| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycpm3.c |  |-  C = ( toCyc ` D ) | 
						
							| 2 |  | cycpm3.s |  |-  S = ( SymGrp ` D ) | 
						
							| 3 |  | cycpm3.d |  |-  ( ph -> D e. V ) | 
						
							| 4 |  | cycpm3.i |  |-  ( ph -> I e. D ) | 
						
							| 5 |  | cycpm3.j |  |-  ( ph -> J e. D ) | 
						
							| 6 |  | cycpm3.k |  |-  ( ph -> K e. D ) | 
						
							| 7 |  | cycpm3.1 |  |-  ( ph -> I =/= J ) | 
						
							| 8 |  | cycpm3.2 |  |-  ( ph -> J =/= K ) | 
						
							| 9 |  | cycpm3.3 |  |-  ( ph -> K =/= I ) | 
						
							| 10 | 4 5 6 | s3cld |  |-  ( ph -> <" I J K "> e. Word D ) | 
						
							| 11 | 4 5 6 7 8 9 | s3f1 |  |-  ( ph -> <" I J K "> : dom <" I J K "> -1-1-> D ) | 
						
							| 12 |  | 3pos |  |-  0 < 3 | 
						
							| 13 |  | s3len |  |-  ( # ` <" I J K "> ) = 3 | 
						
							| 14 | 12 13 | breqtrri |  |-  0 < ( # ` <" I J K "> ) | 
						
							| 15 | 14 | a1i |  |-  ( ph -> 0 < ( # ` <" I J K "> ) ) | 
						
							| 16 | 13 | oveq1i |  |-  ( ( # ` <" I J K "> ) - 1 ) = ( 3 - 1 ) | 
						
							| 17 |  | 3m1e2 |  |-  ( 3 - 1 ) = 2 | 
						
							| 18 | 16 17 | eqtr2i |  |-  2 = ( ( # ` <" I J K "> ) - 1 ) | 
						
							| 19 | 18 | a1i |  |-  ( ph -> 2 = ( ( # ` <" I J K "> ) - 1 ) ) | 
						
							| 20 | 1 3 10 11 15 19 | cycpmfv2 |  |-  ( ph -> ( ( C ` <" I J K "> ) ` ( <" I J K "> ` 2 ) ) = ( <" I J K "> ` 0 ) ) | 
						
							| 21 |  | s3fv2 |  |-  ( K e. D -> ( <" I J K "> ` 2 ) = K ) | 
						
							| 22 | 6 21 | syl |  |-  ( ph -> ( <" I J K "> ` 2 ) = K ) | 
						
							| 23 | 22 | fveq2d |  |-  ( ph -> ( ( C ` <" I J K "> ) ` ( <" I J K "> ` 2 ) ) = ( ( C ` <" I J K "> ) ` K ) ) | 
						
							| 24 |  | s3fv0 |  |-  ( I e. D -> ( <" I J K "> ` 0 ) = I ) | 
						
							| 25 | 4 24 | syl |  |-  ( ph -> ( <" I J K "> ` 0 ) = I ) | 
						
							| 26 | 20 23 25 | 3eqtr3d |  |-  ( ph -> ( ( C ` <" I J K "> ) ` K ) = I ) |