| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmcov.1 |  |-  S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. u e. s ( A. v e. ( s \ { u } ) ( u i^i v ) = (/) /\ ( F |` u ) e. ( ( C |`t u ) Homeo ( J |`t k ) ) ) ) } ) | 
						
							| 2 |  | n0 |  |-  ( ( S ` U ) =/= (/) <-> E. x x e. ( S ` U ) ) | 
						
							| 3 |  | simpl2 |  |-  ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> V e. J ) | 
						
							| 4 |  | simpl1 |  |-  ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> F e. ( C CovMap J ) ) | 
						
							| 5 |  | cvmtop1 |  |-  ( F e. ( C CovMap J ) -> C e. Top ) | 
						
							| 6 | 4 5 | syl |  |-  ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> C e. Top ) | 
						
							| 7 | 6 | adantr |  |-  ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ y e. x ) -> C e. Top ) | 
						
							| 8 | 1 | cvmsss |  |-  ( x e. ( S ` U ) -> x C_ C ) | 
						
							| 9 | 8 | adantl |  |-  ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> x C_ C ) | 
						
							| 10 | 9 | sselda |  |-  ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ y e. x ) -> y e. C ) | 
						
							| 11 |  | cvmcn |  |-  ( F e. ( C CovMap J ) -> F e. ( C Cn J ) ) | 
						
							| 12 | 4 11 | syl |  |-  ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> F e. ( C Cn J ) ) | 
						
							| 13 |  | cnima |  |-  ( ( F e. ( C Cn J ) /\ V e. J ) -> ( `' F " V ) e. C ) | 
						
							| 14 | 12 3 13 | syl2anc |  |-  ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> ( `' F " V ) e. C ) | 
						
							| 15 | 14 | adantr |  |-  ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ y e. x ) -> ( `' F " V ) e. C ) | 
						
							| 16 |  | inopn |  |-  ( ( C e. Top /\ y e. C /\ ( `' F " V ) e. C ) -> ( y i^i ( `' F " V ) ) e. C ) | 
						
							| 17 | 7 10 15 16 | syl3anc |  |-  ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ y e. x ) -> ( y i^i ( `' F " V ) ) e. C ) | 
						
							| 18 | 17 | fmpttd |  |-  ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> ( y e. x |-> ( y i^i ( `' F " V ) ) ) : x --> C ) | 
						
							| 19 | 18 | frnd |  |-  ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) C_ C ) | 
						
							| 20 | 1 | cvmsn0 |  |-  ( x e. ( S ` U ) -> x =/= (/) ) | 
						
							| 21 | 20 | adantl |  |-  ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> x =/= (/) ) | 
						
							| 22 |  | dmmptg |  |-  ( A. y e. x ( y i^i ( `' F " V ) ) e. _V -> dom ( y e. x |-> ( y i^i ( `' F " V ) ) ) = x ) | 
						
							| 23 |  | inex1g |  |-  ( y e. x -> ( y i^i ( `' F " V ) ) e. _V ) | 
						
							| 24 | 22 23 | mprg |  |-  dom ( y e. x |-> ( y i^i ( `' F " V ) ) ) = x | 
						
							| 25 | 24 | eqeq1i |  |-  ( dom ( y e. x |-> ( y i^i ( `' F " V ) ) ) = (/) <-> x = (/) ) | 
						
							| 26 |  | dm0rn0 |  |-  ( dom ( y e. x |-> ( y i^i ( `' F " V ) ) ) = (/) <-> ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) = (/) ) | 
						
							| 27 | 25 26 | bitr3i |  |-  ( x = (/) <-> ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) = (/) ) | 
						
							| 28 | 27 | necon3bii |  |-  ( x =/= (/) <-> ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) =/= (/) ) | 
						
							| 29 | 21 28 | sylib |  |-  ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) =/= (/) ) | 
						
							| 30 | 19 29 | jca |  |-  ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) C_ C /\ ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) =/= (/) ) ) | 
						
							| 31 |  | inss2 |  |-  ( y i^i ( `' F " V ) ) C_ ( `' F " V ) | 
						
							| 32 |  | elpw2g |  |-  ( ( `' F " V ) e. C -> ( ( y i^i ( `' F " V ) ) e. ~P ( `' F " V ) <-> ( y i^i ( `' F " V ) ) C_ ( `' F " V ) ) ) | 
						
							| 33 | 15 32 | syl |  |-  ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ y e. x ) -> ( ( y i^i ( `' F " V ) ) e. ~P ( `' F " V ) <-> ( y i^i ( `' F " V ) ) C_ ( `' F " V ) ) ) | 
						
							| 34 | 31 33 | mpbiri |  |-  ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ y e. x ) -> ( y i^i ( `' F " V ) ) e. ~P ( `' F " V ) ) | 
						
							| 35 | 34 | fmpttd |  |-  ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> ( y e. x |-> ( y i^i ( `' F " V ) ) ) : x --> ~P ( `' F " V ) ) | 
						
							| 36 | 35 | frnd |  |-  ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) C_ ~P ( `' F " V ) ) | 
						
							| 37 |  | sspwuni |  |-  ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) C_ ~P ( `' F " V ) <-> U. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) C_ ( `' F " V ) ) | 
						
							| 38 | 36 37 | sylib |  |-  ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> U. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) C_ ( `' F " V ) ) | 
						
							| 39 |  | simpl3 |  |-  ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> V C_ U ) | 
						
							| 40 |  | imass2 |  |-  ( V C_ U -> ( `' F " V ) C_ ( `' F " U ) ) | 
						
							| 41 | 39 40 | syl |  |-  ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> ( `' F " V ) C_ ( `' F " U ) ) | 
						
							| 42 | 1 | cvmsuni |  |-  ( x e. ( S ` U ) -> U. x = ( `' F " U ) ) | 
						
							| 43 | 42 | adantl |  |-  ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> U. x = ( `' F " U ) ) | 
						
							| 44 | 41 43 | sseqtrrd |  |-  ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> ( `' F " V ) C_ U. x ) | 
						
							| 45 | 44 | sselda |  |-  ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ z e. ( `' F " V ) ) -> z e. U. x ) | 
						
							| 46 |  | eqid |  |-  ( t i^i ( `' F " V ) ) = ( t i^i ( `' F " V ) ) | 
						
							| 47 |  | ineq1 |  |-  ( y = t -> ( y i^i ( `' F " V ) ) = ( t i^i ( `' F " V ) ) ) | 
						
							| 48 | 47 | rspceeqv |  |-  ( ( t e. x /\ ( t i^i ( `' F " V ) ) = ( t i^i ( `' F " V ) ) ) -> E. y e. x ( t i^i ( `' F " V ) ) = ( y i^i ( `' F " V ) ) ) | 
						
							| 49 | 46 48 | mpan2 |  |-  ( t e. x -> E. y e. x ( t i^i ( `' F " V ) ) = ( y i^i ( `' F " V ) ) ) | 
						
							| 50 | 49 | ad2antrl |  |-  ( ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ z e. ( `' F " V ) ) /\ ( t e. x /\ z e. t ) ) -> E. y e. x ( t i^i ( `' F " V ) ) = ( y i^i ( `' F " V ) ) ) | 
						
							| 51 |  | vex |  |-  t e. _V | 
						
							| 52 | 51 | inex1 |  |-  ( t i^i ( `' F " V ) ) e. _V | 
						
							| 53 |  | eqid |  |-  ( y e. x |-> ( y i^i ( `' F " V ) ) ) = ( y e. x |-> ( y i^i ( `' F " V ) ) ) | 
						
							| 54 | 53 | elrnmpt |  |-  ( ( t i^i ( `' F " V ) ) e. _V -> ( ( t i^i ( `' F " V ) ) e. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) <-> E. y e. x ( t i^i ( `' F " V ) ) = ( y i^i ( `' F " V ) ) ) ) | 
						
							| 55 | 52 54 | ax-mp |  |-  ( ( t i^i ( `' F " V ) ) e. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) <-> E. y e. x ( t i^i ( `' F " V ) ) = ( y i^i ( `' F " V ) ) ) | 
						
							| 56 | 50 55 | sylibr |  |-  ( ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ z e. ( `' F " V ) ) /\ ( t e. x /\ z e. t ) ) -> ( t i^i ( `' F " V ) ) e. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) ) | 
						
							| 57 |  | simprr |  |-  ( ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ z e. ( `' F " V ) ) /\ ( t e. x /\ z e. t ) ) -> z e. t ) | 
						
							| 58 |  | simplr |  |-  ( ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ z e. ( `' F " V ) ) /\ ( t e. x /\ z e. t ) ) -> z e. ( `' F " V ) ) | 
						
							| 59 | 57 58 | elind |  |-  ( ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ z e. ( `' F " V ) ) /\ ( t e. x /\ z e. t ) ) -> z e. ( t i^i ( `' F " V ) ) ) | 
						
							| 60 |  | eleq2 |  |-  ( w = ( t i^i ( `' F " V ) ) -> ( z e. w <-> z e. ( t i^i ( `' F " V ) ) ) ) | 
						
							| 61 | 60 | rspcev |  |-  ( ( ( t i^i ( `' F " V ) ) e. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) /\ z e. ( t i^i ( `' F " V ) ) ) -> E. w e. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) z e. w ) | 
						
							| 62 | 56 59 61 | syl2anc |  |-  ( ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ z e. ( `' F " V ) ) /\ ( t e. x /\ z e. t ) ) -> E. w e. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) z e. w ) | 
						
							| 63 | 62 | rexlimdvaa |  |-  ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ z e. ( `' F " V ) ) -> ( E. t e. x z e. t -> E. w e. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) z e. w ) ) | 
						
							| 64 |  | eluni2 |  |-  ( z e. U. x <-> E. t e. x z e. t ) | 
						
							| 65 |  | eluni2 |  |-  ( z e. U. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) <-> E. w e. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) z e. w ) | 
						
							| 66 | 63 64 65 | 3imtr4g |  |-  ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ z e. ( `' F " V ) ) -> ( z e. U. x -> z e. U. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) ) ) | 
						
							| 67 | 45 66 | mpd |  |-  ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ z e. ( `' F " V ) ) -> z e. U. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) ) | 
						
							| 68 | 38 67 | eqelssd |  |-  ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> U. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) = ( `' F " V ) ) | 
						
							| 69 |  | eldifsn |  |-  ( z e. ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) \ { ( t i^i ( `' F " V ) ) } ) <-> ( z e. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) /\ z =/= ( t i^i ( `' F " V ) ) ) ) | 
						
							| 70 |  | vex |  |-  z e. _V | 
						
							| 71 | 53 | elrnmpt |  |-  ( z e. _V -> ( z e. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) <-> E. y e. x z = ( y i^i ( `' F " V ) ) ) ) | 
						
							| 72 | 70 71 | ax-mp |  |-  ( z e. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) <-> E. y e. x z = ( y i^i ( `' F " V ) ) ) | 
						
							| 73 | 47 | equcoms |  |-  ( t = y -> ( y i^i ( `' F " V ) ) = ( t i^i ( `' F " V ) ) ) | 
						
							| 74 | 73 | necon3ai |  |-  ( ( y i^i ( `' F " V ) ) =/= ( t i^i ( `' F " V ) ) -> -. t = y ) | 
						
							| 75 |  | simpllr |  |-  ( ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) /\ y e. x ) -> x e. ( S ` U ) ) | 
						
							| 76 |  | simplr |  |-  ( ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) /\ y e. x ) -> t e. x ) | 
						
							| 77 |  | simpr |  |-  ( ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) /\ y e. x ) -> y e. x ) | 
						
							| 78 | 1 | cvmsdisj |  |-  ( ( x e. ( S ` U ) /\ t e. x /\ y e. x ) -> ( t = y \/ ( t i^i y ) = (/) ) ) | 
						
							| 79 | 75 76 77 78 | syl3anc |  |-  ( ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) /\ y e. x ) -> ( t = y \/ ( t i^i y ) = (/) ) ) | 
						
							| 80 | 79 | ord |  |-  ( ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) /\ y e. x ) -> ( -. t = y -> ( t i^i y ) = (/) ) ) | 
						
							| 81 |  | inss1 |  |-  ( ( t i^i y ) i^i ( `' F " V ) ) C_ ( t i^i y ) | 
						
							| 82 |  | sseq0 |  |-  ( ( ( ( t i^i y ) i^i ( `' F " V ) ) C_ ( t i^i y ) /\ ( t i^i y ) = (/) ) -> ( ( t i^i y ) i^i ( `' F " V ) ) = (/) ) | 
						
							| 83 | 81 82 | mpan |  |-  ( ( t i^i y ) = (/) -> ( ( t i^i y ) i^i ( `' F " V ) ) = (/) ) | 
						
							| 84 | 74 80 83 | syl56 |  |-  ( ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) /\ y e. x ) -> ( ( y i^i ( `' F " V ) ) =/= ( t i^i ( `' F " V ) ) -> ( ( t i^i y ) i^i ( `' F " V ) ) = (/) ) ) | 
						
							| 85 |  | neeq1 |  |-  ( z = ( y i^i ( `' F " V ) ) -> ( z =/= ( t i^i ( `' F " V ) ) <-> ( y i^i ( `' F " V ) ) =/= ( t i^i ( `' F " V ) ) ) ) | 
						
							| 86 |  | ineq2 |  |-  ( z = ( y i^i ( `' F " V ) ) -> ( ( t i^i ( `' F " V ) ) i^i z ) = ( ( t i^i ( `' F " V ) ) i^i ( y i^i ( `' F " V ) ) ) ) | 
						
							| 87 |  | inindir |  |-  ( ( t i^i y ) i^i ( `' F " V ) ) = ( ( t i^i ( `' F " V ) ) i^i ( y i^i ( `' F " V ) ) ) | 
						
							| 88 | 86 87 | eqtr4di |  |-  ( z = ( y i^i ( `' F " V ) ) -> ( ( t i^i ( `' F " V ) ) i^i z ) = ( ( t i^i y ) i^i ( `' F " V ) ) ) | 
						
							| 89 | 88 | eqeq1d |  |-  ( z = ( y i^i ( `' F " V ) ) -> ( ( ( t i^i ( `' F " V ) ) i^i z ) = (/) <-> ( ( t i^i y ) i^i ( `' F " V ) ) = (/) ) ) | 
						
							| 90 | 85 89 | imbi12d |  |-  ( z = ( y i^i ( `' F " V ) ) -> ( ( z =/= ( t i^i ( `' F " V ) ) -> ( ( t i^i ( `' F " V ) ) i^i z ) = (/) ) <-> ( ( y i^i ( `' F " V ) ) =/= ( t i^i ( `' F " V ) ) -> ( ( t i^i y ) i^i ( `' F " V ) ) = (/) ) ) ) | 
						
							| 91 | 84 90 | syl5ibrcom |  |-  ( ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) /\ y e. x ) -> ( z = ( y i^i ( `' F " V ) ) -> ( z =/= ( t i^i ( `' F " V ) ) -> ( ( t i^i ( `' F " V ) ) i^i z ) = (/) ) ) ) | 
						
							| 92 | 91 | rexlimdva |  |-  ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> ( E. y e. x z = ( y i^i ( `' F " V ) ) -> ( z =/= ( t i^i ( `' F " V ) ) -> ( ( t i^i ( `' F " V ) ) i^i z ) = (/) ) ) ) | 
						
							| 93 | 72 92 | biimtrid |  |-  ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> ( z e. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) -> ( z =/= ( t i^i ( `' F " V ) ) -> ( ( t i^i ( `' F " V ) ) i^i z ) = (/) ) ) ) | 
						
							| 94 | 93 | impd |  |-  ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> ( ( z e. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) /\ z =/= ( t i^i ( `' F " V ) ) ) -> ( ( t i^i ( `' F " V ) ) i^i z ) = (/) ) ) | 
						
							| 95 | 69 94 | biimtrid |  |-  ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> ( z e. ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) \ { ( t i^i ( `' F " V ) ) } ) -> ( ( t i^i ( `' F " V ) ) i^i z ) = (/) ) ) | 
						
							| 96 | 95 | ralrimiv |  |-  ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> A. z e. ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) \ { ( t i^i ( `' F " V ) ) } ) ( ( t i^i ( `' F " V ) ) i^i z ) = (/) ) | 
						
							| 97 |  | inss1 |  |-  ( t i^i ( `' F " V ) ) C_ t | 
						
							| 98 |  | resabs1 |  |-  ( ( t i^i ( `' F " V ) ) C_ t -> ( ( F |` t ) |` ( t i^i ( `' F " V ) ) ) = ( F |` ( t i^i ( `' F " V ) ) ) ) | 
						
							| 99 | 97 98 | ax-mp |  |-  ( ( F |` t ) |` ( t i^i ( `' F " V ) ) ) = ( F |` ( t i^i ( `' F " V ) ) ) | 
						
							| 100 | 1 | cvmshmeo |  |-  ( ( x e. ( S ` U ) /\ t e. x ) -> ( F |` t ) e. ( ( C |`t t ) Homeo ( J |`t U ) ) ) | 
						
							| 101 | 100 | adantll |  |-  ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> ( F |` t ) e. ( ( C |`t t ) Homeo ( J |`t U ) ) ) | 
						
							| 102 | 6 | adantr |  |-  ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> C e. Top ) | 
						
							| 103 | 9 | sselda |  |-  ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> t e. C ) | 
						
							| 104 |  | elssuni |  |-  ( t e. C -> t C_ U. C ) | 
						
							| 105 | 103 104 | syl |  |-  ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> t C_ U. C ) | 
						
							| 106 |  | eqid |  |-  U. C = U. C | 
						
							| 107 | 106 | restuni |  |-  ( ( C e. Top /\ t C_ U. C ) -> t = U. ( C |`t t ) ) | 
						
							| 108 | 102 105 107 | syl2anc |  |-  ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> t = U. ( C |`t t ) ) | 
						
							| 109 | 97 108 | sseqtrid |  |-  ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> ( t i^i ( `' F " V ) ) C_ U. ( C |`t t ) ) | 
						
							| 110 |  | eqid |  |-  U. ( C |`t t ) = U. ( C |`t t ) | 
						
							| 111 | 110 | hmeores |  |-  ( ( ( F |` t ) e. ( ( C |`t t ) Homeo ( J |`t U ) ) /\ ( t i^i ( `' F " V ) ) C_ U. ( C |`t t ) ) -> ( ( F |` t ) |` ( t i^i ( `' F " V ) ) ) e. ( ( ( C |`t t ) |`t ( t i^i ( `' F " V ) ) ) Homeo ( ( J |`t U ) |`t ( ( F |` t ) " ( t i^i ( `' F " V ) ) ) ) ) ) | 
						
							| 112 | 101 109 111 | syl2anc |  |-  ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> ( ( F |` t ) |` ( t i^i ( `' F " V ) ) ) e. ( ( ( C |`t t ) |`t ( t i^i ( `' F " V ) ) ) Homeo ( ( J |`t U ) |`t ( ( F |` t ) " ( t i^i ( `' F " V ) ) ) ) ) ) | 
						
							| 113 | 99 112 | eqeltrrid |  |-  ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> ( F |` ( t i^i ( `' F " V ) ) ) e. ( ( ( C |`t t ) |`t ( t i^i ( `' F " V ) ) ) Homeo ( ( J |`t U ) |`t ( ( F |` t ) " ( t i^i ( `' F " V ) ) ) ) ) ) | 
						
							| 114 | 97 | a1i |  |-  ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> ( t i^i ( `' F " V ) ) C_ t ) | 
						
							| 115 |  | simpr |  |-  ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> t e. x ) | 
						
							| 116 |  | restabs |  |-  ( ( C e. Top /\ ( t i^i ( `' F " V ) ) C_ t /\ t e. x ) -> ( ( C |`t t ) |`t ( t i^i ( `' F " V ) ) ) = ( C |`t ( t i^i ( `' F " V ) ) ) ) | 
						
							| 117 | 102 114 115 116 | syl3anc |  |-  ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> ( ( C |`t t ) |`t ( t i^i ( `' F " V ) ) ) = ( C |`t ( t i^i ( `' F " V ) ) ) ) | 
						
							| 118 |  | incom |  |-  ( t i^i ( `' F " V ) ) = ( ( `' F " V ) i^i t ) | 
						
							| 119 |  | cnvresima |  |-  ( `' ( F |` t ) " V ) = ( ( `' F " V ) i^i t ) | 
						
							| 120 | 118 119 | eqtr4i |  |-  ( t i^i ( `' F " V ) ) = ( `' ( F |` t ) " V ) | 
						
							| 121 | 120 | imaeq2i |  |-  ( ( F |` t ) " ( t i^i ( `' F " V ) ) ) = ( ( F |` t ) " ( `' ( F |` t ) " V ) ) | 
						
							| 122 | 4 | adantr |  |-  ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> F e. ( C CovMap J ) ) | 
						
							| 123 |  | simplr |  |-  ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> x e. ( S ` U ) ) | 
						
							| 124 | 1 | cvmsf1o |  |-  ( ( F e. ( C CovMap J ) /\ x e. ( S ` U ) /\ t e. x ) -> ( F |` t ) : t -1-1-onto-> U ) | 
						
							| 125 | 122 123 115 124 | syl3anc |  |-  ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> ( F |` t ) : t -1-1-onto-> U ) | 
						
							| 126 |  | f1ofo |  |-  ( ( F |` t ) : t -1-1-onto-> U -> ( F |` t ) : t -onto-> U ) | 
						
							| 127 | 125 126 | syl |  |-  ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> ( F |` t ) : t -onto-> U ) | 
						
							| 128 | 39 | adantr |  |-  ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> V C_ U ) | 
						
							| 129 |  | foimacnv |  |-  ( ( ( F |` t ) : t -onto-> U /\ V C_ U ) -> ( ( F |` t ) " ( `' ( F |` t ) " V ) ) = V ) | 
						
							| 130 | 127 128 129 | syl2anc |  |-  ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> ( ( F |` t ) " ( `' ( F |` t ) " V ) ) = V ) | 
						
							| 131 | 121 130 | eqtrid |  |-  ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> ( ( F |` t ) " ( t i^i ( `' F " V ) ) ) = V ) | 
						
							| 132 | 131 | oveq2d |  |-  ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> ( ( J |`t U ) |`t ( ( F |` t ) " ( t i^i ( `' F " V ) ) ) ) = ( ( J |`t U ) |`t V ) ) | 
						
							| 133 |  | cvmtop2 |  |-  ( F e. ( C CovMap J ) -> J e. Top ) | 
						
							| 134 | 4 133 | syl |  |-  ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> J e. Top ) | 
						
							| 135 | 1 | cvmsrcl |  |-  ( x e. ( S ` U ) -> U e. J ) | 
						
							| 136 | 135 | adantl |  |-  ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> U e. J ) | 
						
							| 137 |  | restabs |  |-  ( ( J e. Top /\ V C_ U /\ U e. J ) -> ( ( J |`t U ) |`t V ) = ( J |`t V ) ) | 
						
							| 138 | 134 39 136 137 | syl3anc |  |-  ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> ( ( J |`t U ) |`t V ) = ( J |`t V ) ) | 
						
							| 139 | 138 | adantr |  |-  ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> ( ( J |`t U ) |`t V ) = ( J |`t V ) ) | 
						
							| 140 | 132 139 | eqtrd |  |-  ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> ( ( J |`t U ) |`t ( ( F |` t ) " ( t i^i ( `' F " V ) ) ) ) = ( J |`t V ) ) | 
						
							| 141 | 117 140 | oveq12d |  |-  ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> ( ( ( C |`t t ) |`t ( t i^i ( `' F " V ) ) ) Homeo ( ( J |`t U ) |`t ( ( F |` t ) " ( t i^i ( `' F " V ) ) ) ) ) = ( ( C |`t ( t i^i ( `' F " V ) ) ) Homeo ( J |`t V ) ) ) | 
						
							| 142 | 113 141 | eleqtrd |  |-  ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> ( F |` ( t i^i ( `' F " V ) ) ) e. ( ( C |`t ( t i^i ( `' F " V ) ) ) Homeo ( J |`t V ) ) ) | 
						
							| 143 | 96 142 | jca |  |-  ( ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) /\ t e. x ) -> ( A. z e. ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) \ { ( t i^i ( `' F " V ) ) } ) ( ( t i^i ( `' F " V ) ) i^i z ) = (/) /\ ( F |` ( t i^i ( `' F " V ) ) ) e. ( ( C |`t ( t i^i ( `' F " V ) ) ) Homeo ( J |`t V ) ) ) ) | 
						
							| 144 | 143 | ralrimiva |  |-  ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> A. t e. x ( A. z e. ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) \ { ( t i^i ( `' F " V ) ) } ) ( ( t i^i ( `' F " V ) ) i^i z ) = (/) /\ ( F |` ( t i^i ( `' F " V ) ) ) e. ( ( C |`t ( t i^i ( `' F " V ) ) ) Homeo ( J |`t V ) ) ) ) | 
						
							| 145 | 52 | rgenw |  |-  A. t e. x ( t i^i ( `' F " V ) ) e. _V | 
						
							| 146 | 47 | cbvmptv |  |-  ( y e. x |-> ( y i^i ( `' F " V ) ) ) = ( t e. x |-> ( t i^i ( `' F " V ) ) ) | 
						
							| 147 |  | sneq |  |-  ( w = ( t i^i ( `' F " V ) ) -> { w } = { ( t i^i ( `' F " V ) ) } ) | 
						
							| 148 | 147 | difeq2d |  |-  ( w = ( t i^i ( `' F " V ) ) -> ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) \ { w } ) = ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) \ { ( t i^i ( `' F " V ) ) } ) ) | 
						
							| 149 |  | ineq1 |  |-  ( w = ( t i^i ( `' F " V ) ) -> ( w i^i z ) = ( ( t i^i ( `' F " V ) ) i^i z ) ) | 
						
							| 150 | 149 | eqeq1d |  |-  ( w = ( t i^i ( `' F " V ) ) -> ( ( w i^i z ) = (/) <-> ( ( t i^i ( `' F " V ) ) i^i z ) = (/) ) ) | 
						
							| 151 | 148 150 | raleqbidv |  |-  ( w = ( t i^i ( `' F " V ) ) -> ( A. z e. ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) \ { w } ) ( w i^i z ) = (/) <-> A. z e. ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) \ { ( t i^i ( `' F " V ) ) } ) ( ( t i^i ( `' F " V ) ) i^i z ) = (/) ) ) | 
						
							| 152 |  | reseq2 |  |-  ( w = ( t i^i ( `' F " V ) ) -> ( F |` w ) = ( F |` ( t i^i ( `' F " V ) ) ) ) | 
						
							| 153 |  | oveq2 |  |-  ( w = ( t i^i ( `' F " V ) ) -> ( C |`t w ) = ( C |`t ( t i^i ( `' F " V ) ) ) ) | 
						
							| 154 | 153 | oveq1d |  |-  ( w = ( t i^i ( `' F " V ) ) -> ( ( C |`t w ) Homeo ( J |`t V ) ) = ( ( C |`t ( t i^i ( `' F " V ) ) ) Homeo ( J |`t V ) ) ) | 
						
							| 155 | 152 154 | eleq12d |  |-  ( w = ( t i^i ( `' F " V ) ) -> ( ( F |` w ) e. ( ( C |`t w ) Homeo ( J |`t V ) ) <-> ( F |` ( t i^i ( `' F " V ) ) ) e. ( ( C |`t ( t i^i ( `' F " V ) ) ) Homeo ( J |`t V ) ) ) ) | 
						
							| 156 | 151 155 | anbi12d |  |-  ( w = ( t i^i ( `' F " V ) ) -> ( ( A. z e. ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) \ { w } ) ( w i^i z ) = (/) /\ ( F |` w ) e. ( ( C |`t w ) Homeo ( J |`t V ) ) ) <-> ( A. z e. ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) \ { ( t i^i ( `' F " V ) ) } ) ( ( t i^i ( `' F " V ) ) i^i z ) = (/) /\ ( F |` ( t i^i ( `' F " V ) ) ) e. ( ( C |`t ( t i^i ( `' F " V ) ) ) Homeo ( J |`t V ) ) ) ) ) | 
						
							| 157 | 146 156 | ralrnmptw |  |-  ( A. t e. x ( t i^i ( `' F " V ) ) e. _V -> ( A. w e. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) ( A. z e. ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) \ { w } ) ( w i^i z ) = (/) /\ ( F |` w ) e. ( ( C |`t w ) Homeo ( J |`t V ) ) ) <-> A. t e. x ( A. z e. ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) \ { ( t i^i ( `' F " V ) ) } ) ( ( t i^i ( `' F " V ) ) i^i z ) = (/) /\ ( F |` ( t i^i ( `' F " V ) ) ) e. ( ( C |`t ( t i^i ( `' F " V ) ) ) Homeo ( J |`t V ) ) ) ) ) | 
						
							| 158 | 145 157 | ax-mp |  |-  ( A. w e. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) ( A. z e. ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) \ { w } ) ( w i^i z ) = (/) /\ ( F |` w ) e. ( ( C |`t w ) Homeo ( J |`t V ) ) ) <-> A. t e. x ( A. z e. ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) \ { ( t i^i ( `' F " V ) ) } ) ( ( t i^i ( `' F " V ) ) i^i z ) = (/) /\ ( F |` ( t i^i ( `' F " V ) ) ) e. ( ( C |`t ( t i^i ( `' F " V ) ) ) Homeo ( J |`t V ) ) ) ) | 
						
							| 159 | 144 158 | sylibr |  |-  ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> A. w e. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) ( A. z e. ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) \ { w } ) ( w i^i z ) = (/) /\ ( F |` w ) e. ( ( C |`t w ) Homeo ( J |`t V ) ) ) ) | 
						
							| 160 | 68 159 | jca |  |-  ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> ( U. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) = ( `' F " V ) /\ A. w e. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) ( A. z e. ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) \ { w } ) ( w i^i z ) = (/) /\ ( F |` w ) e. ( ( C |`t w ) Homeo ( J |`t V ) ) ) ) ) | 
						
							| 161 | 1 | cvmscbv |  |-  S = ( a e. J |-> { b e. ( ~P C \ { (/) } ) | ( U. b = ( `' F " a ) /\ A. w e. b ( A. z e. ( b \ { w } ) ( w i^i z ) = (/) /\ ( F |` w ) e. ( ( C |`t w ) Homeo ( J |`t a ) ) ) ) } ) | 
						
							| 162 | 161 | cvmsval |  |-  ( C e. Top -> ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) e. ( S ` V ) <-> ( V e. J /\ ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) C_ C /\ ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) =/= (/) ) /\ ( U. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) = ( `' F " V ) /\ A. w e. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) ( A. z e. ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) \ { w } ) ( w i^i z ) = (/) /\ ( F |` w ) e. ( ( C |`t w ) Homeo ( J |`t V ) ) ) ) ) ) ) | 
						
							| 163 | 6 162 | syl |  |-  ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) e. ( S ` V ) <-> ( V e. J /\ ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) C_ C /\ ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) =/= (/) ) /\ ( U. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) = ( `' F " V ) /\ A. w e. ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) ( A. z e. ( ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) \ { w } ) ( w i^i z ) = (/) /\ ( F |` w ) e. ( ( C |`t w ) Homeo ( J |`t V ) ) ) ) ) ) ) | 
						
							| 164 | 3 30 160 163 | mpbir3and |  |-  ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> ran ( y e. x |-> ( y i^i ( `' F " V ) ) ) e. ( S ` V ) ) | 
						
							| 165 | 164 | ne0d |  |-  ( ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) /\ x e. ( S ` U ) ) -> ( S ` V ) =/= (/) ) | 
						
							| 166 | 165 | ex |  |-  ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) -> ( x e. ( S ` U ) -> ( S ` V ) =/= (/) ) ) | 
						
							| 167 | 166 | exlimdv |  |-  ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) -> ( E. x x e. ( S ` U ) -> ( S ` V ) =/= (/) ) ) | 
						
							| 168 | 2 167 | biimtrid |  |-  ( ( F e. ( C CovMap J ) /\ V e. J /\ V C_ U ) -> ( ( S ` U ) =/= (/) -> ( S ` V ) =/= (/) ) ) |