Metamath Proof Explorer


Theorem cyc3fv3

Description: Function value of a 3-cycle at the third point. (Contributed by Thierry Arnoux, 19-Sep-2023)

Ref Expression
Hypotheses cycpm3.c
|- C = ( toCyc ` D )
cycpm3.s
|- S = ( SymGrp ` D )
cycpm3.d
|- ( ph -> D e. V )
cycpm3.i
|- ( ph -> I e. D )
cycpm3.j
|- ( ph -> J e. D )
cycpm3.k
|- ( ph -> K e. D )
cycpm3.1
|- ( ph -> I =/= J )
cycpm3.2
|- ( ph -> J =/= K )
cycpm3.3
|- ( ph -> K =/= I )
Assertion cyc3fv3
|- ( ph -> ( ( C ` <" I J K "> ) ` K ) = I )

Proof

Step Hyp Ref Expression
1 cycpm3.c
 |-  C = ( toCyc ` D )
2 cycpm3.s
 |-  S = ( SymGrp ` D )
3 cycpm3.d
 |-  ( ph -> D e. V )
4 cycpm3.i
 |-  ( ph -> I e. D )
5 cycpm3.j
 |-  ( ph -> J e. D )
6 cycpm3.k
 |-  ( ph -> K e. D )
7 cycpm3.1
 |-  ( ph -> I =/= J )
8 cycpm3.2
 |-  ( ph -> J =/= K )
9 cycpm3.3
 |-  ( ph -> K =/= I )
10 4 5 6 s3cld
 |-  ( ph -> <" I J K "> e. Word D )
11 4 5 6 7 8 9 s3f1
 |-  ( ph -> <" I J K "> : dom <" I J K "> -1-1-> D )
12 3pos
 |-  0 < 3
13 s3len
 |-  ( # ` <" I J K "> ) = 3
14 12 13 breqtrri
 |-  0 < ( # ` <" I J K "> )
15 14 a1i
 |-  ( ph -> 0 < ( # ` <" I J K "> ) )
16 13 oveq1i
 |-  ( ( # ` <" I J K "> ) - 1 ) = ( 3 - 1 )
17 3m1e2
 |-  ( 3 - 1 ) = 2
18 16 17 eqtr2i
 |-  2 = ( ( # ` <" I J K "> ) - 1 )
19 18 a1i
 |-  ( ph -> 2 = ( ( # ` <" I J K "> ) - 1 ) )
20 1 3 10 11 15 19 cycpmfv2
 |-  ( ph -> ( ( C ` <" I J K "> ) ` ( <" I J K "> ` 2 ) ) = ( <" I J K "> ` 0 ) )
21 s3fv2
 |-  ( K e. D -> ( <" I J K "> ` 2 ) = K )
22 6 21 syl
 |-  ( ph -> ( <" I J K "> ` 2 ) = K )
23 22 fveq2d
 |-  ( ph -> ( ( C ` <" I J K "> ) ` ( <" I J K "> ` 2 ) ) = ( ( C ` <" I J K "> ) ` K ) )
24 s3fv0
 |-  ( I e. D -> ( <" I J K "> ` 0 ) = I )
25 4 24 syl
 |-  ( ph -> ( <" I J K "> ` 0 ) = I )
26 20 23 25 3eqtr3d
 |-  ( ph -> ( ( C ` <" I J K "> ) ` K ) = I )