Metamath Proof Explorer


Theorem hmeores

Description: The restriction of a homeomorphism is a homeomorphism. (Contributed by Mario Carneiro, 14-Sep-2014) (Proof shortened by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypothesis hmeores.1 X=J
Assertion hmeores FJHomeoKYXFYJ𝑡YHomeoK𝑡FY

Proof

Step Hyp Ref Expression
1 hmeores.1 X=J
2 hmeocn FJHomeoKFJCnK
3 2 adantr FJHomeoKYXFJCnK
4 1 cnrest FJCnKYXFYJ𝑡YCnK
5 3 4 sylancom FJHomeoKYXFYJ𝑡YCnK
6 cntop2 FJCnKKTop
7 3 6 syl FJHomeoKYXKTop
8 eqid K=K
9 8 toptopon KTopKTopOnK
10 7 9 sylib FJHomeoKYXKTopOnK
11 df-ima FY=ranFY
12 11 eqimss2i ranFYFY
13 12 a1i FJHomeoKYXranFYFY
14 imassrn FYranF
15 1 8 cnf FJCnKF:XK
16 3 15 syl FJHomeoKYXF:XK
17 16 frnd FJHomeoKYXranFK
18 14 17 sstrid FJHomeoKYXFYK
19 cnrest2 KTopOnKranFYFYFYKFYJ𝑡YCnKFYJ𝑡YCnK𝑡FY
20 10 13 18 19 syl3anc FJHomeoKYXFYJ𝑡YCnKFYJ𝑡YCnK𝑡FY
21 5 20 mpbid FJHomeoKYXFYJ𝑡YCnK𝑡FY
22 hmeocnvcn FJHomeoKF-1KCnJ
23 22 adantr FJHomeoKYXF-1KCnJ
24 8 1 cnf F-1KCnJF-1:KX
25 ffun F-1:KXFunF-1
26 funcnvres FunF-1FY-1=F-1FY
27 23 24 25 26 4syl FJHomeoKYXFY-1=F-1FY
28 8 cnrest F-1KCnJFYKF-1FYK𝑡FYCnJ
29 23 18 28 syl2anc FJHomeoKYXF-1FYK𝑡FYCnJ
30 27 29 eqeltrd FJHomeoKYXFY-1K𝑡FYCnJ
31 cntop1 FJCnKJTop
32 3 31 syl FJHomeoKYXJTop
33 1 toptopon JTopJTopOnX
34 32 33 sylib FJHomeoKYXJTopOnX
35 dfdm4 domFY=ranFY-1
36 fssres F:XKYXFY:YK
37 16 36 sylancom FJHomeoKYXFY:YK
38 37 fdmd FJHomeoKYXdomFY=Y
39 35 38 eqtr3id FJHomeoKYXranFY-1=Y
40 eqimss ranFY-1=YranFY-1Y
41 39 40 syl FJHomeoKYXranFY-1Y
42 simpr FJHomeoKYXYX
43 cnrest2 JTopOnXranFY-1YYXFY-1K𝑡FYCnJFY-1K𝑡FYCnJ𝑡Y
44 34 41 42 43 syl3anc FJHomeoKYXFY-1K𝑡FYCnJFY-1K𝑡FYCnJ𝑡Y
45 30 44 mpbid FJHomeoKYXFY-1K𝑡FYCnJ𝑡Y
46 ishmeo FYJ𝑡YHomeoK𝑡FYFYJ𝑡YCnK𝑡FYFY-1K𝑡FYCnJ𝑡Y
47 21 45 46 sylanbrc FJHomeoKYXFYJ𝑡YHomeoK𝑡FY