Step |
Hyp |
Ref |
Expression |
1 |
|
cycpm3.c |
|- C = ( toCyc ` D ) |
2 |
|
cycpm3.s |
|- S = ( SymGrp ` D ) |
3 |
|
cycpm3.d |
|- ( ph -> D e. V ) |
4 |
|
cycpm3.i |
|- ( ph -> I e. D ) |
5 |
|
cycpm3.j |
|- ( ph -> J e. D ) |
6 |
|
cycpm3.k |
|- ( ph -> K e. D ) |
7 |
|
cycpm3.1 |
|- ( ph -> I =/= J ) |
8 |
|
cycpm3.2 |
|- ( ph -> J =/= K ) |
9 |
|
cycpm3.3 |
|- ( ph -> K =/= I ) |
10 |
4 5 6
|
s3cld |
|- ( ph -> <" I J K "> e. Word D ) |
11 |
4 5 6 7 8 9
|
s3f1 |
|- ( ph -> <" I J K "> : dom <" I J K "> -1-1-> D ) |
12 |
|
3pos |
|- 0 < 3 |
13 |
|
s3len |
|- ( # ` <" I J K "> ) = 3 |
14 |
12 13
|
breqtrri |
|- 0 < ( # ` <" I J K "> ) |
15 |
14
|
a1i |
|- ( ph -> 0 < ( # ` <" I J K "> ) ) |
16 |
13
|
oveq1i |
|- ( ( # ` <" I J K "> ) - 1 ) = ( 3 - 1 ) |
17 |
|
3m1e2 |
|- ( 3 - 1 ) = 2 |
18 |
16 17
|
eqtr2i |
|- 2 = ( ( # ` <" I J K "> ) - 1 ) |
19 |
18
|
a1i |
|- ( ph -> 2 = ( ( # ` <" I J K "> ) - 1 ) ) |
20 |
1 3 10 11 15 19
|
cycpmfv2 |
|- ( ph -> ( ( C ` <" I J K "> ) ` ( <" I J K "> ` 2 ) ) = ( <" I J K "> ` 0 ) ) |
21 |
|
s3fv2 |
|- ( K e. D -> ( <" I J K "> ` 2 ) = K ) |
22 |
6 21
|
syl |
|- ( ph -> ( <" I J K "> ` 2 ) = K ) |
23 |
22
|
fveq2d |
|- ( ph -> ( ( C ` <" I J K "> ) ` ( <" I J K "> ` 2 ) ) = ( ( C ` <" I J K "> ) ` K ) ) |
24 |
|
s3fv0 |
|- ( I e. D -> ( <" I J K "> ` 0 ) = I ) |
25 |
4 24
|
syl |
|- ( ph -> ( <" I J K "> ` 0 ) = I ) |
26 |
20 23 25
|
3eqtr3d |
|- ( ph -> ( ( C ` <" I J K "> ) ` K ) = I ) |