ) ) ⊆ 𝑈 ) |
| 101 |
99 100
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → ∪ 𝑢 ∈ 𝑡 ( 𝑢 × ( 𝑌 ∩ ∩ ran 𝑓 ) ) ⊆ 𝑈 ) |
| 102 |
85 101
|
eqsstrd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → ( 𝑋 × ( 𝑌 ∩ ∩ ran 𝑓 ) ) ⊆ 𝑈 ) |
| 103 |
|
eleq2 |
⊢ ( 𝑢 = ( 𝑌 ∩ ∩ ran 𝑓 ) → ( 𝐴 ∈ 𝑢 ↔ 𝐴 ∈ ( 𝑌 ∩ ∩ ran 𝑓 ) ) ) |
| 104 |
|
xpeq2 |
⊢ ( 𝑢 = ( 𝑌 ∩ ∩ ran 𝑓 ) → ( 𝑋 × 𝑢 ) = ( 𝑋 × ( 𝑌 ∩ ∩ ran 𝑓 ) ) ) |
| 105 |
104
|
sseq1d |
⊢ ( 𝑢 = ( 𝑌 ∩ ∩ ran 𝑓 ) → ( ( 𝑋 × 𝑢 ) ⊆ 𝑈 ↔ ( 𝑋 × ( 𝑌 ∩ ∩ ran 𝑓 ) ) ⊆ 𝑈 ) ) |
| 106 |
103 105
|
anbi12d |
⊢ ( 𝑢 = ( 𝑌 ∩ ∩ ran 𝑓 ) → ( ( 𝐴 ∈ 𝑢 ∧ ( 𝑋 × 𝑢 ) ⊆ 𝑈 ) ↔ ( 𝐴 ∈ ( 𝑌 ∩ ∩ ran 𝑓 ) ∧ ( 𝑋 × ( 𝑌 ∩ ∩ ran 𝑓 ) ) ⊆ 𝑈 ) ) ) |
| 107 |
106
|
rspcev |
⊢ ( ( ( 𝑌 ∩ ∩ ran 𝑓 ) ∈ 𝑆 ∧ ( 𝐴 ∈ ( 𝑌 ∩ ∩ ran 𝑓 ) ∧ ( 𝑋 × ( 𝑌 ∩ ∩ ran 𝑓 ) ) ⊆ 𝑈 ) ) → ∃ 𝑢 ∈ 𝑆 ( 𝐴 ∈ 𝑢 ∧ ( 𝑋 × 𝑢 ) ⊆ 𝑈 ) ) |
| 108 |
67 79 102 107
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → ∃ 𝑢 ∈ 𝑆 ( 𝐴 ∈ 𝑢 ∧ ( 𝑋 × 𝑢 ) ⊆ 𝑈 ) ) |
| 109 |
108
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ 𝑋 = ∪ 𝑡 ) → ( ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) → ∃ 𝑢 ∈ 𝑆 ( 𝐴 ∈ 𝑢 ∧ ( 𝑋 × 𝑢 ) ⊆ 𝑈 ) ) ) |
| 110 |
109
|
exlimdv |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ 𝑋 = ∪ 𝑡 ) → ( ∃ 𝑓 ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) → ∃ 𝑢 ∈ 𝑆 ( 𝐴 ∈ 𝑢 ∧ ( 𝑋 × 𝑢 ) ⊆ 𝑈 ) ) ) |
| 111 |
110
|
expimpd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) → ( ( 𝑋 = ∪ 𝑡 ∧ ∃ 𝑓 ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) → ∃ 𝑢 ∈ 𝑆 ( 𝐴 ∈ 𝑢 ∧ ( 𝑋 × 𝑢 ) ⊆ 𝑈 ) ) ) |
| 112 |
111
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ( 𝑋 = ∪ 𝑡 ∧ ∃ 𝑓 ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) → ∃ 𝑢 ∈ 𝑆 ( 𝐴 ∈ 𝑢 ∧ ( 𝑋 × 𝑢 ) ⊆ 𝑈 ) ) ) |
| 113 |
38 112
|
mpd |
⊢ ( 𝜑 → ∃ 𝑢 ∈ 𝑆 ( 𝐴 ∈ 𝑢 ∧ ( 𝑋 × 𝑢 ) ⊆ 𝑈 ) ) |