| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvmcov.1 |
|- S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. u e. s ( A. v e. ( s \ { u } ) ( u i^i v ) = (/) /\ ( F |` u ) e. ( ( C |`t u ) Homeo ( J |`t k ) ) ) ) } ) |
| 2 |
|
n0 |
|- ( ( S ` U ) =/= (/) <-> E. x x e. ( S ` U ) ) |
| 3 |
|
simpl2 |
|- ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> V e. J ) |
| 4 |
|
simpl1 |
|- ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> F e. ( C CovMap J ) ) |
| 5 |
|
cvmtop1 |
|- ( F e. ( C CovMap J ) -> C e. Top ) |
| 6 |
4 5
|
syl |
|- ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> C e. Top ) |
| 7 |
6
|
adantr |
|- ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ y e. x ) -> C e. Top ) |
| 8 |
1
|
cvmsss |
|- ( x e. ( S ` U ) -> x C_ C ) |
| 9 |
8
|
adantl |
|- ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> x C_ C ) |
| 10 |
9
|
sselda |
|- ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ y e. x ) -> y e. C ) |
| 11 |
|
cvmcn |
|- ( F e. ( C CovMap J ) -> F e. ( C Cn J ) ) |
| 12 |
4 11
|
syl |
|- ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> F e. ( C Cn J ) ) |
| 13 |
|
cnima |
|- ( ( F e. ( C Cn J ) /\ V e. J ) -> ( `' F " V ) e. C ) |
| 14 |
12 3 13
|
syl2anc |
|- ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> ( `' F " V ) e. C ) |
| 15 |
14
|
adantr |
|- ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ y e. x ) -> ( `' F " V ) e. C ) |
| 16 |
|
inopn |
|- ( ( C e. Top /\ y e. C /\ ( `' F " V ) e. C ) -> ( y i^i ( `' F " V ) ) e. C ) |
| 17 |
7 10 15 16
|
syl3anc |
|- ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ y e. x ) -> ( y i^i ( `' F " V ) ) e. C ) |
| 18 |
17
|
fmpttd |
|- ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> ( y e. x |-> ( y i^i ( `' F " V ) ) ) : x --> C ) |
| 19 |
18
|
frnd |
|- ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) C_ C ) |
| 20 |
1
|
cvmsn0 |
|- ( x e. ( S ` U ) -> x =/= (/) ) |
| 21 |
20
|
adantl |
|- ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> x =/= (/) ) |
| 22 |
|
dmmptg |
|- ( A. y e. x ( y i^i ( `' F " V ) ) e. _V -> dom ( y e. x |-> ( y i^i ( `' F " V ) ) ) = x ) |
| 23 |
|
inex1g |
|- ( y e. x -> ( y i^i ( `' F " V ) ) e. _V ) |
| 24 |
22 23
|
mprg |
|- dom ( y e. x |-> ( y i^i ( `' F " V ) ) ) = x |
| 25 |
24
|
eqeq1i |
|- ( dom ( y e. x |-> ( y i^i ( `' F " V ) ) ) = (/) <-> x = (/) ) |
| 26 |
|
dm0rn0 |
|- ( dom ( y e. x |-> ( y i^i ( `' F " V ) ) ) = (/) <-> ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) = (/) ) |
| 27 |
25 26
|
bitr3i |
|- ( x = (/) <-> ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) = (/) ) |
| 28 |
27
|
necon3bii |
|- ( x =/= (/) <-> ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) =/= (/) ) |
| 29 |
21 28
|
sylib |
|- ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) =/= (/) ) |
| 30 |
19 29
|
jca |
|- ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) C_ C /\ ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) =/= (/) ) ) |
| 31 |
|
inss2 |
|- ( y i^i ( `' F " V ) ) C_ ( `' F " V ) |
| 32 |
|
elpw2g |
|- ( ( `' F " V ) e. C -> ( ( y i^i ( `' F " V ) ) e. ~P ( `' F " V ) <-> ( y i^i ( `' F " V ) ) C_ ( `' F " V ) ) ) |
| 33 |
15 32
|
syl |
|- ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ y e. x ) -> ( ( y i^i ( `' F " V ) ) e. ~P ( `' F " V ) <-> ( y i^i ( `' F " V ) ) C_ ( `' F " V ) ) ) |
| 34 |
31 33
|
mpbiri |
|- ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ y e. x ) -> ( y i^i ( `' F " V ) ) e. ~P ( `' F " V ) ) |
| 35 |
34
|
fmpttd |
|- ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> ( y e. x |-> ( y i^i ( `' F " V ) ) ) : x --> ~P ( `' F " V ) ) |
| 36 |
35
|
frnd |
|- ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) C_ ~P ( `' F " V ) ) |
| 37 |
|
sspwuni |
|- ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) C_ ~P ( `' F " V ) <-> U. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) C_ ( `' F " V ) ) |
| 38 |
36 37
|
sylib |
|- ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> U. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) C_ ( `' F " V ) ) |
| 39 |
|
simpl3 |
|- ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> V C_ U ) |
| 40 |
|
imass2 |
|- ( V C_ U -> ( `' F " V ) C_ ( `' F " U ) ) |
| 41 |
39 40
|
syl |
|- ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> ( `' F " V ) C_ ( `' F " U ) ) |
| 42 |
1
|
cvmsuni |
|- ( x e. ( S ` U ) -> U. x = ( `' F " U ) ) |
| 43 |
42
|
adantl |
|- ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> U. x = ( `' F " U ) ) |
| 44 |
41 43
|
sseqtrrd |
|- ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> ( `' F " V ) C_ U. x ) |
| 45 |
44
|
sselda |
|- ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ z e. ( `' F " V ) ) -> z e. U. x ) |
| 46 |
|
eqid |
|- ( t i^i ( `' F " V ) ) = ( t i^i ( `' F " V ) ) |
| 47 |
|
ineq1 |
|- ( y = t -> ( y i^i ( `' F " V ) ) = ( t i^i ( `' F " V ) ) ) |
| 48 |
47
|
rspceeqv |
|- ( ( t e. x /\ ( t i^i ( `' F " V ) ) = ( t i^i ( `' F " V ) ) ) -> E. y e. x ( t i^i ( `' F " V ) ) = ( y i^i ( `' F " V ) ) ) |
| 49 |
46 48
|
mpan2 |
|- ( t e. x -> E. y e. x ( t i^i ( `' F " V ) ) = ( y i^i ( `' F " V ) ) ) |
| 50 |
49
|
ad2antrl |
|- ( ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ z e. ( `' F " V ) ) /\ ( t e. x /\ z e. t ) ) -> E. y e. x ( t i^i ( `' F " V ) ) = ( y i^i ( `' F " V ) ) ) |
| 51 |
|
vex |
|- t e. _V |
| 52 |
51
|
inex1 |
|- ( t i^i ( `' F " V ) ) e. _V |
| 53 |
|
eqid |
|- ( y e. x |-> ( y i^i ( `' F " V ) ) ) = ( y e. x |-> ( y i^i ( `' F " V ) ) ) |
| 54 |
53
|
elrnmpt |
|- ( ( t i^i ( `' F " V ) ) e. _V -> ( ( t i^i ( `' F " V ) ) e. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) <-> E. y e. x ( t i^i ( `' F " V ) ) = ( y i^i ( `' F " V ) ) ) ) |
| 55 |
52 54
|
ax-mp |
|- ( ( t i^i ( `' F " V ) ) e. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) <-> E. y e. x ( t i^i ( `' F " V ) ) = ( y i^i ( `' F " V ) ) ) |
| 56 |
50 55
|
sylibr |
|- ( ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ z e. ( `' F " V ) ) /\ ( t e. x /\ z e. t ) ) -> ( t i^i ( `' F " V ) ) e. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) ) |
| 57 |
|
simprr |
|- ( ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ z e. ( `' F " V ) ) /\ ( t e. x /\ z e. t ) ) -> z e. t ) |
| 58 |
|
simplr |
|- ( ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ z e. ( `' F " V ) ) /\ ( t e. x /\ z e. t ) ) -> z e. ( `' F " V ) ) |
| 59 |
57 58
|
elind |
|- ( ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ z e. ( `' F " V ) ) /\ ( t e. x /\ z e. t ) ) -> z e. ( t i^i ( `' F " V ) ) ) |
| 60 |
|
eleq2 |
|- ( w = ( t i^i ( `' F " V ) ) -> ( z e. w <-> z e. ( t i^i ( `' F " V ) ) ) ) |
| 61 |
60
|
rspcev |
|- ( ( ( t i^i ( `' F " V ) ) e. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) /\ z e. ( t i^i ( `' F " V ) ) ) -> E. w e. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) z e. w ) |
| 62 |
56 59 61
|
syl2anc |
|- ( ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ z e. ( `' F " V ) ) /\ ( t e. x /\ z e. t ) ) -> E. w e. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) z e. w ) |
| 63 |
62
|
rexlimdvaa |
|- ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ z e. ( `' F " V ) ) -> ( E. t e. x z e. t -> E. w e. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) z e. w ) ) |
| 64 |
|
eluni2 |
|- ( z e. U. x <-> E. t e. x z e. t ) |
| 65 |
|
eluni2 |
|- ( z e. U. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) <-> E. w e. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) z e. w ) |
| 66 |
63 64 65
|
3imtr4g |
|- ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ z e. ( `' F " V ) ) -> ( z e. U. x -> z e. U. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) ) ) |
| 67 |
45 66
|
mpd |
|- ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ z e. ( `' F " V ) ) -> z e. U. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) ) |
| 68 |
38 67
|
eqelssd |
|- ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> U. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) = ( `' F " V ) ) |
| 69 |
|
eldifsn |
|- ( z e. ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) \ { ( t i^i ( `' F " V ) ) } ) <-> ( z e. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) /\ z =/= ( t i^i ( `' F " V ) ) ) ) |
| 70 |
|
vex |
|- z e. _V |
| 71 |
53
|
elrnmpt |
|- ( z e. _V -> ( z e. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) <-> E. y e. x z = ( y i^i ( `' F " V ) ) ) ) |
| 72 |
70 71
|
ax-mp |
|- ( z e. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) <-> E. y e. x z = ( y i^i ( `' F " V ) ) ) |
| 73 |
47
|
equcoms |
|- ( t = y -> ( y i^i ( `' F " V ) ) = ( t i^i ( `' F " V ) ) ) |
| 74 |
73
|
necon3ai |
|- ( ( y i^i ( `' F " V ) ) =/= ( t i^i ( `' F " V ) ) -> -. t = y ) |
| 75 |
|
simpllr |
|- ( ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) /\ y e. x ) -> x e. ( S ` U ) ) |
| 76 |
|
simplr |
|- ( ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) /\ y e. x ) -> t e. x ) |
| 77 |
|
simpr |
|- ( ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) /\ y e. x ) -> y e. x ) |
| 78 |
1
|
cvmsdisj |
|- ( ( x e. ( S ` U ) /\ t e. x /\ y e. x ) -> ( t = y \/ ( t i^i y ) = (/) ) ) |
| 79 |
75 76 77 78
|
syl3anc |
|- ( ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) /\ y e. x ) -> ( t = y \/ ( t i^i y ) = (/) ) ) |
| 80 |
79
|
ord |
|- ( ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) /\ y e. x ) -> ( -. t = y -> ( t i^i y ) = (/) ) ) |
| 81 |
|
inss1 |
|- ( ( t i^i y ) i^i ( `' F " V ) ) C_ ( t i^i y ) |
| 82 |
|
sseq0 |
|- ( ( ( ( t i^i y ) i^i ( `' F " V ) ) C_ ( t i^i y ) /\ ( t i^i y ) = (/) ) -> ( ( t i^i y ) i^i ( `' F " V ) ) = (/) ) |
| 83 |
81 82
|
mpan |
|- ( ( t i^i y ) = (/) -> ( ( t i^i y ) i^i ( `' F " V ) ) = (/) ) |
| 84 |
74 80 83
|
syl56 |
|- ( ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) /\ y e. x ) -> ( ( y i^i ( `' F " V ) ) =/= ( t i^i ( `' F " V ) ) -> ( ( t i^i y ) i^i ( `' F " V ) ) = (/) ) ) |
| 85 |
|
neeq1 |
|- ( z = ( y i^i ( `' F " V ) ) -> ( z =/= ( t i^i ( `' F " V ) ) <-> ( y i^i ( `' F " V ) ) =/= ( t i^i ( `' F " V ) ) ) ) |
| 86 |
|
ineq2 |
|- ( z = ( y i^i ( `' F " V ) ) -> ( ( t i^i ( `' F " V ) ) i^i z ) = ( ( t i^i ( `' F " V ) ) i^i ( y i^i ( `' F " V ) ) ) ) |
| 87 |
|
inindir |
|- ( ( t i^i y ) i^i ( `' F " V ) ) = ( ( t i^i ( `' F " V ) ) i^i ( y i^i ( `' F " V ) ) ) |
| 88 |
86 87
|
eqtr4di |
|- ( z = ( y i^i ( `' F " V ) ) -> ( ( t i^i ( `' F " V ) ) i^i z ) = ( ( t i^i y ) i^i ( `' F " V ) ) ) |
| 89 |
88
|
eqeq1d |
|- ( z = ( y i^i ( `' F " V ) ) -> ( ( ( t i^i ( `' F " V ) ) i^i z ) = (/) <-> ( ( t i^i y ) i^i ( `' F " V ) ) = (/) ) ) |
| 90 |
85 89
|
imbi12d |
|- ( z = ( y i^i ( `' F " V ) ) -> ( ( z =/= ( t i^i ( `' F " V ) ) -> ( ( t i^i ( `' F " V ) ) i^i z ) = (/) ) <-> ( ( y i^i ( `' F " V ) ) =/= ( t i^i ( `' F " V ) ) -> ( ( t i^i y ) i^i ( `' F " V ) ) = (/) ) ) ) |
| 91 |
84 90
|
syl5ibrcom |
|- ( ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) /\ y e. x ) -> ( z = ( y i^i ( `' F " V ) ) -> ( z =/= ( t i^i ( `' F " V ) ) -> ( ( t i^i ( `' F " V ) ) i^i z ) = (/) ) ) ) |
| 92 |
91
|
rexlimdva |
|- ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> ( E. y e. x z = ( y i^i ( `' F " V ) ) -> ( z =/= ( t i^i ( `' F " V ) ) -> ( ( t i^i ( `' F " V ) ) i^i z ) = (/) ) ) ) |
| 93 |
72 92
|
biimtrid |
|- ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> ( z e. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) -> ( z =/= ( t i^i ( `' F " V ) ) -> ( ( t i^i ( `' F " V ) ) i^i z ) = (/) ) ) ) |
| 94 |
93
|
impd |
|- ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> ( ( z e. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) /\ z =/= ( t i^i ( `' F " V ) ) ) -> ( ( t i^i ( `' F " V ) ) i^i z ) = (/) ) ) |
| 95 |
69 94
|
biimtrid |
|- ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> ( z e. ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) \ { ( t i^i ( `' F " V ) ) } ) -> ( ( t i^i ( `' F " V ) ) i^i z ) = (/) ) ) |
| 96 |
95
|
ralrimiv |
|- ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> A. z e. ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) \ { ( t i^i ( `' F " V ) ) } ) ( ( t i^i ( `' F " V ) ) i^i z ) = (/) ) |
| 97 |
|
inss1 |
|- ( t i^i ( `' F " V ) ) C_ t |
| 98 |
|
resabs1 |
|- ( ( t i^i ( `' F " V ) ) C_ t -> ( ( F |` t ) |` ( t i^i ( `' F " V ) ) ) = ( F |` ( t i^i ( `' F " V ) ) ) ) |
| 99 |
97 98
|
ax-mp |
|- ( ( F |` t ) |` ( t i^i ( `' F " V ) ) ) = ( F |` ( t i^i ( `' F " V ) ) ) |
| 100 |
1
|
cvmshmeo |
|- ( ( x e. ( S ` U ) /\ t e. x ) -> ( F |` t ) e. ( ( C |`t t ) Homeo ( J |`t U ) ) ) |
| 101 |
100
|
adantll |
|- ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> ( F |` t ) e. ( ( C |`t t ) Homeo ( J |`t U ) ) ) |
| 102 |
6
|
adantr |
|- ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> C e. Top ) |
| 103 |
9
|
sselda |
|- ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> t e. C ) |
| 104 |
|
elssuni |
|- ( t e. C -> t C_ U. C ) |
| 105 |
103 104
|
syl |
|- ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> t C_ U. C ) |
| 106 |
|
eqid |
|- U. C = U. C |
| 107 |
106
|
restuni |
|- ( ( C e. Top /\ t C_ U. C ) -> t = U. ( C |`t t ) ) |
| 108 |
102 105 107
|
syl2anc |
|- ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> t = U. ( C |`t t ) ) |
| 109 |
97 108
|
sseqtrid |
|- ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> ( t i^i ( `' F " V ) ) C_ U. ( C |`t t ) ) |
| 110 |
|
eqid |
|- U. ( C |`t t ) = U. ( C |`t t ) |
| 111 |
110
|
hmeores |
|- ( ( ( F |` t ) e. ( ( C |`t t ) Homeo ( J |`t U ) ) /\ ( t i^i ( `' F " V ) ) C_ U. ( C |`t t ) ) -> ( ( F |` t ) |` ( t i^i ( `' F " V ) ) ) e. ( ( ( C |`t t ) |`t ( t i^i ( `' F " V ) ) ) Homeo ( ( J |`t U ) |`t ( ( F |` t ) " ( t i^i ( `' F " V ) ) ) ) ) ) |
| 112 |
101 109 111
|
syl2anc |
|- ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> ( ( F |` t ) |` ( t i^i ( `' F " V ) ) ) e. ( ( ( C |`t t ) |`t ( t i^i ( `' F " V ) ) ) Homeo ( ( J |`t U ) |`t ( ( F |` t ) " ( t i^i ( `' F " V ) ) ) ) ) ) |
| 113 |
99 112
|
eqeltrrid |
|- ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> ( F |` ( t i^i ( `' F " V ) ) ) e. ( ( ( C |`t t ) |`t ( t i^i ( `' F " V ) ) ) Homeo ( ( J |`t U ) |`t ( ( F |` t ) " ( t i^i ( `' F " V ) ) ) ) ) ) |
| 114 |
97
|
a1i |
|- ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> ( t i^i ( `' F " V ) ) C_ t ) |
| 115 |
|
simpr |
|- ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> t e. x ) |
| 116 |
|
restabs |
|- ( ( C e. Top /\ ( t i^i ( `' F " V ) ) C_ t /\ t e. x ) -> ( ( C |`t t ) |`t ( t i^i ( `' F " V ) ) ) = ( C |`t ( t i^i ( `' F " V ) ) ) ) |
| 117 |
102 114 115 116
|
syl3anc |
|- ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> ( ( C |`t t ) |`t ( t i^i ( `' F " V ) ) ) = ( C |`t ( t i^i ( `' F " V ) ) ) ) |
| 118 |
|
incom |
|- ( t i^i ( `' F " V ) ) = ( ( `' F " V ) i^i t ) |
| 119 |
|
cnvresima |
|- ( `' ( F |` t ) " V ) = ( ( `' F " V ) i^i t ) |
| 120 |
118 119
|
eqtr4i |
|- ( t i^i ( `' F " V ) ) = ( `' ( F |` t ) " V ) |
| 121 |
120
|
imaeq2i |
|- ( ( F |` t ) " ( t i^i ( `' F " V ) ) ) = ( ( F |` t ) " ( `' ( F |` t ) " V ) ) |
| 122 |
4
|
adantr |
|- ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> F e. ( C CovMap J ) ) |
| 123 |
|
simplr |
|- ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> x e. ( S ` U ) ) |
| 124 |
1
|
cvmsf1o |
|- ( ( F e. ( C CovMap J ) /\ x e. ( S ` U ) /\ t e. x ) -> ( F |` t ) : t -1-1-onto-> U ) |
| 125 |
122 123 115 124
|
syl3anc |
|- ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> ( F |` t ) : t -1-1-onto-> U ) |
| 126 |
|
f1ofo |
|- ( ( F |` t ) : t -1-1-onto-> U -> ( F |` t ) : t -onto-> U ) |
| 127 |
125 126
|
syl |
|- ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> ( F |` t ) : t -onto-> U ) |
| 128 |
39
|
adantr |
|- ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> V C_ U ) |
| 129 |
|
foimacnv |
|- ( ( ( F |` t ) : t -onto-> U /\ V C_ U ) -> ( ( F |` t ) " ( `' ( F |` t ) " V ) ) = V ) |
| 130 |
127 128 129
|
syl2anc |
|- ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> ( ( F |` t ) " ( `' ( F |` t ) " V ) ) = V ) |
| 131 |
121 130
|
eqtrid |
|- ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> ( ( F |` t ) " ( t i^i ( `' F " V ) ) ) = V ) |
| 132 |
131
|
oveq2d |
|- ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> ( ( J |`t U ) |`t ( ( F |` t ) " ( t i^i ( `' F " V ) ) ) ) = ( ( J |`t U ) |`t V ) ) |
| 133 |
|
cvmtop2 |
|- ( F e. ( C CovMap J ) -> J e. Top ) |
| 134 |
4 133
|
syl |
|- ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> J e. Top ) |
| 135 |
1
|
cvmsrcl |
|- ( x e. ( S ` U ) -> U e. J ) |
| 136 |
135
|
adantl |
|- ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> U e. J ) |
| 137 |
|
restabs |
|- ( ( J e. Top /\ V C_ U /\ U e. J ) -> ( ( J |`t U ) |`t V ) = ( J |`t V ) ) |
| 138 |
134 39 136 137
|
syl3anc |
|- ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> ( ( J |`t U ) |`t V ) = ( J |`t V ) ) |
| 139 |
138
|
adantr |
|- ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> ( ( J |`t U ) |`t V ) = ( J |`t V ) ) |
| 140 |
132 139
|
eqtrd |
|- ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> ( ( J |`t U ) |`t ( ( F |` t ) " ( t i^i ( `' F " V ) ) ) ) = ( J |`t V ) ) |
| 141 |
117 140
|
oveq12d |
|- ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> ( ( ( C |`t t ) |`t ( t i^i ( `' F " V ) ) ) Homeo ( ( J |`t U ) |`t ( ( F |` t ) " ( t i^i ( `' F " V ) ) ) ) ) = ( ( C |`t ( t i^i ( `' F " V ) ) ) Homeo ( J |`t V ) ) ) |
| 142 |
113 141
|
eleqtrd |
|- ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> ( F |` ( t i^i ( `' F " V ) ) ) e. ( ( C |`t ( t i^i ( `' F " V ) ) ) Homeo ( J |`t V ) ) ) |
| 143 |
96 142
|
jca |
|- ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> ( A. z e. ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) \ { ( t i^i ( `' F " V ) ) } ) ( ( t i^i ( `' F " V ) ) i^i z ) = (/) /\ ( F |` ( t i^i ( `' F " V ) ) ) e. ( ( C |`t ( t i^i ( `' F " V ) ) ) Homeo ( J |`t V ) ) ) ) |
| 144 |
143
|
ralrimiva |
|- ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> A. t e. x ( A. z e. ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) \ { ( t i^i ( `' F " V ) ) } ) ( ( t i^i ( `' F " V ) ) i^i z ) = (/) /\ ( F |` ( t i^i ( `' F " V ) ) ) e. ( ( C |`t ( t i^i ( `' F " V ) ) ) Homeo ( J |`t V ) ) ) ) |
| 145 |
52
|
rgenw |
|- A. t e. x ( t i^i ( `' F " V ) ) e. _V |
| 146 |
47
|
cbvmptv |
|- ( y e. x |-> ( y i^i ( `' F " V ) ) ) = ( t e. x |-> ( t i^i ( `' F " V ) ) ) |
| 147 |
|
sneq |
|- ( w = ( t i^i ( `' F " V ) ) -> { w } = { ( t i^i ( `' F " V ) ) } ) |
| 148 |
147
|
difeq2d |
|- ( w = ( t i^i ( `' F " V ) ) -> ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) \ { w } ) = ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) \ { ( t i^i ( `' F " V ) ) } ) ) |
| 149 |
|
ineq1 |
|- ( w = ( t i^i ( `' F " V ) ) -> ( w i^i z ) = ( ( t i^i ( `' F " V ) ) i^i z ) ) |
| 150 |
149
|
eqeq1d |
|- ( w = ( t i^i ( `' F " V ) ) -> ( ( w i^i z ) = (/) <-> ( ( t i^i ( `' F " V ) ) i^i z ) = (/) ) ) |
| 151 |
148 150
|
raleqbidv |
|- ( w = ( t i^i ( `' F " V ) ) -> ( A. z e. ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) \ { w } ) ( w i^i z ) = (/) <-> A. z e. ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) \ { ( t i^i ( `' F " V ) ) } ) ( ( t i^i ( `' F " V ) ) i^i z ) = (/) ) ) |
| 152 |
|
reseq2 |
|- ( w = ( t i^i ( `' F " V ) ) -> ( F |` w ) = ( F |` ( t i^i ( `' F " V ) ) ) ) |
| 153 |
|
oveq2 |
|- ( w = ( t i^i ( `' F " V ) ) -> ( C |`t w ) = ( C |`t ( t i^i ( `' F " V ) ) ) ) |
| 154 |
153
|
oveq1d |
|- ( w = ( t i^i ( `' F " V ) ) -> ( ( C |`t w ) Homeo ( J |`t V ) ) = ( ( C |`t ( t i^i ( `' F " V ) ) ) Homeo ( J |`t V ) ) ) |
| 155 |
152 154
|
eleq12d |
|- ( w = ( t i^i ( `' F " V ) ) -> ( ( F |` w ) e. ( ( C |`t w ) Homeo ( J |`t V ) ) <-> ( F |` ( t i^i ( `' F " V ) ) ) e. ( ( C |`t ( t i^i ( `' F " V ) ) ) Homeo ( J |`t V ) ) ) ) |
| 156 |
151 155
|
anbi12d |
|- ( w = ( t i^i ( `' F " V ) ) -> ( ( A. z e. ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) \ { w } ) ( w i^i z ) = (/) /\ ( F |` w ) e. ( ( C |`t w ) Homeo ( J |`t V ) ) ) <-> ( A. z e. ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) \ { ( t i^i ( `' F " V ) ) } ) ( ( t i^i ( `' F " V ) ) i^i z ) = (/) /\ ( F |` ( t i^i ( `' F " V ) ) ) e. ( ( C |`t ( t i^i ( `' F " V ) ) ) Homeo ( J |`t V ) ) ) ) ) |
| 157 |
146 156
|
ralrnmptw |
|- ( A. t e. x ( t i^i ( `' F " V ) ) e. _V -> ( A. w e. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) ( A. z e. ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) \ { w } ) ( w i^i z ) = (/) /\ ( F |` w ) e. ( ( C |`t w ) Homeo ( J |`t V ) ) ) <-> A. t e. x ( A. z e. ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) \ { ( t i^i ( `' F " V ) ) } ) ( ( t i^i ( `' F " V ) ) i^i z ) = (/) /\ ( F |` ( t i^i ( `' F " V ) ) ) e. ( ( C |`t ( t i^i ( `' F " V ) ) ) Homeo ( J |`t V ) ) ) ) ) |
| 158 |
145 157
|
ax-mp |
|- ( A. w e. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) ( A. z e. ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) \ { w } ) ( w i^i z ) = (/) /\ ( F |` w ) e. ( ( C |`t w ) Homeo ( J |`t V ) ) ) <-> A. t e. x ( A. z e. ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) \ { ( t i^i ( `' F " V ) ) } ) ( ( t i^i ( `' F " V ) ) i^i z ) = (/) /\ ( F |` ( t i^i ( `' F " V ) ) ) e. ( ( C |`t ( t i^i ( `' F " V ) ) ) Homeo ( J |`t V ) ) ) ) |
| 159 |
144 158
|
sylibr |
|- ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> A. w e. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) ( A. z e. ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) \ { w } ) ( w i^i z ) = (/) /\ ( F |` w ) e. ( ( C |`t w ) Homeo ( J |`t V ) ) ) ) |
| 160 |
68 159
|
jca |
|- ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> ( U. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) = ( `' F " V ) /\ A. w e. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) ( A. z e. ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) \ { w } ) ( w i^i z ) = (/) /\ ( F |` w ) e. ( ( C |`t w ) Homeo ( J |`t V ) ) ) ) ) |
| 161 |
1
|
cvmscbv |
|- S = ( a e. J |-> { b e. ( ~P C \ { (/) } ) | ( U. b = ( `' F " a ) /\ A. w e. b ( A. z e. ( b \ { w } ) ( w i^i z ) = (/) /\ ( F |` w ) e. ( ( C |`t w ) Homeo ( J |`t a ) ) ) ) } ) |
| 162 |
161
|
cvmsval |
|- ( C e. Top -> ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) e. ( S ` V ) <-> ( V e. J /\ ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) C_ C /\ ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) =/= (/) ) /\ ( U. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) = ( `' F " V ) /\ A. w e. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) ( A. z e. ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) \ { w } ) ( w i^i z ) = (/) /\ ( F |` w ) e. ( ( C |`t w ) Homeo ( J |`t V ) ) ) ) ) ) ) |
| 163 |
6 162
|
syl |
|- ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) e. ( S ` V ) <-> ( V e. J /\ ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) C_ C /\ ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) =/= (/) ) /\ ( U. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) = ( `' F " V ) /\ A. w e. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) ( A. z e. ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) \ { w } ) ( w i^i z ) = (/) /\ ( F |` w ) e. ( ( C |`t w ) Homeo ( J |`t V ) ) ) ) ) ) ) |
| 164 |
3 30 160 163
|
mpbir3and |
|- ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) e. ( S ` V ) ) |
| 165 |
164
|
ne0d |
|- ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> ( S ` V ) =/= (/) ) |
| 166 |
165
|
ex |
|- ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) -> ( x e. ( S ` U ) -> ( S ` V ) =/= (/) ) ) |
| 167 |
166
|
exlimdv |
|- ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) -> ( E. x x e. ( S ` U ) -> ( S ` V ) =/= (/) ) ) |
| 168 |
2 167
|
biimtrid |
|- ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) -> ( ( S ` U ) =/= (/) -> ( S ` V ) =/= (/) ) ) |