Description: The restriction of a homeomorphism is a homeomorphism. (Contributed by Mario Carneiro, 14-Sep-2014) (Proof shortened by Mario Carneiro, 22-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | hmeores.1 | |
|
Assertion | hmeores | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmeores.1 | |
|
2 | hmeocn | |
|
3 | 2 | adantr | |
4 | 1 | cnrest | |
5 | 3 4 | sylancom | |
6 | cntop2 | |
|
7 | 3 6 | syl | |
8 | eqid | |
|
9 | 8 | toptopon | |
10 | 7 9 | sylib | |
11 | df-ima | |
|
12 | 11 | eqimss2i | |
13 | 12 | a1i | |
14 | imassrn | |
|
15 | 1 8 | cnf | |
16 | 3 15 | syl | |
17 | 16 | frnd | |
18 | 14 17 | sstrid | |
19 | cnrest2 | |
|
20 | 10 13 18 19 | syl3anc | |
21 | 5 20 | mpbid | |
22 | hmeocnvcn | |
|
23 | 22 | adantr | |
24 | 8 1 | cnf | |
25 | ffun | |
|
26 | funcnvres | |
|
27 | 23 24 25 26 | 4syl | |
28 | 8 | cnrest | |
29 | 23 18 28 | syl2anc | |
30 | 27 29 | eqeltrd | |
31 | cntop1 | |
|
32 | 3 31 | syl | |
33 | 1 | toptopon | |
34 | 32 33 | sylib | |
35 | dfdm4 | |
|
36 | fssres | |
|
37 | 16 36 | sylancom | |
38 | 37 | fdmd | |
39 | 35 38 | eqtr3id | |
40 | eqimss | |
|
41 | 39 40 | syl | |
42 | simpr | |
|
43 | cnrest2 | |
|
44 | 34 41 42 43 | syl3anc | |
45 | 30 44 | mpbid | |
46 | ishmeo | |
|
47 | 21 45 46 | sylanbrc | |