Step |
Hyp |
Ref |
Expression |
1 |
|
cvmliftmo.b |
|- B = U. C |
2 |
|
cvmliftmo.y |
|- Y = U. K |
3 |
|
cvmliftmo.f |
|- ( ph -> F e. ( C CovMap J ) ) |
4 |
|
cvmliftmo.k |
|- ( ph -> K e. Conn ) |
5 |
|
cvmliftmo.l |
|- ( ph -> K e. N-Locally Conn ) |
6 |
|
cvmliftmo.o |
|- ( ph -> O e. Y ) |
7 |
|
cvmliftmoi.m |
|- ( ph -> M e. ( K Cn C ) ) |
8 |
|
cvmliftmoi.n |
|- ( ph -> N e. ( K Cn C ) ) |
9 |
|
cvmliftmoi.g |
|- ( ph -> ( F o. M ) = ( F o. N ) ) |
10 |
|
cvmliftmoi.p |
|- ( ph -> ( M ` O ) = ( N ` O ) ) |
11 |
|
cvmliftmolem.1 |
|- S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. u e. s ( A. v e. ( s \ { u } ) ( u i^i v ) = (/) /\ ( F |` u ) e. ( ( C |`t u ) Homeo ( J |`t k ) ) ) ) } ) |
12 |
|
cvmliftmolem.2 |
|- ( ( ph /\ ps ) -> T e. ( S ` U ) ) |
13 |
|
cvmliftmolem.3 |
|- ( ( ph /\ ps ) -> W e. T ) |
14 |
|
cvmliftmolem.4 |
|- ( ( ph /\ ps ) -> I C_ ( `' M " W ) ) |
15 |
|
cvmliftmolem.5 |
|- ( ( ph /\ ps ) -> ( K |`t I ) e. Conn ) |
16 |
|
cvmliftmolem.6 |
|- ( ( ph /\ ps ) -> X e. I ) |
17 |
|
cvmliftmolem.7 |
|- ( ( ph /\ ps ) -> Q e. I ) |
18 |
|
cvmliftmolem.8 |
|- ( ( ph /\ ps ) -> R e. I ) |
19 |
|
cvmliftmolem.9 |
|- ( ( ph /\ ps ) -> ( F ` ( M ` X ) ) e. U ) |
20 |
9
|
adantr |
|- ( ( ph /\ ps ) -> ( F o. M ) = ( F o. N ) ) |
21 |
20
|
fveq1d |
|- ( ( ph /\ ps ) -> ( ( F o. M ) ` R ) = ( ( F o. N ) ` R ) ) |
22 |
14 18
|
sseldd |
|- ( ( ph /\ ps ) -> R e. ( `' M " W ) ) |
23 |
2 1
|
cnf |
|- ( M e. ( K Cn C ) -> M : Y --> B ) |
24 |
7 23
|
syl |
|- ( ph -> M : Y --> B ) |
25 |
24
|
ffnd |
|- ( ph -> M Fn Y ) |
26 |
|
elpreima |
|- ( M Fn Y -> ( R e. ( `' M " W ) <-> ( R e. Y /\ ( M ` R ) e. W ) ) ) |
27 |
25 26
|
syl |
|- ( ph -> ( R e. ( `' M " W ) <-> ( R e. Y /\ ( M ` R ) e. W ) ) ) |
28 |
27
|
simprbda |
|- ( ( ph /\ R e. ( `' M " W ) ) -> R e. Y ) |
29 |
22 28
|
syldan |
|- ( ( ph /\ ps ) -> R e. Y ) |
30 |
|
fvco3 |
|- ( ( M : Y --> B /\ R e. Y ) -> ( ( F o. M ) ` R ) = ( F ` ( M ` R ) ) ) |
31 |
24 30
|
sylan |
|- ( ( ph /\ R e. Y ) -> ( ( F o. M ) ` R ) = ( F ` ( M ` R ) ) ) |
32 |
29 31
|
syldan |
|- ( ( ph /\ ps ) -> ( ( F o. M ) ` R ) = ( F ` ( M ` R ) ) ) |
33 |
2 1
|
cnf |
|- ( N e. ( K Cn C ) -> N : Y --> B ) |
34 |
8 33
|
syl |
|- ( ph -> N : Y --> B ) |
35 |
|
fvco3 |
|- ( ( N : Y --> B /\ R e. Y ) -> ( ( F o. N ) ` R ) = ( F ` ( N ` R ) ) ) |
36 |
34 35
|
sylan |
|- ( ( ph /\ R e. Y ) -> ( ( F o. N ) ` R ) = ( F ` ( N ` R ) ) ) |
37 |
29 36
|
syldan |
|- ( ( ph /\ ps ) -> ( ( F o. N ) ` R ) = ( F ` ( N ` R ) ) ) |
38 |
21 32 37
|
3eqtr3d |
|- ( ( ph /\ ps ) -> ( F ` ( M ` R ) ) = ( F ` ( N ` R ) ) ) |
39 |
38
|
adantr |
|- ( ( ( ph /\ ps ) /\ ( M ` Q ) = ( N ` Q ) ) -> ( F ` ( M ` R ) ) = ( F ` ( N ` R ) ) ) |
40 |
27
|
simplbda |
|- ( ( ph /\ R e. ( `' M " W ) ) -> ( M ` R ) e. W ) |
41 |
22 40
|
syldan |
|- ( ( ph /\ ps ) -> ( M ` R ) e. W ) |
42 |
41
|
adantr |
|- ( ( ( ph /\ ps ) /\ ( M ` Q ) = ( N ` Q ) ) -> ( M ` R ) e. W ) |
43 |
|
fvres |
|- ( ( M ` R ) e. W -> ( ( F |` W ) ` ( M ` R ) ) = ( F ` ( M ` R ) ) ) |
44 |
42 43
|
syl |
|- ( ( ( ph /\ ps ) /\ ( M ` Q ) = ( N ` Q ) ) -> ( ( F |` W ) ` ( M ` R ) ) = ( F ` ( M ` R ) ) ) |
45 |
18
|
adantr |
|- ( ( ( ph /\ ps ) /\ ( M ` Q ) = ( N ` Q ) ) -> R e. I ) |
46 |
|
fvres |
|- ( R e. I -> ( ( N |` I ) ` R ) = ( N ` R ) ) |
47 |
45 46
|
syl |
|- ( ( ( ph /\ ps ) /\ ( M ` Q ) = ( N ` Q ) ) -> ( ( N |` I ) ` R ) = ( N ` R ) ) |
48 |
|
eqid |
|- U. ( K |`t I ) = U. ( K |`t I ) |
49 |
15
|
adantr |
|- ( ( ( ph /\ ps ) /\ ( M ` Q ) = ( N ` Q ) ) -> ( K |`t I ) e. Conn ) |
50 |
8
|
adantr |
|- ( ( ph /\ ps ) -> N e. ( K Cn C ) ) |
51 |
|
cnvimass |
|- ( `' M " W ) C_ dom M |
52 |
51 24
|
fssdm |
|- ( ph -> ( `' M " W ) C_ Y ) |
53 |
52
|
adantr |
|- ( ( ph /\ ps ) -> ( `' M " W ) C_ Y ) |
54 |
14 53
|
sstrd |
|- ( ( ph /\ ps ) -> I C_ Y ) |
55 |
2
|
cnrest |
|- ( ( N e. ( K Cn C ) /\ I C_ Y ) -> ( N |` I ) e. ( ( K |`t I ) Cn C ) ) |
56 |
50 54 55
|
syl2anc |
|- ( ( ph /\ ps ) -> ( N |` I ) e. ( ( K |`t I ) Cn C ) ) |
57 |
3
|
adantr |
|- ( ( ph /\ ps ) -> F e. ( C CovMap J ) ) |
58 |
|
cvmtop1 |
|- ( F e. ( C CovMap J ) -> C e. Top ) |
59 |
57 58
|
syl |
|- ( ( ph /\ ps ) -> C e. Top ) |
60 |
1
|
toptopon |
|- ( C e. Top <-> C e. ( TopOn ` B ) ) |
61 |
59 60
|
sylib |
|- ( ( ph /\ ps ) -> C e. ( TopOn ` B ) ) |
62 |
|
df-ima |
|- ( N " I ) = ran ( N |` I ) |
63 |
|
elssuni |
|- ( W e. T -> W C_ U. T ) |
64 |
13 63
|
syl |
|- ( ( ph /\ ps ) -> W C_ U. T ) |
65 |
11
|
cvmsuni |
|- ( T e. ( S ` U ) -> U. T = ( `' F " U ) ) |
66 |
12 65
|
syl |
|- ( ( ph /\ ps ) -> U. T = ( `' F " U ) ) |
67 |
64 66
|
sseqtrd |
|- ( ( ph /\ ps ) -> W C_ ( `' F " U ) ) |
68 |
|
imass2 |
|- ( W C_ ( `' F " U ) -> ( `' M " W ) C_ ( `' M " ( `' F " U ) ) ) |
69 |
67 68
|
syl |
|- ( ( ph /\ ps ) -> ( `' M " W ) C_ ( `' M " ( `' F " U ) ) ) |
70 |
14 69
|
sstrd |
|- ( ( ph /\ ps ) -> I C_ ( `' M " ( `' F " U ) ) ) |
71 |
20
|
cnveqd |
|- ( ( ph /\ ps ) -> `' ( F o. M ) = `' ( F o. N ) ) |
72 |
|
cnvco |
|- `' ( F o. M ) = ( `' M o. `' F ) |
73 |
|
cnvco |
|- `' ( F o. N ) = ( `' N o. `' F ) |
74 |
71 72 73
|
3eqtr3g |
|- ( ( ph /\ ps ) -> ( `' M o. `' F ) = ( `' N o. `' F ) ) |
75 |
74
|
imaeq1d |
|- ( ( ph /\ ps ) -> ( ( `' M o. `' F ) " U ) = ( ( `' N o. `' F ) " U ) ) |
76 |
|
imaco |
|- ( ( `' M o. `' F ) " U ) = ( `' M " ( `' F " U ) ) |
77 |
|
imaco |
|- ( ( `' N o. `' F ) " U ) = ( `' N " ( `' F " U ) ) |
78 |
75 76 77
|
3eqtr3g |
|- ( ( ph /\ ps ) -> ( `' M " ( `' F " U ) ) = ( `' N " ( `' F " U ) ) ) |
79 |
70 78
|
sseqtrd |
|- ( ( ph /\ ps ) -> I C_ ( `' N " ( `' F " U ) ) ) |
80 |
34
|
adantr |
|- ( ( ph /\ ps ) -> N : Y --> B ) |
81 |
80
|
ffund |
|- ( ( ph /\ ps ) -> Fun N ) |
82 |
80
|
fdmd |
|- ( ( ph /\ ps ) -> dom N = Y ) |
83 |
54 82
|
sseqtrrd |
|- ( ( ph /\ ps ) -> I C_ dom N ) |
84 |
|
funimass3 |
|- ( ( Fun N /\ I C_ dom N ) -> ( ( N " I ) C_ ( `' F " U ) <-> I C_ ( `' N " ( `' F " U ) ) ) ) |
85 |
81 83 84
|
syl2anc |
|- ( ( ph /\ ps ) -> ( ( N " I ) C_ ( `' F " U ) <-> I C_ ( `' N " ( `' F " U ) ) ) ) |
86 |
79 85
|
mpbird |
|- ( ( ph /\ ps ) -> ( N " I ) C_ ( `' F " U ) ) |
87 |
62 86
|
eqsstrrid |
|- ( ( ph /\ ps ) -> ran ( N |` I ) C_ ( `' F " U ) ) |
88 |
|
cnvimass |
|- ( `' F " U ) C_ dom F |
89 |
|
cvmcn |
|- ( F e. ( C CovMap J ) -> F e. ( C Cn J ) ) |
90 |
3 89
|
syl |
|- ( ph -> F e. ( C Cn J ) ) |
91 |
|
eqid |
|- U. J = U. J |
92 |
1 91
|
cnf |
|- ( F e. ( C Cn J ) -> F : B --> U. J ) |
93 |
90 92
|
syl |
|- ( ph -> F : B --> U. J ) |
94 |
93
|
fdmd |
|- ( ph -> dom F = B ) |
95 |
94
|
adantr |
|- ( ( ph /\ ps ) -> dom F = B ) |
96 |
88 95
|
sseqtrid |
|- ( ( ph /\ ps ) -> ( `' F " U ) C_ B ) |
97 |
|
cnrest2 |
|- ( ( C e. ( TopOn ` B ) /\ ran ( N |` I ) C_ ( `' F " U ) /\ ( `' F " U ) C_ B ) -> ( ( N |` I ) e. ( ( K |`t I ) Cn C ) <-> ( N |` I ) e. ( ( K |`t I ) Cn ( C |`t ( `' F " U ) ) ) ) ) |
98 |
61 87 96 97
|
syl3anc |
|- ( ( ph /\ ps ) -> ( ( N |` I ) e. ( ( K |`t I ) Cn C ) <-> ( N |` I ) e. ( ( K |`t I ) Cn ( C |`t ( `' F " U ) ) ) ) ) |
99 |
56 98
|
mpbid |
|- ( ( ph /\ ps ) -> ( N |` I ) e. ( ( K |`t I ) Cn ( C |`t ( `' F " U ) ) ) ) |
100 |
99
|
adantr |
|- ( ( ( ph /\ ps ) /\ ( M ` Q ) = ( N ` Q ) ) -> ( N |` I ) e. ( ( K |`t I ) Cn ( C |`t ( `' F " U ) ) ) ) |
101 |
|
df-ss |
|- ( W C_ ( `' F " U ) <-> ( W i^i ( `' F " U ) ) = W ) |
102 |
67 101
|
sylib |
|- ( ( ph /\ ps ) -> ( W i^i ( `' F " U ) ) = W ) |
103 |
1
|
topopn |
|- ( C e. Top -> B e. C ) |
104 |
59 103
|
syl |
|- ( ( ph /\ ps ) -> B e. C ) |
105 |
104 96
|
ssexd |
|- ( ( ph /\ ps ) -> ( `' F " U ) e. _V ) |
106 |
11
|
cvmsss |
|- ( T e. ( S ` U ) -> T C_ C ) |
107 |
12 106
|
syl |
|- ( ( ph /\ ps ) -> T C_ C ) |
108 |
107 13
|
sseldd |
|- ( ( ph /\ ps ) -> W e. C ) |
109 |
|
elrestr |
|- ( ( C e. Top /\ ( `' F " U ) e. _V /\ W e. C ) -> ( W i^i ( `' F " U ) ) e. ( C |`t ( `' F " U ) ) ) |
110 |
59 105 108 109
|
syl3anc |
|- ( ( ph /\ ps ) -> ( W i^i ( `' F " U ) ) e. ( C |`t ( `' F " U ) ) ) |
111 |
102 110
|
eqeltrrd |
|- ( ( ph /\ ps ) -> W e. ( C |`t ( `' F " U ) ) ) |
112 |
111
|
adantr |
|- ( ( ( ph /\ ps ) /\ ( M ` Q ) = ( N ` Q ) ) -> W e. ( C |`t ( `' F " U ) ) ) |
113 |
11
|
cvmscld |
|- ( ( F e. ( C CovMap J ) /\ T e. ( S ` U ) /\ W e. T ) -> W e. ( Clsd ` ( C |`t ( `' F " U ) ) ) ) |
114 |
57 12 13 113
|
syl3anc |
|- ( ( ph /\ ps ) -> W e. ( Clsd ` ( C |`t ( `' F " U ) ) ) ) |
115 |
114
|
adantr |
|- ( ( ( ph /\ ps ) /\ ( M ` Q ) = ( N ` Q ) ) -> W e. ( Clsd ` ( C |`t ( `' F " U ) ) ) ) |
116 |
|
conntop |
|- ( K e. Conn -> K e. Top ) |
117 |
4 116
|
syl |
|- ( ph -> K e. Top ) |
118 |
117
|
adantr |
|- ( ( ph /\ ps ) -> K e. Top ) |
119 |
2
|
restuni |
|- ( ( K e. Top /\ I C_ Y ) -> I = U. ( K |`t I ) ) |
120 |
118 54 119
|
syl2anc |
|- ( ( ph /\ ps ) -> I = U. ( K |`t I ) ) |
121 |
17 120
|
eleqtrd |
|- ( ( ph /\ ps ) -> Q e. U. ( K |`t I ) ) |
122 |
121
|
adantr |
|- ( ( ( ph /\ ps ) /\ ( M ` Q ) = ( N ` Q ) ) -> Q e. U. ( K |`t I ) ) |
123 |
17
|
adantr |
|- ( ( ( ph /\ ps ) /\ ( M ` Q ) = ( N ` Q ) ) -> Q e. I ) |
124 |
|
fvres |
|- ( Q e. I -> ( ( N |` I ) ` Q ) = ( N ` Q ) ) |
125 |
123 124
|
syl |
|- ( ( ( ph /\ ps ) /\ ( M ` Q ) = ( N ` Q ) ) -> ( ( N |` I ) ` Q ) = ( N ` Q ) ) |
126 |
|
simpr |
|- ( ( ( ph /\ ps ) /\ ( M ` Q ) = ( N ` Q ) ) -> ( M ` Q ) = ( N ` Q ) ) |
127 |
14 17
|
sseldd |
|- ( ( ph /\ ps ) -> Q e. ( `' M " W ) ) |
128 |
|
elpreima |
|- ( M Fn Y -> ( Q e. ( `' M " W ) <-> ( Q e. Y /\ ( M ` Q ) e. W ) ) ) |
129 |
25 128
|
syl |
|- ( ph -> ( Q e. ( `' M " W ) <-> ( Q e. Y /\ ( M ` Q ) e. W ) ) ) |
130 |
129
|
simplbda |
|- ( ( ph /\ Q e. ( `' M " W ) ) -> ( M ` Q ) e. W ) |
131 |
127 130
|
syldan |
|- ( ( ph /\ ps ) -> ( M ` Q ) e. W ) |
132 |
131
|
adantr |
|- ( ( ( ph /\ ps ) /\ ( M ` Q ) = ( N ` Q ) ) -> ( M ` Q ) e. W ) |
133 |
126 132
|
eqeltrrd |
|- ( ( ( ph /\ ps ) /\ ( M ` Q ) = ( N ` Q ) ) -> ( N ` Q ) e. W ) |
134 |
125 133
|
eqeltrd |
|- ( ( ( ph /\ ps ) /\ ( M ` Q ) = ( N ` Q ) ) -> ( ( N |` I ) ` Q ) e. W ) |
135 |
48 49 100 112 115 122 134
|
conncn |
|- ( ( ( ph /\ ps ) /\ ( M ` Q ) = ( N ` Q ) ) -> ( N |` I ) : U. ( K |`t I ) --> W ) |
136 |
120
|
adantr |
|- ( ( ( ph /\ ps ) /\ ( M ` Q ) = ( N ` Q ) ) -> I = U. ( K |`t I ) ) |
137 |
136
|
feq2d |
|- ( ( ( ph /\ ps ) /\ ( M ` Q ) = ( N ` Q ) ) -> ( ( N |` I ) : I --> W <-> ( N |` I ) : U. ( K |`t I ) --> W ) ) |
138 |
135 137
|
mpbird |
|- ( ( ( ph /\ ps ) /\ ( M ` Q ) = ( N ` Q ) ) -> ( N |` I ) : I --> W ) |
139 |
138 45
|
ffvelrnd |
|- ( ( ( ph /\ ps ) /\ ( M ` Q ) = ( N ` Q ) ) -> ( ( N |` I ) ` R ) e. W ) |
140 |
47 139
|
eqeltrrd |
|- ( ( ( ph /\ ps ) /\ ( M ` Q ) = ( N ` Q ) ) -> ( N ` R ) e. W ) |
141 |
|
fvres |
|- ( ( N ` R ) e. W -> ( ( F |` W ) ` ( N ` R ) ) = ( F ` ( N ` R ) ) ) |
142 |
140 141
|
syl |
|- ( ( ( ph /\ ps ) /\ ( M ` Q ) = ( N ` Q ) ) -> ( ( F |` W ) ` ( N ` R ) ) = ( F ` ( N ` R ) ) ) |
143 |
39 44 142
|
3eqtr4d |
|- ( ( ( ph /\ ps ) /\ ( M ` Q ) = ( N ` Q ) ) -> ( ( F |` W ) ` ( M ` R ) ) = ( ( F |` W ) ` ( N ` R ) ) ) |
144 |
11
|
cvmsf1o |
|- ( ( F e. ( C CovMap J ) /\ T e. ( S ` U ) /\ W e. T ) -> ( F |` W ) : W -1-1-onto-> U ) |
145 |
57 12 13 144
|
syl3anc |
|- ( ( ph /\ ps ) -> ( F |` W ) : W -1-1-onto-> U ) |
146 |
|
f1of1 |
|- ( ( F |` W ) : W -1-1-onto-> U -> ( F |` W ) : W -1-1-> U ) |
147 |
145 146
|
syl |
|- ( ( ph /\ ps ) -> ( F |` W ) : W -1-1-> U ) |
148 |
147
|
adantr |
|- ( ( ( ph /\ ps ) /\ ( M ` Q ) = ( N ` Q ) ) -> ( F |` W ) : W -1-1-> U ) |
149 |
|
f1fveq |
|- ( ( ( F |` W ) : W -1-1-> U /\ ( ( M ` R ) e. W /\ ( N ` R ) e. W ) ) -> ( ( ( F |` W ) ` ( M ` R ) ) = ( ( F |` W ) ` ( N ` R ) ) <-> ( M ` R ) = ( N ` R ) ) ) |
150 |
148 42 140 149
|
syl12anc |
|- ( ( ( ph /\ ps ) /\ ( M ` Q ) = ( N ` Q ) ) -> ( ( ( F |` W ) ` ( M ` R ) ) = ( ( F |` W ) ` ( N ` R ) ) <-> ( M ` R ) = ( N ` R ) ) ) |
151 |
143 150
|
mpbid |
|- ( ( ( ph /\ ps ) /\ ( M ` Q ) = ( N ` Q ) ) -> ( M ` R ) = ( N ` R ) ) |
152 |
151
|
ex |
|- ( ( ph /\ ps ) -> ( ( M ` Q ) = ( N ` Q ) -> ( M ` R ) = ( N ` R ) ) ) |
153 |
129
|
simprbda |
|- ( ( ph /\ Q e. ( `' M " W ) ) -> Q e. Y ) |
154 |
127 153
|
syldan |
|- ( ( ph /\ ps ) -> Q e. Y ) |
155 |
|
fveq2 |
|- ( x = Q -> ( M ` x ) = ( M ` Q ) ) |
156 |
|
fveq2 |
|- ( x = Q -> ( N ` x ) = ( N ` Q ) ) |
157 |
155 156
|
eqeq12d |
|- ( x = Q -> ( ( M ` x ) = ( N ` x ) <-> ( M ` Q ) = ( N ` Q ) ) ) |
158 |
157
|
elrab3 |
|- ( Q e. Y -> ( Q e. { x e. Y | ( M ` x ) = ( N ` x ) } <-> ( M ` Q ) = ( N ` Q ) ) ) |
159 |
154 158
|
syl |
|- ( ( ph /\ ps ) -> ( Q e. { x e. Y | ( M ` x ) = ( N ` x ) } <-> ( M ` Q ) = ( N ` Q ) ) ) |
160 |
|
fveq2 |
|- ( x = R -> ( M ` x ) = ( M ` R ) ) |
161 |
|
fveq2 |
|- ( x = R -> ( N ` x ) = ( N ` R ) ) |
162 |
160 161
|
eqeq12d |
|- ( x = R -> ( ( M ` x ) = ( N ` x ) <-> ( M ` R ) = ( N ` R ) ) ) |
163 |
162
|
elrab3 |
|- ( R e. Y -> ( R e. { x e. Y | ( M ` x ) = ( N ` x ) } <-> ( M ` R ) = ( N ` R ) ) ) |
164 |
29 163
|
syl |
|- ( ( ph /\ ps ) -> ( R e. { x e. Y | ( M ` x ) = ( N ` x ) } <-> ( M ` R ) = ( N ` R ) ) ) |
165 |
152 159 164
|
3imtr4d |
|- ( ( ph /\ ps ) -> ( Q e. { x e. Y | ( M ` x ) = ( N ` x ) } -> R e. { x e. Y | ( M ` x ) = ( N ` x ) } ) ) |
166 |
34
|
ffnd |
|- ( ph -> N Fn Y ) |
167 |
|
fndmin |
|- ( ( M Fn Y /\ N Fn Y ) -> dom ( M i^i N ) = { x e. Y | ( M ` x ) = ( N ` x ) } ) |
168 |
25 166 167
|
syl2anc |
|- ( ph -> dom ( M i^i N ) = { x e. Y | ( M ` x ) = ( N ` x ) } ) |
169 |
168
|
adantr |
|- ( ( ph /\ ps ) -> dom ( M i^i N ) = { x e. Y | ( M ` x ) = ( N ` x ) } ) |
170 |
169
|
eleq2d |
|- ( ( ph /\ ps ) -> ( Q e. dom ( M i^i N ) <-> Q e. { x e. Y | ( M ` x ) = ( N ` x ) } ) ) |
171 |
169
|
eleq2d |
|- ( ( ph /\ ps ) -> ( R e. dom ( M i^i N ) <-> R e. { x e. Y | ( M ` x ) = ( N ` x ) } ) ) |
172 |
165 170 171
|
3imtr4d |
|- ( ( ph /\ ps ) -> ( Q e. dom ( M i^i N ) -> R e. dom ( M i^i N ) ) ) |