Metamath Proof Explorer


Theorem cyc3fv3

Description: Function value of a 3-cycle at the third point. (Contributed by Thierry Arnoux, 19-Sep-2023)

Ref Expression
Hypotheses cycpm3.c 𝐶 = ( toCyc ‘ 𝐷 )
cycpm3.s 𝑆 = ( SymGrp ‘ 𝐷 )
cycpm3.d ( 𝜑𝐷𝑉 )
cycpm3.i ( 𝜑𝐼𝐷 )
cycpm3.j ( 𝜑𝐽𝐷 )
cycpm3.k ( 𝜑𝐾𝐷 )
cycpm3.1 ( 𝜑𝐼𝐽 )
cycpm3.2 ( 𝜑𝐽𝐾 )
cycpm3.3 ( 𝜑𝐾𝐼 )
Assertion cyc3fv3 ( 𝜑 → ( ( 𝐶 ‘ ⟨“ 𝐼 𝐽 𝐾 ”⟩ ) ‘ 𝐾 ) = 𝐼 )

Proof

Step Hyp Ref Expression
1 cycpm3.c 𝐶 = ( toCyc ‘ 𝐷 )
2 cycpm3.s 𝑆 = ( SymGrp ‘ 𝐷 )
3 cycpm3.d ( 𝜑𝐷𝑉 )
4 cycpm3.i ( 𝜑𝐼𝐷 )
5 cycpm3.j ( 𝜑𝐽𝐷 )
6 cycpm3.k ( 𝜑𝐾𝐷 )
7 cycpm3.1 ( 𝜑𝐼𝐽 )
8 cycpm3.2 ( 𝜑𝐽𝐾 )
9 cycpm3.3 ( 𝜑𝐾𝐼 )
10 4 5 6 s3cld ( 𝜑 → ⟨“ 𝐼 𝐽 𝐾 ”⟩ ∈ Word 𝐷 )
11 4 5 6 7 8 9 s3f1 ( 𝜑 → ⟨“ 𝐼 𝐽 𝐾 ”⟩ : dom ⟨“ 𝐼 𝐽 𝐾 ”⟩ –1-1𝐷 )
12 3pos 0 < 3
13 s3len ( ♯ ‘ ⟨“ 𝐼 𝐽 𝐾 ”⟩ ) = 3
14 12 13 breqtrri 0 < ( ♯ ‘ ⟨“ 𝐼 𝐽 𝐾 ”⟩ )
15 14 a1i ( 𝜑 → 0 < ( ♯ ‘ ⟨“ 𝐼 𝐽 𝐾 ”⟩ ) )
16 13 oveq1i ( ( ♯ ‘ ⟨“ 𝐼 𝐽 𝐾 ”⟩ ) − 1 ) = ( 3 − 1 )
17 3m1e2 ( 3 − 1 ) = 2
18 16 17 eqtr2i 2 = ( ( ♯ ‘ ⟨“ 𝐼 𝐽 𝐾 ”⟩ ) − 1 )
19 18 a1i ( 𝜑 → 2 = ( ( ♯ ‘ ⟨“ 𝐼 𝐽 𝐾 ”⟩ ) − 1 ) )
20 1 3 10 11 15 19 cycpmfv2 ( 𝜑 → ( ( 𝐶 ‘ ⟨“ 𝐼 𝐽 𝐾 ”⟩ ) ‘ ( ⟨“ 𝐼 𝐽 𝐾 ”⟩ ‘ 2 ) ) = ( ⟨“ 𝐼 𝐽 𝐾 ”⟩ ‘ 0 ) )
21 s3fv2 ( 𝐾𝐷 → ( ⟨“ 𝐼 𝐽 𝐾 ”⟩ ‘ 2 ) = 𝐾 )
22 6 21 syl ( 𝜑 → ( ⟨“ 𝐼 𝐽 𝐾 ”⟩ ‘ 2 ) = 𝐾 )
23 22 fveq2d ( 𝜑 → ( ( 𝐶 ‘ ⟨“ 𝐼 𝐽 𝐾 ”⟩ ) ‘ ( ⟨“ 𝐼 𝐽 𝐾 ”⟩ ‘ 2 ) ) = ( ( 𝐶 ‘ ⟨“ 𝐼 𝐽 𝐾 ”⟩ ) ‘ 𝐾 ) )
24 s3fv0 ( 𝐼𝐷 → ( ⟨“ 𝐼 𝐽 𝐾 ”⟩ ‘ 0 ) = 𝐼 )
25 4 24 syl ( 𝜑 → ( ⟨“ 𝐼 𝐽 𝐾 ”⟩ ‘ 0 ) = 𝐼 )
26 20 23 25 3eqtr3d ( 𝜑 → ( ( 𝐶 ‘ ⟨“ 𝐼 𝐽 𝐾 ”⟩ ) ‘ 𝐾 ) = 𝐼 )