Metamath Proof Explorer


Theorem txtube

Description: The "tube lemma". If X is compact and there is an open set U containing the line X X. { A } , then there is a "tube" X X. u for some neighborhood u of A which is entirely contained within U . (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Hypotheses txtube.x 𝑋 = 𝑅
txtube.y 𝑌 = 𝑆
txtube.r ( 𝜑𝑅 ∈ Comp )
txtube.s ( 𝜑𝑆 ∈ Top )
txtube.w ( 𝜑𝑈 ∈ ( 𝑅 ×t 𝑆 ) )
txtube.u ( 𝜑 → ( 𝑋 × { 𝐴 } ) ⊆ 𝑈 )
txtube.a ( 𝜑𝐴𝑌 )
Assertion txtube ( 𝜑 → ∃ 𝑢𝑆 ( 𝐴𝑢 ∧ ( 𝑋 × 𝑢 ) ⊆ 𝑈 ) )

Proof

Step Hyp Ref Expression
1 txtube.x 𝑋 = 𝑅
2 txtube.y 𝑌 = 𝑆
3 txtube.r ( 𝜑𝑅 ∈ Comp )
4 txtube.s ( 𝜑𝑆 ∈ Top )
5 txtube.w ( 𝜑𝑈 ∈ ( 𝑅 ×t 𝑆 ) )
6 txtube.u ( 𝜑 → ( 𝑋 × { 𝐴 } ) ⊆ 𝑈 )
7 txtube.a ( 𝜑𝐴𝑌 )
8 eleq1 ( 𝑦 = ⟨ 𝑥 , 𝐴 ⟩ → ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ↔ ⟨ 𝑥 , 𝐴 ⟩ ∈ ( 𝑢 × 𝑣 ) ) )
9 8 anbi1d ( 𝑦 = ⟨ 𝑥 , 𝐴 ⟩ → ( ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ↔ ( ⟨ 𝑥 , 𝐴 ⟩ ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) )
10 9 2rexbidv ( 𝑦 = ⟨ 𝑥 , 𝐴 ⟩ → ( ∃ 𝑢𝑅𝑣𝑆 ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ↔ ∃ 𝑢𝑅𝑣𝑆 ( ⟨ 𝑥 , 𝐴 ⟩ ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) )
11 eltx ( ( 𝑅 ∈ Comp ∧ 𝑆 ∈ Top ) → ( 𝑈 ∈ ( 𝑅 ×t 𝑆 ) ↔ ∀ 𝑦𝑈𝑢𝑅𝑣𝑆 ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) )
12 3 4 11 syl2anc ( 𝜑 → ( 𝑈 ∈ ( 𝑅 ×t 𝑆 ) ↔ ∀ 𝑦𝑈𝑢𝑅𝑣𝑆 ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) )
13 5 12 mpbid ( 𝜑 → ∀ 𝑦𝑈𝑢𝑅𝑣𝑆 ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) )
14 13 adantr ( ( 𝜑𝑥𝑋 ) → ∀ 𝑦𝑈𝑢𝑅𝑣𝑆 ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) )
15 6 adantr ( ( 𝜑𝑥𝑋 ) → ( 𝑋 × { 𝐴 } ) ⊆ 𝑈 )
16 id ( 𝑥𝑋𝑥𝑋 )
17 snidg ( 𝐴𝑌𝐴 ∈ { 𝐴 } )
18 7 17 syl ( 𝜑𝐴 ∈ { 𝐴 } )
19 opelxpi ( ( 𝑥𝑋𝐴 ∈ { 𝐴 } ) → ⟨ 𝑥 , 𝐴 ⟩ ∈ ( 𝑋 × { 𝐴 } ) )
20 16 18 19 syl2anr ( ( 𝜑𝑥𝑋 ) → ⟨ 𝑥 , 𝐴 ⟩ ∈ ( 𝑋 × { 𝐴 } ) )
21 15 20 sseldd ( ( 𝜑𝑥𝑋 ) → ⟨ 𝑥 , 𝐴 ⟩ ∈ 𝑈 )
22 10 14 21 rspcdva ( ( 𝜑𝑥𝑋 ) → ∃ 𝑢𝑅𝑣𝑆 ( ⟨ 𝑥 , 𝐴 ⟩ ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) )
23 opelxp ( ⟨ 𝑥 , 𝐴 ⟩ ∈ ( 𝑢 × 𝑣 ) ↔ ( 𝑥𝑢𝐴𝑣 ) )
24 23 anbi1i ( ( ⟨ 𝑥 , 𝐴 ⟩ ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ↔ ( ( 𝑥𝑢𝐴𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) )
25 anass ( ( ( 𝑥𝑢𝐴𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ↔ ( 𝑥𝑢 ∧ ( 𝐴𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) )
26 24 25 bitri ( ( ⟨ 𝑥 , 𝐴 ⟩ ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ↔ ( 𝑥𝑢 ∧ ( 𝐴𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) )
27 26 rexbii ( ∃ 𝑣𝑆 ( ⟨ 𝑥 , 𝐴 ⟩ ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ↔ ∃ 𝑣𝑆 ( 𝑥𝑢 ∧ ( 𝐴𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) )
28 r19.42v ( ∃ 𝑣𝑆 ( 𝑥𝑢 ∧ ( 𝐴𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) ↔ ( 𝑥𝑢 ∧ ∃ 𝑣𝑆 ( 𝐴𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) )
29 27 28 bitri ( ∃ 𝑣𝑆 ( ⟨ 𝑥 , 𝐴 ⟩ ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ↔ ( 𝑥𝑢 ∧ ∃ 𝑣𝑆 ( 𝐴𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) )
30 29 rexbii ( ∃ 𝑢𝑅𝑣𝑆 ( ⟨ 𝑥 , 𝐴 ⟩ ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ↔ ∃ 𝑢𝑅 ( 𝑥𝑢 ∧ ∃ 𝑣𝑆 ( 𝐴𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) )
31 22 30 sylib ( ( 𝜑𝑥𝑋 ) → ∃ 𝑢𝑅 ( 𝑥𝑢 ∧ ∃ 𝑣𝑆 ( 𝐴𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) )
32 31 ralrimiva ( 𝜑 → ∀ 𝑥𝑋𝑢𝑅 ( 𝑥𝑢 ∧ ∃ 𝑣𝑆 ( 𝐴𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) )
33 eleq2 ( 𝑣 = ( 𝑓𝑢 ) → ( 𝐴𝑣𝐴 ∈ ( 𝑓𝑢 ) ) )
34 xpeq2 ( 𝑣 = ( 𝑓𝑢 ) → ( 𝑢 × 𝑣 ) = ( 𝑢 × ( 𝑓𝑢 ) ) )
35 34 sseq1d ( 𝑣 = ( 𝑓𝑢 ) → ( ( 𝑢 × 𝑣 ) ⊆ 𝑈 ↔ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) )
36 33 35 anbi12d ( 𝑣 = ( 𝑓𝑢 ) → ( ( 𝐴𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ↔ ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) ) )
37 1 36 cmpcovf ( ( 𝑅 ∈ Comp ∧ ∀ 𝑥𝑋𝑢𝑅 ( 𝑥𝑢 ∧ ∃ 𝑣𝑆 ( 𝐴𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) ) → ∃ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ( 𝑋 = 𝑡 ∧ ∃ 𝑓 ( 𝑓 : 𝑡𝑆 ∧ ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) ) ) )
38 3 32 37 syl2anc ( 𝜑 → ∃ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ( 𝑋 = 𝑡 ∧ ∃ 𝑓 ( 𝑓 : 𝑡𝑆 ∧ ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) ) ) )
39 rint0 ( ran 𝑓 = ∅ → ( 𝑌 ran 𝑓 ) = 𝑌 )
40 39 adantl ( ( ( ( 𝜑𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = 𝑡 ∧ ( 𝑓 : 𝑡𝑆 ∧ ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) ) ) ) ∧ ran 𝑓 = ∅ ) → ( 𝑌 ran 𝑓 ) = 𝑌 )
41 2 topopn ( 𝑆 ∈ Top → 𝑌𝑆 )
42 4 41 syl ( 𝜑𝑌𝑆 )
43 42 ad3antrrr ( ( ( ( 𝜑𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = 𝑡 ∧ ( 𝑓 : 𝑡𝑆 ∧ ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) ) ) ) ∧ ran 𝑓 = ∅ ) → 𝑌𝑆 )
44 40 43 eqeltrd ( ( ( ( 𝜑𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = 𝑡 ∧ ( 𝑓 : 𝑡𝑆 ∧ ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) ) ) ) ∧ ran 𝑓 = ∅ ) → ( 𝑌 ran 𝑓 ) ∈ 𝑆 )
45 4 ad3antrrr ( ( ( ( 𝜑𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = 𝑡 ∧ ( 𝑓 : 𝑡𝑆 ∧ ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) ) ) ) ∧ ran 𝑓 ≠ ∅ ) → 𝑆 ∈ Top )
46 simprrl ( ( ( 𝜑𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = 𝑡 ∧ ( 𝑓 : 𝑡𝑆 ∧ ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) ) ) ) → 𝑓 : 𝑡𝑆 )
47 46 frnd ( ( ( 𝜑𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = 𝑡 ∧ ( 𝑓 : 𝑡𝑆 ∧ ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) ) ) ) → ran 𝑓𝑆 )
48 47 adantr ( ( ( ( 𝜑𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = 𝑡 ∧ ( 𝑓 : 𝑡𝑆 ∧ ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) ) ) ) ∧ ran 𝑓 ≠ ∅ ) → ran 𝑓𝑆 )
49 simpr ( ( ( ( 𝜑𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = 𝑡 ∧ ( 𝑓 : 𝑡𝑆 ∧ ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) ) ) ) ∧ ran 𝑓 ≠ ∅ ) → ran 𝑓 ≠ ∅ )
50 simplr ( ( ( 𝜑𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = 𝑡 ∧ ( 𝑓 : 𝑡𝑆 ∧ ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) ) ) ) → 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) )
51 50 elin2d ( ( ( 𝜑𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = 𝑡 ∧ ( 𝑓 : 𝑡𝑆 ∧ ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) ) ) ) → 𝑡 ∈ Fin )
52 46 ffnd ( ( ( 𝜑𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = 𝑡 ∧ ( 𝑓 : 𝑡𝑆 ∧ ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) ) ) ) → 𝑓 Fn 𝑡 )
53 dffn4 ( 𝑓 Fn 𝑡𝑓 : 𝑡onto→ ran 𝑓 )
54 52 53 sylib ( ( ( 𝜑𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = 𝑡 ∧ ( 𝑓 : 𝑡𝑆 ∧ ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) ) ) ) → 𝑓 : 𝑡onto→ ran 𝑓 )
55 fofi ( ( 𝑡 ∈ Fin ∧ 𝑓 : 𝑡onto→ ran 𝑓 ) → ran 𝑓 ∈ Fin )
56 51 54 55 syl2anc ( ( ( 𝜑𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = 𝑡 ∧ ( 𝑓 : 𝑡𝑆 ∧ ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) ) ) ) → ran 𝑓 ∈ Fin )
57 56 adantr ( ( ( ( 𝜑𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = 𝑡 ∧ ( 𝑓 : 𝑡𝑆 ∧ ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) ) ) ) ∧ ran 𝑓 ≠ ∅ ) → ran 𝑓 ∈ Fin )
58 fiinopn ( 𝑆 ∈ Top → ( ( ran 𝑓𝑆 ∧ ran 𝑓 ≠ ∅ ∧ ran 𝑓 ∈ Fin ) → ran 𝑓𝑆 ) )
59 58 imp ( ( 𝑆 ∈ Top ∧ ( ran 𝑓𝑆 ∧ ran 𝑓 ≠ ∅ ∧ ran 𝑓 ∈ Fin ) ) → ran 𝑓𝑆 )
60 45 48 49 57 59 syl13anc ( ( ( ( 𝜑𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = 𝑡 ∧ ( 𝑓 : 𝑡𝑆 ∧ ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) ) ) ) ∧ ran 𝑓 ≠ ∅ ) → ran 𝑓𝑆 )
61 elssuni ( ran 𝑓𝑆 ran 𝑓 𝑆 )
62 60 61 syl ( ( ( ( 𝜑𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = 𝑡 ∧ ( 𝑓 : 𝑡𝑆 ∧ ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) ) ) ) ∧ ran 𝑓 ≠ ∅ ) → ran 𝑓 𝑆 )
63 62 2 sseqtrrdi ( ( ( ( 𝜑𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = 𝑡 ∧ ( 𝑓 : 𝑡𝑆 ∧ ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) ) ) ) ∧ ran 𝑓 ≠ ∅ ) → ran 𝑓𝑌 )
64 sseqin2 ( ran 𝑓𝑌 ↔ ( 𝑌 ran 𝑓 ) = ran 𝑓 )
65 63 64 sylib ( ( ( ( 𝜑𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = 𝑡 ∧ ( 𝑓 : 𝑡𝑆 ∧ ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) ) ) ) ∧ ran 𝑓 ≠ ∅ ) → ( 𝑌 ran 𝑓 ) = ran 𝑓 )
66 65 60 eqeltrd ( ( ( ( 𝜑𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = 𝑡 ∧ ( 𝑓 : 𝑡𝑆 ∧ ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) ) ) ) ∧ ran 𝑓 ≠ ∅ ) → ( 𝑌 ran 𝑓 ) ∈ 𝑆 )
67 44 66 pm2.61dane ( ( ( 𝜑𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = 𝑡 ∧ ( 𝑓 : 𝑡𝑆 ∧ ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) ) ) ) → ( 𝑌 ran 𝑓 ) ∈ 𝑆 )
68 7 ad2antrr ( ( ( 𝜑𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = 𝑡 ∧ ( 𝑓 : 𝑡𝑆 ∧ ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) ) ) ) → 𝐴𝑌 )
69 simprrr ( ( ( 𝜑𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = 𝑡 ∧ ( 𝑓 : 𝑡𝑆 ∧ ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) ) ) ) → ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) )
70 simpl ( ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) → 𝐴 ∈ ( 𝑓𝑢 ) )
71 70 ralimi ( ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) → ∀ 𝑢𝑡 𝐴 ∈ ( 𝑓𝑢 ) )
72 69 71 syl ( ( ( 𝜑𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = 𝑡 ∧ ( 𝑓 : 𝑡𝑆 ∧ ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) ) ) ) → ∀ 𝑢𝑡 𝐴 ∈ ( 𝑓𝑢 ) )
73 eliin ( 𝐴𝑌 → ( 𝐴 𝑢𝑡 ( 𝑓𝑢 ) ↔ ∀ 𝑢𝑡 𝐴 ∈ ( 𝑓𝑢 ) ) )
74 68 73 syl ( ( ( 𝜑𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = 𝑡 ∧ ( 𝑓 : 𝑡𝑆 ∧ ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) ) ) ) → ( 𝐴 𝑢𝑡 ( 𝑓𝑢 ) ↔ ∀ 𝑢𝑡 𝐴 ∈ ( 𝑓𝑢 ) ) )
75 72 74 mpbird ( ( ( 𝜑𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = 𝑡 ∧ ( 𝑓 : 𝑡𝑆 ∧ ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) ) ) ) → 𝐴 𝑢𝑡 ( 𝑓𝑢 ) )
76 fniinfv ( 𝑓 Fn 𝑡 𝑢𝑡 ( 𝑓𝑢 ) = ran 𝑓 )
77 52 76 syl ( ( ( 𝜑𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = 𝑡 ∧ ( 𝑓 : 𝑡𝑆 ∧ ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) ) ) ) → 𝑢𝑡 ( 𝑓𝑢 ) = ran 𝑓 )
78 75 77 eleqtrd ( ( ( 𝜑𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = 𝑡 ∧ ( 𝑓 : 𝑡𝑆 ∧ ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) ) ) ) → 𝐴 ran 𝑓 )
79 68 78 elind ( ( ( 𝜑𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = 𝑡 ∧ ( 𝑓 : 𝑡𝑆 ∧ ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) ) ) ) → 𝐴 ∈ ( 𝑌 ran 𝑓 ) )
80 simprl ( ( ( 𝜑𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = 𝑡 ∧ ( 𝑓 : 𝑡𝑆 ∧ ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) ) ) ) → 𝑋 = 𝑡 )
81 uniiun 𝑡 = 𝑢𝑡 𝑢
82 80 81 eqtrdi ( ( ( 𝜑𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = 𝑡 ∧ ( 𝑓 : 𝑡𝑆 ∧ ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) ) ) ) → 𝑋 = 𝑢𝑡 𝑢 )
83 82 xpeq1d ( ( ( 𝜑𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = 𝑡 ∧ ( 𝑓 : 𝑡𝑆 ∧ ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) ) ) ) → ( 𝑋 × ( 𝑌 ran 𝑓 ) ) = ( 𝑢𝑡 𝑢 × ( 𝑌 ran 𝑓 ) ) )
84 xpiundir ( 𝑢𝑡 𝑢 × ( 𝑌 ran 𝑓 ) ) = 𝑢𝑡 ( 𝑢 × ( 𝑌 ran 𝑓 ) )
85 83 84 eqtrdi ( ( ( 𝜑𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = 𝑡 ∧ ( 𝑓 : 𝑡𝑆 ∧ ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) ) ) ) → ( 𝑋 × ( 𝑌 ran 𝑓 ) ) = 𝑢𝑡 ( 𝑢 × ( 𝑌 ran 𝑓 ) ) )
86 simpr ( ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) → ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 )
87 86 ralimi ( ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) → ∀ 𝑢𝑡 ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 )
88 69 87 syl ( ( ( 𝜑𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = 𝑡 ∧ ( 𝑓 : 𝑡𝑆 ∧ ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) ) ) ) → ∀ 𝑢𝑡 ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 )
89 inss2 ( 𝑌 ran 𝑓 ) ⊆ ran 𝑓
90 76 adantr ( ( 𝑓 Fn 𝑡𝑢𝑡 ) → 𝑢𝑡 ( 𝑓𝑢 ) = ran 𝑓 )
91 iinss2 ( 𝑢𝑡 𝑢𝑡 ( 𝑓𝑢 ) ⊆ ( 𝑓𝑢 ) )
92 91 adantl ( ( 𝑓 Fn 𝑡𝑢𝑡 ) → 𝑢𝑡 ( 𝑓𝑢 ) ⊆ ( 𝑓𝑢 ) )
93 90 92 eqsstrrd ( ( 𝑓 Fn 𝑡𝑢𝑡 ) → ran 𝑓 ⊆ ( 𝑓𝑢 ) )
94 89 93 sstrid ( ( 𝑓 Fn 𝑡𝑢𝑡 ) → ( 𝑌 ran 𝑓 ) ⊆ ( 𝑓𝑢 ) )
95 xpss2 ( ( 𝑌 ran 𝑓 ) ⊆ ( 𝑓𝑢 ) → ( 𝑢 × ( 𝑌 ran 𝑓 ) ) ⊆ ( 𝑢 × ( 𝑓𝑢 ) ) )
96 sstr2 ( ( 𝑢 × ( 𝑌 ran 𝑓 ) ) ⊆ ( 𝑢 × ( 𝑓𝑢 ) ) → ( ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 → ( 𝑢 × ( 𝑌 ran 𝑓 ) ) ⊆ 𝑈 ) )
97 94 95 96 3syl ( ( 𝑓 Fn 𝑡𝑢𝑡 ) → ( ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 → ( 𝑢 × ( 𝑌 ran 𝑓 ) ) ⊆ 𝑈 ) )
98 97 ralimdva ( 𝑓 Fn 𝑡 → ( ∀ 𝑢𝑡 ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 → ∀ 𝑢𝑡 ( 𝑢 × ( 𝑌 ran 𝑓 ) ) ⊆ 𝑈 ) )
99 52 88 98 sylc ( ( ( 𝜑𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = 𝑡 ∧ ( 𝑓 : 𝑡𝑆 ∧ ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) ) ) ) → ∀ 𝑢𝑡 ( 𝑢 × ( 𝑌 ran 𝑓 ) ) ⊆ 𝑈 )
100 iunss ( 𝑢𝑡 ( 𝑢 × ( 𝑌 ran 𝑓 ) ) ⊆ 𝑈 ↔ ∀ 𝑢𝑡 ( 𝑢 × ( 𝑌 ran 𝑓 ) ) ⊆ 𝑈 )
101 99 100 sylibr ( ( ( 𝜑𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = 𝑡 ∧ ( 𝑓 : 𝑡𝑆 ∧ ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) ) ) ) → 𝑢𝑡 ( 𝑢 × ( 𝑌 ran 𝑓 ) ) ⊆ 𝑈 )
102 85 101 eqsstrd ( ( ( 𝜑𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = 𝑡 ∧ ( 𝑓 : 𝑡𝑆 ∧ ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) ) ) ) → ( 𝑋 × ( 𝑌 ran 𝑓 ) ) ⊆ 𝑈 )
103 eleq2 ( 𝑢 = ( 𝑌 ran 𝑓 ) → ( 𝐴𝑢𝐴 ∈ ( 𝑌 ran 𝑓 ) ) )
104 xpeq2 ( 𝑢 = ( 𝑌 ran 𝑓 ) → ( 𝑋 × 𝑢 ) = ( 𝑋 × ( 𝑌 ran 𝑓 ) ) )
105 104 sseq1d ( 𝑢 = ( 𝑌 ran 𝑓 ) → ( ( 𝑋 × 𝑢 ) ⊆ 𝑈 ↔ ( 𝑋 × ( 𝑌 ran 𝑓 ) ) ⊆ 𝑈 ) )
106 103 105 anbi12d ( 𝑢 = ( 𝑌 ran 𝑓 ) → ( ( 𝐴𝑢 ∧ ( 𝑋 × 𝑢 ) ⊆ 𝑈 ) ↔ ( 𝐴 ∈ ( 𝑌 ran 𝑓 ) ∧ ( 𝑋 × ( 𝑌 ran 𝑓 ) ) ⊆ 𝑈 ) ) )
107 106 rspcev ( ( ( 𝑌 ran 𝑓 ) ∈ 𝑆 ∧ ( 𝐴 ∈ ( 𝑌 ran 𝑓 ) ∧ ( 𝑋 × ( 𝑌 ran 𝑓 ) ) ⊆ 𝑈 ) ) → ∃ 𝑢𝑆 ( 𝐴𝑢 ∧ ( 𝑋 × 𝑢 ) ⊆ 𝑈 ) )
108 67 79 102 107 syl12anc ( ( ( 𝜑𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = 𝑡 ∧ ( 𝑓 : 𝑡𝑆 ∧ ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) ) ) ) → ∃ 𝑢𝑆 ( 𝐴𝑢 ∧ ( 𝑋 × 𝑢 ) ⊆ 𝑈 ) )
109 108 expr ( ( ( 𝜑𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ 𝑋 = 𝑡 ) → ( ( 𝑓 : 𝑡𝑆 ∧ ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) ) → ∃ 𝑢𝑆 ( 𝐴𝑢 ∧ ( 𝑋 × 𝑢 ) ⊆ 𝑈 ) ) )
110 109 exlimdv ( ( ( 𝜑𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ 𝑋 = 𝑡 ) → ( ∃ 𝑓 ( 𝑓 : 𝑡𝑆 ∧ ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) ) → ∃ 𝑢𝑆 ( 𝐴𝑢 ∧ ( 𝑋 × 𝑢 ) ⊆ 𝑈 ) ) )
111 110 expimpd ( ( 𝜑𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) → ( ( 𝑋 = 𝑡 ∧ ∃ 𝑓 ( 𝑓 : 𝑡𝑆 ∧ ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) ) ) → ∃ 𝑢𝑆 ( 𝐴𝑢 ∧ ( 𝑋 × 𝑢 ) ⊆ 𝑈 ) ) )
112 111 rexlimdva ( 𝜑 → ( ∃ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ( 𝑋 = 𝑡 ∧ ∃ 𝑓 ( 𝑓 : 𝑡𝑆 ∧ ∀ 𝑢𝑡 ( 𝐴 ∈ ( 𝑓𝑢 ) ∧ ( 𝑢 × ( 𝑓𝑢 ) ) ⊆ 𝑈 ) ) ) → ∃ 𝑢𝑆 ( 𝐴𝑢 ∧ ( 𝑋 × 𝑢 ) ⊆ 𝑈 ) ) )
113 38 112 mpd ( 𝜑 → ∃ 𝑢𝑆 ( 𝐴𝑢 ∧ ( 𝑋 × 𝑢 ) ⊆ 𝑈 ) )