| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cycpm3.c |
|- C = ( toCyc ` D ) |
| 2 |
|
cycpm3.s |
|- S = ( SymGrp ` D ) |
| 3 |
|
cycpm3.d |
|- ( ph -> D e. V ) |
| 4 |
|
cycpm3.i |
|- ( ph -> I e. D ) |
| 5 |
|
cycpm3.j |
|- ( ph -> J e. D ) |
| 6 |
|
cycpm3.k |
|- ( ph -> K e. D ) |
| 7 |
|
cycpm3.1 |
|- ( ph -> I =/= J ) |
| 8 |
|
cycpm3.2 |
|- ( ph -> J =/= K ) |
| 9 |
|
cycpm3.3 |
|- ( ph -> K =/= I ) |
| 10 |
|
cyc3co2.t |
|- .x. = ( +g ` S ) |
| 11 |
1 2 3 4 5 6 7 8 9
|
cycpm3cl |
|- ( ph -> ( C ` <" I J K "> ) e. ( Base ` S ) ) |
| 12 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 13 |
2 12
|
symgbasf |
|- ( ( C ` <" I J K "> ) e. ( Base ` S ) -> ( C ` <" I J K "> ) : D --> D ) |
| 14 |
11 13
|
syl |
|- ( ph -> ( C ` <" I J K "> ) : D --> D ) |
| 15 |
14
|
ffnd |
|- ( ph -> ( C ` <" I J K "> ) Fn D ) |
| 16 |
2
|
symggrp |
|- ( D e. V -> S e. Grp ) |
| 17 |
3 16
|
syl |
|- ( ph -> S e. Grp ) |
| 18 |
9
|
necomd |
|- ( ph -> I =/= K ) |
| 19 |
1 3 4 6 18 2
|
cycpm2cl |
|- ( ph -> ( C ` <" I K "> ) e. ( Base ` S ) ) |
| 20 |
1 3 4 5 7 2
|
cycpm2cl |
|- ( ph -> ( C ` <" I J "> ) e. ( Base ` S ) ) |
| 21 |
12 10
|
grpcl |
|- ( ( S e. Grp /\ ( C ` <" I K "> ) e. ( Base ` S ) /\ ( C ` <" I J "> ) e. ( Base ` S ) ) -> ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) e. ( Base ` S ) ) |
| 22 |
17 19 20 21
|
syl3anc |
|- ( ph -> ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) e. ( Base ` S ) ) |
| 23 |
2 12
|
symgbasf |
|- ( ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) e. ( Base ` S ) -> ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) : D --> D ) |
| 24 |
22 23
|
syl |
|- ( ph -> ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) : D --> D ) |
| 25 |
24
|
ffnd |
|- ( ph -> ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) Fn D ) |
| 26 |
1 2 3 4 5 6 7 8 9
|
cyc3fv1 |
|- ( ph -> ( ( C ` <" I J K "> ) ` I ) = J ) |
| 27 |
26
|
adantr |
|- ( ( ph /\ x = I ) -> ( ( C ` <" I J K "> ) ` I ) = J ) |
| 28 |
|
simpr |
|- ( ( ph /\ x = I ) -> x = I ) |
| 29 |
28
|
fveq2d |
|- ( ( ph /\ x = I ) -> ( ( C ` <" I J K "> ) ` x ) = ( ( C ` <" I J K "> ) ` I ) ) |
| 30 |
2 12 10
|
symgov |
|- ( ( ( C ` <" I K "> ) e. ( Base ` S ) /\ ( C ` <" I J "> ) e. ( Base ` S ) ) -> ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) = ( ( C ` <" I K "> ) o. ( C ` <" I J "> ) ) ) |
| 31 |
19 20 30
|
syl2anc |
|- ( ph -> ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) = ( ( C ` <" I K "> ) o. ( C ` <" I J "> ) ) ) |
| 32 |
31
|
adantr |
|- ( ( ph /\ x = I ) -> ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) = ( ( C ` <" I K "> ) o. ( C ` <" I J "> ) ) ) |
| 33 |
32
|
fveq1d |
|- ( ( ph /\ x = I ) -> ( ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) ` x ) = ( ( ( C ` <" I K "> ) o. ( C ` <" I J "> ) ) ` x ) ) |
| 34 |
2 12
|
symgbasf |
|- ( ( C ` <" I J "> ) e. ( Base ` S ) -> ( C ` <" I J "> ) : D --> D ) |
| 35 |
20 34
|
syl |
|- ( ph -> ( C ` <" I J "> ) : D --> D ) |
| 36 |
35
|
ffund |
|- ( ph -> Fun ( C ` <" I J "> ) ) |
| 37 |
4
|
adantr |
|- ( ( ph /\ x = I ) -> I e. D ) |
| 38 |
34
|
fdmd |
|- ( ( C ` <" I J "> ) e. ( Base ` S ) -> dom ( C ` <" I J "> ) = D ) |
| 39 |
20 38
|
syl |
|- ( ph -> dom ( C ` <" I J "> ) = D ) |
| 40 |
39
|
adantr |
|- ( ( ph /\ x = I ) -> dom ( C ` <" I J "> ) = D ) |
| 41 |
37 28 40
|
3eltr4d |
|- ( ( ph /\ x = I ) -> x e. dom ( C ` <" I J "> ) ) |
| 42 |
|
fvco |
|- ( ( Fun ( C ` <" I J "> ) /\ x e. dom ( C ` <" I J "> ) ) -> ( ( ( C ` <" I K "> ) o. ( C ` <" I J "> ) ) ` x ) = ( ( C ` <" I K "> ) ` ( ( C ` <" I J "> ) ` x ) ) ) |
| 43 |
36 41 42
|
syl2an2r |
|- ( ( ph /\ x = I ) -> ( ( ( C ` <" I K "> ) o. ( C ` <" I J "> ) ) ` x ) = ( ( C ` <" I K "> ) ` ( ( C ` <" I J "> ) ` x ) ) ) |
| 44 |
28
|
fveq2d |
|- ( ( ph /\ x = I ) -> ( ( C ` <" I J "> ) ` x ) = ( ( C ` <" I J "> ) ` I ) ) |
| 45 |
1 3 4 5 7 2
|
cyc2fv1 |
|- ( ph -> ( ( C ` <" I J "> ) ` I ) = J ) |
| 46 |
45
|
adantr |
|- ( ( ph /\ x = I ) -> ( ( C ` <" I J "> ) ` I ) = J ) |
| 47 |
44 46
|
eqtrd |
|- ( ( ph /\ x = I ) -> ( ( C ` <" I J "> ) ` x ) = J ) |
| 48 |
47
|
fveq2d |
|- ( ( ph /\ x = I ) -> ( ( C ` <" I K "> ) ` ( ( C ` <" I J "> ) ` x ) ) = ( ( C ` <" I K "> ) ` J ) ) |
| 49 |
8
|
necomd |
|- ( ph -> K =/= J ) |
| 50 |
7
|
necomd |
|- ( ph -> J =/= I ) |
| 51 |
1 2 3 4 6 5 18 49 50
|
cyc2fvx |
|- ( ph -> ( ( C ` <" I K "> ) ` J ) = J ) |
| 52 |
51
|
adantr |
|- ( ( ph /\ x = I ) -> ( ( C ` <" I K "> ) ` J ) = J ) |
| 53 |
43 48 52
|
3eqtrd |
|- ( ( ph /\ x = I ) -> ( ( ( C ` <" I K "> ) o. ( C ` <" I J "> ) ) ` x ) = J ) |
| 54 |
33 53
|
eqtrd |
|- ( ( ph /\ x = I ) -> ( ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) ` x ) = J ) |
| 55 |
27 29 54
|
3eqtr4d |
|- ( ( ph /\ x = I ) -> ( ( C ` <" I J K "> ) ` x ) = ( ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) ` x ) ) |
| 56 |
55
|
adantlr |
|- ( ( ( ph /\ x e. { I , J , K } ) /\ x = I ) -> ( ( C ` <" I J K "> ) ` x ) = ( ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) ` x ) ) |
| 57 |
1 2 3 4 5 6 7 8 9
|
cyc3fv2 |
|- ( ph -> ( ( C ` <" I J K "> ) ` J ) = K ) |
| 58 |
57
|
adantr |
|- ( ( ph /\ x = J ) -> ( ( C ` <" I J K "> ) ` J ) = K ) |
| 59 |
|
simpr |
|- ( ( ph /\ x = J ) -> x = J ) |
| 60 |
59
|
fveq2d |
|- ( ( ph /\ x = J ) -> ( ( C ` <" I J K "> ) ` x ) = ( ( C ` <" I J K "> ) ` J ) ) |
| 61 |
31
|
adantr |
|- ( ( ph /\ x = J ) -> ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) = ( ( C ` <" I K "> ) o. ( C ` <" I J "> ) ) ) |
| 62 |
61
|
fveq1d |
|- ( ( ph /\ x = J ) -> ( ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) ` x ) = ( ( ( C ` <" I K "> ) o. ( C ` <" I J "> ) ) ` x ) ) |
| 63 |
5
|
adantr |
|- ( ( ph /\ x = J ) -> J e. D ) |
| 64 |
39
|
adantr |
|- ( ( ph /\ x = J ) -> dom ( C ` <" I J "> ) = D ) |
| 65 |
63 59 64
|
3eltr4d |
|- ( ( ph /\ x = J ) -> x e. dom ( C ` <" I J "> ) ) |
| 66 |
36 65 42
|
syl2an2r |
|- ( ( ph /\ x = J ) -> ( ( ( C ` <" I K "> ) o. ( C ` <" I J "> ) ) ` x ) = ( ( C ` <" I K "> ) ` ( ( C ` <" I J "> ) ` x ) ) ) |
| 67 |
59
|
fveq2d |
|- ( ( ph /\ x = J ) -> ( ( C ` <" I J "> ) ` x ) = ( ( C ` <" I J "> ) ` J ) ) |
| 68 |
1 3 4 5 7 2
|
cyc2fv2 |
|- ( ph -> ( ( C ` <" I J "> ) ` J ) = I ) |
| 69 |
68
|
adantr |
|- ( ( ph /\ x = J ) -> ( ( C ` <" I J "> ) ` J ) = I ) |
| 70 |
67 69
|
eqtrd |
|- ( ( ph /\ x = J ) -> ( ( C ` <" I J "> ) ` x ) = I ) |
| 71 |
70
|
fveq2d |
|- ( ( ph /\ x = J ) -> ( ( C ` <" I K "> ) ` ( ( C ` <" I J "> ) ` x ) ) = ( ( C ` <" I K "> ) ` I ) ) |
| 72 |
1 3 4 6 18 2
|
cyc2fv1 |
|- ( ph -> ( ( C ` <" I K "> ) ` I ) = K ) |
| 73 |
72
|
adantr |
|- ( ( ph /\ x = J ) -> ( ( C ` <" I K "> ) ` I ) = K ) |
| 74 |
66 71 73
|
3eqtrd |
|- ( ( ph /\ x = J ) -> ( ( ( C ` <" I K "> ) o. ( C ` <" I J "> ) ) ` x ) = K ) |
| 75 |
62 74
|
eqtrd |
|- ( ( ph /\ x = J ) -> ( ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) ` x ) = K ) |
| 76 |
58 60 75
|
3eqtr4d |
|- ( ( ph /\ x = J ) -> ( ( C ` <" I J K "> ) ` x ) = ( ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) ` x ) ) |
| 77 |
76
|
adantlr |
|- ( ( ( ph /\ x e. { I , J , K } ) /\ x = J ) -> ( ( C ` <" I J K "> ) ` x ) = ( ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) ` x ) ) |
| 78 |
1 2 3 4 5 6 7 8 9
|
cyc3fv3 |
|- ( ph -> ( ( C ` <" I J K "> ) ` K ) = I ) |
| 79 |
78
|
adantr |
|- ( ( ph /\ x = K ) -> ( ( C ` <" I J K "> ) ` K ) = I ) |
| 80 |
|
simpr |
|- ( ( ph /\ x = K ) -> x = K ) |
| 81 |
80
|
fveq2d |
|- ( ( ph /\ x = K ) -> ( ( C ` <" I J K "> ) ` x ) = ( ( C ` <" I J K "> ) ` K ) ) |
| 82 |
31
|
adantr |
|- ( ( ph /\ x = K ) -> ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) = ( ( C ` <" I K "> ) o. ( C ` <" I J "> ) ) ) |
| 83 |
82
|
fveq1d |
|- ( ( ph /\ x = K ) -> ( ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) ` x ) = ( ( ( C ` <" I K "> ) o. ( C ` <" I J "> ) ) ` x ) ) |
| 84 |
6
|
adantr |
|- ( ( ph /\ x = K ) -> K e. D ) |
| 85 |
39
|
adantr |
|- ( ( ph /\ x = K ) -> dom ( C ` <" I J "> ) = D ) |
| 86 |
84 80 85
|
3eltr4d |
|- ( ( ph /\ x = K ) -> x e. dom ( C ` <" I J "> ) ) |
| 87 |
36 86 42
|
syl2an2r |
|- ( ( ph /\ x = K ) -> ( ( ( C ` <" I K "> ) o. ( C ` <" I J "> ) ) ` x ) = ( ( C ` <" I K "> ) ` ( ( C ` <" I J "> ) ` x ) ) ) |
| 88 |
80
|
fveq2d |
|- ( ( ph /\ x = K ) -> ( ( C ` <" I J "> ) ` x ) = ( ( C ` <" I J "> ) ` K ) ) |
| 89 |
1 2 3 4 5 6 7 8 9
|
cyc2fvx |
|- ( ph -> ( ( C ` <" I J "> ) ` K ) = K ) |
| 90 |
89
|
adantr |
|- ( ( ph /\ x = K ) -> ( ( C ` <" I J "> ) ` K ) = K ) |
| 91 |
88 90
|
eqtrd |
|- ( ( ph /\ x = K ) -> ( ( C ` <" I J "> ) ` x ) = K ) |
| 92 |
91
|
fveq2d |
|- ( ( ph /\ x = K ) -> ( ( C ` <" I K "> ) ` ( ( C ` <" I J "> ) ` x ) ) = ( ( C ` <" I K "> ) ` K ) ) |
| 93 |
1 3 4 6 18 2
|
cyc2fv2 |
|- ( ph -> ( ( C ` <" I K "> ) ` K ) = I ) |
| 94 |
93
|
adantr |
|- ( ( ph /\ x = K ) -> ( ( C ` <" I K "> ) ` K ) = I ) |
| 95 |
87 92 94
|
3eqtrd |
|- ( ( ph /\ x = K ) -> ( ( ( C ` <" I K "> ) o. ( C ` <" I J "> ) ) ` x ) = I ) |
| 96 |
83 95
|
eqtrd |
|- ( ( ph /\ x = K ) -> ( ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) ` x ) = I ) |
| 97 |
79 81 96
|
3eqtr4d |
|- ( ( ph /\ x = K ) -> ( ( C ` <" I J K "> ) ` x ) = ( ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) ` x ) ) |
| 98 |
97
|
adantlr |
|- ( ( ( ph /\ x e. { I , J , K } ) /\ x = K ) -> ( ( C ` <" I J K "> ) ` x ) = ( ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) ` x ) ) |
| 99 |
|
eltpi |
|- ( x e. { I , J , K } -> ( x = I \/ x = J \/ x = K ) ) |
| 100 |
99
|
adantl |
|- ( ( ph /\ x e. { I , J , K } ) -> ( x = I \/ x = J \/ x = K ) ) |
| 101 |
56 77 98 100
|
mpjao3dan |
|- ( ( ph /\ x e. { I , J , K } ) -> ( ( C ` <" I J K "> ) ` x ) = ( ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) ` x ) ) |
| 102 |
101
|
adantlr |
|- ( ( ( ph /\ x e. D ) /\ x e. { I , J , K } ) -> ( ( C ` <" I J K "> ) ` x ) = ( ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) ` x ) ) |
| 103 |
35
|
adantr |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> ( C ` <" I J "> ) : D --> D ) |
| 104 |
103
|
ffund |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> Fun ( C ` <" I J "> ) ) |
| 105 |
|
simpr |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> x e. ( D \ { I , J , K } ) ) |
| 106 |
105
|
eldifad |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> x e. D ) |
| 107 |
39
|
adantr |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> dom ( C ` <" I J "> ) = D ) |
| 108 |
106 107
|
eleqtrrd |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> x e. dom ( C ` <" I J "> ) ) |
| 109 |
104 108 42
|
syl2anc |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> ( ( ( C ` <" I K "> ) o. ( C ` <" I J "> ) ) ` x ) = ( ( C ` <" I K "> ) ` ( ( C ` <" I J "> ) ` x ) ) ) |
| 110 |
3
|
adantr |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> D e. V ) |
| 111 |
4 5
|
s2cld |
|- ( ph -> <" I J "> e. Word D ) |
| 112 |
111
|
adantr |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> <" I J "> e. Word D ) |
| 113 |
4 5 7
|
s2f1 |
|- ( ph -> <" I J "> : dom <" I J "> -1-1-> D ) |
| 114 |
113
|
adantr |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> <" I J "> : dom <" I J "> -1-1-> D ) |
| 115 |
|
tpid1g |
|- ( I e. D -> I e. { I , J , K } ) |
| 116 |
4 115
|
syl |
|- ( ph -> I e. { I , J , K } ) |
| 117 |
|
tpid2g |
|- ( J e. D -> J e. { I , J , K } ) |
| 118 |
5 117
|
syl |
|- ( ph -> J e. { I , J , K } ) |
| 119 |
116 118
|
prssd |
|- ( ph -> { I , J } C_ { I , J , K } ) |
| 120 |
4 5
|
s2rn |
|- ( ph -> ran <" I J "> = { I , J } ) |
| 121 |
120
|
eqcomd |
|- ( ph -> { I , J } = ran <" I J "> ) |
| 122 |
4 5 6
|
s3rn |
|- ( ph -> ran <" I J K "> = { I , J , K } ) |
| 123 |
122
|
eqcomd |
|- ( ph -> { I , J , K } = ran <" I J K "> ) |
| 124 |
119 121 123
|
3sstr3d |
|- ( ph -> ran <" I J "> C_ ran <" I J K "> ) |
| 125 |
124
|
adantr |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> ran <" I J "> C_ ran <" I J K "> ) |
| 126 |
105
|
eldifbd |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> -. x e. { I , J , K } ) |
| 127 |
122
|
adantr |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> ran <" I J K "> = { I , J , K } ) |
| 128 |
126 127
|
neleqtrrd |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> -. x e. ran <" I J K "> ) |
| 129 |
125 128
|
ssneldd |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> -. x e. ran <" I J "> ) |
| 130 |
1 110 112 114 106 129
|
cycpmfv3 |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> ( ( C ` <" I J "> ) ` x ) = x ) |
| 131 |
130
|
fveq2d |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> ( ( C ` <" I K "> ) ` ( ( C ` <" I J "> ) ` x ) ) = ( ( C ` <" I K "> ) ` x ) ) |
| 132 |
4 6
|
s2cld |
|- ( ph -> <" I K "> e. Word D ) |
| 133 |
132
|
adantr |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> <" I K "> e. Word D ) |
| 134 |
4 6 18
|
s2f1 |
|- ( ph -> <" I K "> : dom <" I K "> -1-1-> D ) |
| 135 |
134
|
adantr |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> <" I K "> : dom <" I K "> -1-1-> D ) |
| 136 |
|
tpid3g |
|- ( K e. D -> K e. { I , J , K } ) |
| 137 |
6 136
|
syl |
|- ( ph -> K e. { I , J , K } ) |
| 138 |
116 137
|
prssd |
|- ( ph -> { I , K } C_ { I , J , K } ) |
| 139 |
138
|
adantr |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> { I , K } C_ { I , J , K } ) |
| 140 |
4 6
|
s2rn |
|- ( ph -> ran <" I K "> = { I , K } ) |
| 141 |
140
|
eqcomd |
|- ( ph -> { I , K } = ran <" I K "> ) |
| 142 |
141
|
adantr |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> { I , K } = ran <" I K "> ) |
| 143 |
123
|
adantr |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> { I , J , K } = ran <" I J K "> ) |
| 144 |
139 142 143
|
3sstr3d |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> ran <" I K "> C_ ran <" I J K "> ) |
| 145 |
144 128
|
ssneldd |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> -. x e. ran <" I K "> ) |
| 146 |
1 110 133 135 106 145
|
cycpmfv3 |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> ( ( C ` <" I K "> ) ` x ) = x ) |
| 147 |
109 131 146
|
3eqtrd |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> ( ( ( C ` <" I K "> ) o. ( C ` <" I J "> ) ) ` x ) = x ) |
| 148 |
31
|
adantr |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) = ( ( C ` <" I K "> ) o. ( C ` <" I J "> ) ) ) |
| 149 |
148
|
fveq1d |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> ( ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) ` x ) = ( ( ( C ` <" I K "> ) o. ( C ` <" I J "> ) ) ` x ) ) |
| 150 |
4 5 6
|
s3cld |
|- ( ph -> <" I J K "> e. Word D ) |
| 151 |
150
|
adantr |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> <" I J K "> e. Word D ) |
| 152 |
4 5 6 7 8 9
|
s3f1 |
|- ( ph -> <" I J K "> : dom <" I J K "> -1-1-> D ) |
| 153 |
152
|
adantr |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> <" I J K "> : dom <" I J K "> -1-1-> D ) |
| 154 |
1 110 151 153 106 128
|
cycpmfv3 |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> ( ( C ` <" I J K "> ) ` x ) = x ) |
| 155 |
147 149 154
|
3eqtr4rd |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> ( ( C ` <" I J K "> ) ` x ) = ( ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) ` x ) ) |
| 156 |
155
|
adantlr |
|- ( ( ( ph /\ x e. D ) /\ x e. ( D \ { I , J , K } ) ) -> ( ( C ` <" I J K "> ) ` x ) = ( ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) ` x ) ) |
| 157 |
|
tpssi |
|- ( ( I e. D /\ J e. D /\ K e. D ) -> { I , J , K } C_ D ) |
| 158 |
4 5 6 157
|
syl3anc |
|- ( ph -> { I , J , K } C_ D ) |
| 159 |
|
undif |
|- ( { I , J , K } C_ D <-> ( { I , J , K } u. ( D \ { I , J , K } ) ) = D ) |
| 160 |
158 159
|
sylib |
|- ( ph -> ( { I , J , K } u. ( D \ { I , J , K } ) ) = D ) |
| 161 |
160
|
eleq2d |
|- ( ph -> ( x e. ( { I , J , K } u. ( D \ { I , J , K } ) ) <-> x e. D ) ) |
| 162 |
161
|
biimpar |
|- ( ( ph /\ x e. D ) -> x e. ( { I , J , K } u. ( D \ { I , J , K } ) ) ) |
| 163 |
|
elun |
|- ( x e. ( { I , J , K } u. ( D \ { I , J , K } ) ) <-> ( x e. { I , J , K } \/ x e. ( D \ { I , J , K } ) ) ) |
| 164 |
162 163
|
sylib |
|- ( ( ph /\ x e. D ) -> ( x e. { I , J , K } \/ x e. ( D \ { I , J , K } ) ) ) |
| 165 |
102 156 164
|
mpjaodan |
|- ( ( ph /\ x e. D ) -> ( ( C ` <" I J K "> ) ` x ) = ( ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) ` x ) ) |
| 166 |
15 25 165
|
eqfnfvd |
|- ( ph -> ( C ` <" I J K "> ) = ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) ) |