| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dffn5 |
⊢ ( 𝐹 Fn 𝐴 ↔ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 2 |
1
|
biimpi |
⊢ ( 𝐹 Fn 𝐴 → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 3 |
|
df-mpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) } |
| 4 |
2 3
|
eqtrdi |
⊢ ( 𝐹 Fn 𝐴 → 𝐹 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) } ) |
| 5 |
|
dffn5 |
⊢ ( 𝐺 Fn 𝐴 ↔ 𝐺 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 6 |
5
|
biimpi |
⊢ ( 𝐺 Fn 𝐴 → 𝐺 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 7 |
|
df-mpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑥 ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐺 ‘ 𝑥 ) ) } |
| 8 |
6 7
|
eqtrdi |
⊢ ( 𝐺 Fn 𝐴 → 𝐺 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐺 ‘ 𝑥 ) ) } ) |
| 9 |
4 8
|
ineqan12d |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( 𝐹 ∩ 𝐺 ) = ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) } ∩ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐺 ‘ 𝑥 ) ) } ) ) |
| 10 |
|
inopab |
⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) } ∩ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐺 ‘ 𝑥 ) ) } ) = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐺 ‘ 𝑥 ) ) ) } |
| 11 |
9 10
|
eqtrdi |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( 𝐹 ∩ 𝐺 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐺 ‘ 𝑥 ) ) ) } ) |
| 12 |
11
|
dmeqd |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → dom ( 𝐹 ∩ 𝐺 ) = dom { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐺 ‘ 𝑥 ) ) ) } ) |
| 13 |
|
19.42v |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) ∧ 𝑦 = ( 𝐺 ‘ 𝑥 ) ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ( 𝑦 = ( 𝐹 ‘ 𝑥 ) ∧ 𝑦 = ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 14 |
|
anandi |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) ∧ 𝑦 = ( 𝐺 ‘ 𝑥 ) ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 15 |
14
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) ∧ 𝑦 = ( 𝐺 ‘ 𝑥 ) ) ) ↔ ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 16 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑥 ) ∈ V |
| 17 |
|
eqeq1 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( 𝑦 = ( 𝐺 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) |
| 18 |
16 17
|
ceqsexv |
⊢ ( ∃ 𝑦 ( 𝑦 = ( 𝐹 ‘ 𝑥 ) ∧ 𝑦 = ( 𝐺 ‘ 𝑥 ) ) ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 19 |
18
|
anbi2i |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ( 𝑦 = ( 𝐹 ‘ 𝑥 ) ∧ 𝑦 = ( 𝐺 ‘ 𝑥 ) ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) |
| 20 |
13 15 19
|
3bitr3i |
⊢ ( ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐺 ‘ 𝑥 ) ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) |
| 21 |
20
|
abbii |
⊢ { 𝑥 ∣ ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐺 ‘ 𝑥 ) ) ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) } |
| 22 |
|
dmopab |
⊢ dom { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐺 ‘ 𝑥 ) ) ) } = { 𝑥 ∣ ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐺 ‘ 𝑥 ) ) ) } |
| 23 |
|
df-rab |
⊢ { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) } |
| 24 |
21 22 23
|
3eqtr4i |
⊢ dom { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐺 ‘ 𝑥 ) ) ) } = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) } |
| 25 |
12 24
|
eqtrdi |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → dom ( 𝐹 ∩ 𝐺 ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) } ) |