Step |
Hyp |
Ref |
Expression |
1 |
|
cycpm3.c |
|- C = ( toCyc ` D ) |
2 |
|
cycpm3.s |
|- S = ( SymGrp ` D ) |
3 |
|
cycpm3.d |
|- ( ph -> D e. V ) |
4 |
|
cycpm3.i |
|- ( ph -> I e. D ) |
5 |
|
cycpm3.j |
|- ( ph -> J e. D ) |
6 |
|
cycpm3.k |
|- ( ph -> K e. D ) |
7 |
|
cycpm3.1 |
|- ( ph -> I =/= J ) |
8 |
|
cycpm3.2 |
|- ( ph -> J =/= K ) |
9 |
|
cycpm3.3 |
|- ( ph -> K =/= I ) |
10 |
|
cyc3co2.t |
|- .x. = ( +g ` S ) |
11 |
1 2 3 4 5 6 7 8 9
|
cycpm3cl |
|- ( ph -> ( C ` <" I J K "> ) e. ( Base ` S ) ) |
12 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
13 |
2 12
|
symgbasf |
|- ( ( C ` <" I J K "> ) e. ( Base ` S ) -> ( C ` <" I J K "> ) : D --> D ) |
14 |
11 13
|
syl |
|- ( ph -> ( C ` <" I J K "> ) : D --> D ) |
15 |
14
|
ffnd |
|- ( ph -> ( C ` <" I J K "> ) Fn D ) |
16 |
2
|
symggrp |
|- ( D e. V -> S e. Grp ) |
17 |
3 16
|
syl |
|- ( ph -> S e. Grp ) |
18 |
9
|
necomd |
|- ( ph -> I =/= K ) |
19 |
1 3 4 6 18 2
|
cycpm2cl |
|- ( ph -> ( C ` <" I K "> ) e. ( Base ` S ) ) |
20 |
1 3 4 5 7 2
|
cycpm2cl |
|- ( ph -> ( C ` <" I J "> ) e. ( Base ` S ) ) |
21 |
12 10
|
grpcl |
|- ( ( S e. Grp /\ ( C ` <" I K "> ) e. ( Base ` S ) /\ ( C ` <" I J "> ) e. ( Base ` S ) ) -> ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) e. ( Base ` S ) ) |
22 |
17 19 20 21
|
syl3anc |
|- ( ph -> ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) e. ( Base ` S ) ) |
23 |
2 12
|
symgbasf |
|- ( ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) e. ( Base ` S ) -> ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) : D --> D ) |
24 |
22 23
|
syl |
|- ( ph -> ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) : D --> D ) |
25 |
24
|
ffnd |
|- ( ph -> ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) Fn D ) |
26 |
1 2 3 4 5 6 7 8 9
|
cyc3fv1 |
|- ( ph -> ( ( C ` <" I J K "> ) ` I ) = J ) |
27 |
26
|
adantr |
|- ( ( ph /\ x = I ) -> ( ( C ` <" I J K "> ) ` I ) = J ) |
28 |
|
simpr |
|- ( ( ph /\ x = I ) -> x = I ) |
29 |
28
|
fveq2d |
|- ( ( ph /\ x = I ) -> ( ( C ` <" I J K "> ) ` x ) = ( ( C ` <" I J K "> ) ` I ) ) |
30 |
2 12 10
|
symgov |
|- ( ( ( C ` <" I K "> ) e. ( Base ` S ) /\ ( C ` <" I J "> ) e. ( Base ` S ) ) -> ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) = ( ( C ` <" I K "> ) o. ( C ` <" I J "> ) ) ) |
31 |
19 20 30
|
syl2anc |
|- ( ph -> ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) = ( ( C ` <" I K "> ) o. ( C ` <" I J "> ) ) ) |
32 |
31
|
adantr |
|- ( ( ph /\ x = I ) -> ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) = ( ( C ` <" I K "> ) o. ( C ` <" I J "> ) ) ) |
33 |
32
|
fveq1d |
|- ( ( ph /\ x = I ) -> ( ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) ` x ) = ( ( ( C ` <" I K "> ) o. ( C ` <" I J "> ) ) ` x ) ) |
34 |
2 12
|
symgbasf |
|- ( ( C ` <" I J "> ) e. ( Base ` S ) -> ( C ` <" I J "> ) : D --> D ) |
35 |
20 34
|
syl |
|- ( ph -> ( C ` <" I J "> ) : D --> D ) |
36 |
35
|
ffund |
|- ( ph -> Fun ( C ` <" I J "> ) ) |
37 |
4
|
adantr |
|- ( ( ph /\ x = I ) -> I e. D ) |
38 |
34
|
fdmd |
|- ( ( C ` <" I J "> ) e. ( Base ` S ) -> dom ( C ` <" I J "> ) = D ) |
39 |
20 38
|
syl |
|- ( ph -> dom ( C ` <" I J "> ) = D ) |
40 |
39
|
adantr |
|- ( ( ph /\ x = I ) -> dom ( C ` <" I J "> ) = D ) |
41 |
37 28 40
|
3eltr4d |
|- ( ( ph /\ x = I ) -> x e. dom ( C ` <" I J "> ) ) |
42 |
|
fvco |
|- ( ( Fun ( C ` <" I J "> ) /\ x e. dom ( C ` <" I J "> ) ) -> ( ( ( C ` <" I K "> ) o. ( C ` <" I J "> ) ) ` x ) = ( ( C ` <" I K "> ) ` ( ( C ` <" I J "> ) ` x ) ) ) |
43 |
36 41 42
|
syl2an2r |
|- ( ( ph /\ x = I ) -> ( ( ( C ` <" I K "> ) o. ( C ` <" I J "> ) ) ` x ) = ( ( C ` <" I K "> ) ` ( ( C ` <" I J "> ) ` x ) ) ) |
44 |
28
|
fveq2d |
|- ( ( ph /\ x = I ) -> ( ( C ` <" I J "> ) ` x ) = ( ( C ` <" I J "> ) ` I ) ) |
45 |
1 3 4 5 7 2
|
cyc2fv1 |
|- ( ph -> ( ( C ` <" I J "> ) ` I ) = J ) |
46 |
45
|
adantr |
|- ( ( ph /\ x = I ) -> ( ( C ` <" I J "> ) ` I ) = J ) |
47 |
44 46
|
eqtrd |
|- ( ( ph /\ x = I ) -> ( ( C ` <" I J "> ) ` x ) = J ) |
48 |
47
|
fveq2d |
|- ( ( ph /\ x = I ) -> ( ( C ` <" I K "> ) ` ( ( C ` <" I J "> ) ` x ) ) = ( ( C ` <" I K "> ) ` J ) ) |
49 |
8
|
necomd |
|- ( ph -> K =/= J ) |
50 |
7
|
necomd |
|- ( ph -> J =/= I ) |
51 |
1 2 3 4 6 5 18 49 50
|
cyc2fvx |
|- ( ph -> ( ( C ` <" I K "> ) ` J ) = J ) |
52 |
51
|
adantr |
|- ( ( ph /\ x = I ) -> ( ( C ` <" I K "> ) ` J ) = J ) |
53 |
43 48 52
|
3eqtrd |
|- ( ( ph /\ x = I ) -> ( ( ( C ` <" I K "> ) o. ( C ` <" I J "> ) ) ` x ) = J ) |
54 |
33 53
|
eqtrd |
|- ( ( ph /\ x = I ) -> ( ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) ` x ) = J ) |
55 |
27 29 54
|
3eqtr4d |
|- ( ( ph /\ x = I ) -> ( ( C ` <" I J K "> ) ` x ) = ( ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) ` x ) ) |
56 |
55
|
adantlr |
|- ( ( ( ph /\ x e. { I , J , K } ) /\ x = I ) -> ( ( C ` <" I J K "> ) ` x ) = ( ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) ` x ) ) |
57 |
1 2 3 4 5 6 7 8 9
|
cyc3fv2 |
|- ( ph -> ( ( C ` <" I J K "> ) ` J ) = K ) |
58 |
57
|
adantr |
|- ( ( ph /\ x = J ) -> ( ( C ` <" I J K "> ) ` J ) = K ) |
59 |
|
simpr |
|- ( ( ph /\ x = J ) -> x = J ) |
60 |
59
|
fveq2d |
|- ( ( ph /\ x = J ) -> ( ( C ` <" I J K "> ) ` x ) = ( ( C ` <" I J K "> ) ` J ) ) |
61 |
31
|
adantr |
|- ( ( ph /\ x = J ) -> ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) = ( ( C ` <" I K "> ) o. ( C ` <" I J "> ) ) ) |
62 |
61
|
fveq1d |
|- ( ( ph /\ x = J ) -> ( ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) ` x ) = ( ( ( C ` <" I K "> ) o. ( C ` <" I J "> ) ) ` x ) ) |
63 |
5
|
adantr |
|- ( ( ph /\ x = J ) -> J e. D ) |
64 |
39
|
adantr |
|- ( ( ph /\ x = J ) -> dom ( C ` <" I J "> ) = D ) |
65 |
63 59 64
|
3eltr4d |
|- ( ( ph /\ x = J ) -> x e. dom ( C ` <" I J "> ) ) |
66 |
36 65 42
|
syl2an2r |
|- ( ( ph /\ x = J ) -> ( ( ( C ` <" I K "> ) o. ( C ` <" I J "> ) ) ` x ) = ( ( C ` <" I K "> ) ` ( ( C ` <" I J "> ) ` x ) ) ) |
67 |
59
|
fveq2d |
|- ( ( ph /\ x = J ) -> ( ( C ` <" I J "> ) ` x ) = ( ( C ` <" I J "> ) ` J ) ) |
68 |
1 3 4 5 7 2
|
cyc2fv2 |
|- ( ph -> ( ( C ` <" I J "> ) ` J ) = I ) |
69 |
68
|
adantr |
|- ( ( ph /\ x = J ) -> ( ( C ` <" I J "> ) ` J ) = I ) |
70 |
67 69
|
eqtrd |
|- ( ( ph /\ x = J ) -> ( ( C ` <" I J "> ) ` x ) = I ) |
71 |
70
|
fveq2d |
|- ( ( ph /\ x = J ) -> ( ( C ` <" I K "> ) ` ( ( C ` <" I J "> ) ` x ) ) = ( ( C ` <" I K "> ) ` I ) ) |
72 |
1 3 4 6 18 2
|
cyc2fv1 |
|- ( ph -> ( ( C ` <" I K "> ) ` I ) = K ) |
73 |
72
|
adantr |
|- ( ( ph /\ x = J ) -> ( ( C ` <" I K "> ) ` I ) = K ) |
74 |
66 71 73
|
3eqtrd |
|- ( ( ph /\ x = J ) -> ( ( ( C ` <" I K "> ) o. ( C ` <" I J "> ) ) ` x ) = K ) |
75 |
62 74
|
eqtrd |
|- ( ( ph /\ x = J ) -> ( ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) ` x ) = K ) |
76 |
58 60 75
|
3eqtr4d |
|- ( ( ph /\ x = J ) -> ( ( C ` <" I J K "> ) ` x ) = ( ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) ` x ) ) |
77 |
76
|
adantlr |
|- ( ( ( ph /\ x e. { I , J , K } ) /\ x = J ) -> ( ( C ` <" I J K "> ) ` x ) = ( ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) ` x ) ) |
78 |
1 2 3 4 5 6 7 8 9
|
cyc3fv3 |
|- ( ph -> ( ( C ` <" I J K "> ) ` K ) = I ) |
79 |
78
|
adantr |
|- ( ( ph /\ x = K ) -> ( ( C ` <" I J K "> ) ` K ) = I ) |
80 |
|
simpr |
|- ( ( ph /\ x = K ) -> x = K ) |
81 |
80
|
fveq2d |
|- ( ( ph /\ x = K ) -> ( ( C ` <" I J K "> ) ` x ) = ( ( C ` <" I J K "> ) ` K ) ) |
82 |
31
|
adantr |
|- ( ( ph /\ x = K ) -> ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) = ( ( C ` <" I K "> ) o. ( C ` <" I J "> ) ) ) |
83 |
82
|
fveq1d |
|- ( ( ph /\ x = K ) -> ( ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) ` x ) = ( ( ( C ` <" I K "> ) o. ( C ` <" I J "> ) ) ` x ) ) |
84 |
6
|
adantr |
|- ( ( ph /\ x = K ) -> K e. D ) |
85 |
39
|
adantr |
|- ( ( ph /\ x = K ) -> dom ( C ` <" I J "> ) = D ) |
86 |
84 80 85
|
3eltr4d |
|- ( ( ph /\ x = K ) -> x e. dom ( C ` <" I J "> ) ) |
87 |
36 86 42
|
syl2an2r |
|- ( ( ph /\ x = K ) -> ( ( ( C ` <" I K "> ) o. ( C ` <" I J "> ) ) ` x ) = ( ( C ` <" I K "> ) ` ( ( C ` <" I J "> ) ` x ) ) ) |
88 |
80
|
fveq2d |
|- ( ( ph /\ x = K ) -> ( ( C ` <" I J "> ) ` x ) = ( ( C ` <" I J "> ) ` K ) ) |
89 |
1 2 3 4 5 6 7 8 9
|
cyc2fvx |
|- ( ph -> ( ( C ` <" I J "> ) ` K ) = K ) |
90 |
89
|
adantr |
|- ( ( ph /\ x = K ) -> ( ( C ` <" I J "> ) ` K ) = K ) |
91 |
88 90
|
eqtrd |
|- ( ( ph /\ x = K ) -> ( ( C ` <" I J "> ) ` x ) = K ) |
92 |
91
|
fveq2d |
|- ( ( ph /\ x = K ) -> ( ( C ` <" I K "> ) ` ( ( C ` <" I J "> ) ` x ) ) = ( ( C ` <" I K "> ) ` K ) ) |
93 |
1 3 4 6 18 2
|
cyc2fv2 |
|- ( ph -> ( ( C ` <" I K "> ) ` K ) = I ) |
94 |
93
|
adantr |
|- ( ( ph /\ x = K ) -> ( ( C ` <" I K "> ) ` K ) = I ) |
95 |
87 92 94
|
3eqtrd |
|- ( ( ph /\ x = K ) -> ( ( ( C ` <" I K "> ) o. ( C ` <" I J "> ) ) ` x ) = I ) |
96 |
83 95
|
eqtrd |
|- ( ( ph /\ x = K ) -> ( ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) ` x ) = I ) |
97 |
79 81 96
|
3eqtr4d |
|- ( ( ph /\ x = K ) -> ( ( C ` <" I J K "> ) ` x ) = ( ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) ` x ) ) |
98 |
97
|
adantlr |
|- ( ( ( ph /\ x e. { I , J , K } ) /\ x = K ) -> ( ( C ` <" I J K "> ) ` x ) = ( ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) ` x ) ) |
99 |
|
eltpi |
|- ( x e. { I , J , K } -> ( x = I \/ x = J \/ x = K ) ) |
100 |
99
|
adantl |
|- ( ( ph /\ x e. { I , J , K } ) -> ( x = I \/ x = J \/ x = K ) ) |
101 |
56 77 98 100
|
mpjao3dan |
|- ( ( ph /\ x e. { I , J , K } ) -> ( ( C ` <" I J K "> ) ` x ) = ( ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) ` x ) ) |
102 |
101
|
adantlr |
|- ( ( ( ph /\ x e. D ) /\ x e. { I , J , K } ) -> ( ( C ` <" I J K "> ) ` x ) = ( ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) ` x ) ) |
103 |
35
|
adantr |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> ( C ` <" I J "> ) : D --> D ) |
104 |
103
|
ffund |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> Fun ( C ` <" I J "> ) ) |
105 |
|
simpr |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> x e. ( D \ { I , J , K } ) ) |
106 |
105
|
eldifad |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> x e. D ) |
107 |
39
|
adantr |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> dom ( C ` <" I J "> ) = D ) |
108 |
106 107
|
eleqtrrd |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> x e. dom ( C ` <" I J "> ) ) |
109 |
104 108 42
|
syl2anc |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> ( ( ( C ` <" I K "> ) o. ( C ` <" I J "> ) ) ` x ) = ( ( C ` <" I K "> ) ` ( ( C ` <" I J "> ) ` x ) ) ) |
110 |
3
|
adantr |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> D e. V ) |
111 |
4 5
|
s2cld |
|- ( ph -> <" I J "> e. Word D ) |
112 |
111
|
adantr |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> <" I J "> e. Word D ) |
113 |
4 5 7
|
s2f1 |
|- ( ph -> <" I J "> : dom <" I J "> -1-1-> D ) |
114 |
113
|
adantr |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> <" I J "> : dom <" I J "> -1-1-> D ) |
115 |
|
tpid1g |
|- ( I e. D -> I e. { I , J , K } ) |
116 |
4 115
|
syl |
|- ( ph -> I e. { I , J , K } ) |
117 |
|
tpid2g |
|- ( J e. D -> J e. { I , J , K } ) |
118 |
5 117
|
syl |
|- ( ph -> J e. { I , J , K } ) |
119 |
116 118
|
prssd |
|- ( ph -> { I , J } C_ { I , J , K } ) |
120 |
4 5
|
s2rn |
|- ( ph -> ran <" I J "> = { I , J } ) |
121 |
120
|
eqcomd |
|- ( ph -> { I , J } = ran <" I J "> ) |
122 |
4 5 6
|
s3rn |
|- ( ph -> ran <" I J K "> = { I , J , K } ) |
123 |
122
|
eqcomd |
|- ( ph -> { I , J , K } = ran <" I J K "> ) |
124 |
119 121 123
|
3sstr3d |
|- ( ph -> ran <" I J "> C_ ran <" I J K "> ) |
125 |
124
|
adantr |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> ran <" I J "> C_ ran <" I J K "> ) |
126 |
105
|
eldifbd |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> -. x e. { I , J , K } ) |
127 |
122
|
adantr |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> ran <" I J K "> = { I , J , K } ) |
128 |
126 127
|
neleqtrrd |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> -. x e. ran <" I J K "> ) |
129 |
125 128
|
ssneldd |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> -. x e. ran <" I J "> ) |
130 |
1 110 112 114 106 129
|
cycpmfv3 |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> ( ( C ` <" I J "> ) ` x ) = x ) |
131 |
130
|
fveq2d |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> ( ( C ` <" I K "> ) ` ( ( C ` <" I J "> ) ` x ) ) = ( ( C ` <" I K "> ) ` x ) ) |
132 |
4 6
|
s2cld |
|- ( ph -> <" I K "> e. Word D ) |
133 |
132
|
adantr |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> <" I K "> e. Word D ) |
134 |
4 6 18
|
s2f1 |
|- ( ph -> <" I K "> : dom <" I K "> -1-1-> D ) |
135 |
134
|
adantr |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> <" I K "> : dom <" I K "> -1-1-> D ) |
136 |
|
tpid3g |
|- ( K e. D -> K e. { I , J , K } ) |
137 |
6 136
|
syl |
|- ( ph -> K e. { I , J , K } ) |
138 |
116 137
|
prssd |
|- ( ph -> { I , K } C_ { I , J , K } ) |
139 |
138
|
adantr |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> { I , K } C_ { I , J , K } ) |
140 |
4 6
|
s2rn |
|- ( ph -> ran <" I K "> = { I , K } ) |
141 |
140
|
eqcomd |
|- ( ph -> { I , K } = ran <" I K "> ) |
142 |
141
|
adantr |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> { I , K } = ran <" I K "> ) |
143 |
123
|
adantr |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> { I , J , K } = ran <" I J K "> ) |
144 |
139 142 143
|
3sstr3d |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> ran <" I K "> C_ ran <" I J K "> ) |
145 |
144 128
|
ssneldd |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> -. x e. ran <" I K "> ) |
146 |
1 110 133 135 106 145
|
cycpmfv3 |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> ( ( C ` <" I K "> ) ` x ) = x ) |
147 |
109 131 146
|
3eqtrd |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> ( ( ( C ` <" I K "> ) o. ( C ` <" I J "> ) ) ` x ) = x ) |
148 |
31
|
adantr |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) = ( ( C ` <" I K "> ) o. ( C ` <" I J "> ) ) ) |
149 |
148
|
fveq1d |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> ( ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) ` x ) = ( ( ( C ` <" I K "> ) o. ( C ` <" I J "> ) ) ` x ) ) |
150 |
4 5 6
|
s3cld |
|- ( ph -> <" I J K "> e. Word D ) |
151 |
150
|
adantr |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> <" I J K "> e. Word D ) |
152 |
4 5 6 7 8 9
|
s3f1 |
|- ( ph -> <" I J K "> : dom <" I J K "> -1-1-> D ) |
153 |
152
|
adantr |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> <" I J K "> : dom <" I J K "> -1-1-> D ) |
154 |
1 110 151 153 106 128
|
cycpmfv3 |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> ( ( C ` <" I J K "> ) ` x ) = x ) |
155 |
147 149 154
|
3eqtr4rd |
|- ( ( ph /\ x e. ( D \ { I , J , K } ) ) -> ( ( C ` <" I J K "> ) ` x ) = ( ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) ` x ) ) |
156 |
155
|
adantlr |
|- ( ( ( ph /\ x e. D ) /\ x e. ( D \ { I , J , K } ) ) -> ( ( C ` <" I J K "> ) ` x ) = ( ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) ` x ) ) |
157 |
|
tpssi |
|- ( ( I e. D /\ J e. D /\ K e. D ) -> { I , J , K } C_ D ) |
158 |
4 5 6 157
|
syl3anc |
|- ( ph -> { I , J , K } C_ D ) |
159 |
|
undif |
|- ( { I , J , K } C_ D <-> ( { I , J , K } u. ( D \ { I , J , K } ) ) = D ) |
160 |
158 159
|
sylib |
|- ( ph -> ( { I , J , K } u. ( D \ { I , J , K } ) ) = D ) |
161 |
160
|
eleq2d |
|- ( ph -> ( x e. ( { I , J , K } u. ( D \ { I , J , K } ) ) <-> x e. D ) ) |
162 |
161
|
biimpar |
|- ( ( ph /\ x e. D ) -> x e. ( { I , J , K } u. ( D \ { I , J , K } ) ) ) |
163 |
|
elun |
|- ( x e. ( { I , J , K } u. ( D \ { I , J , K } ) ) <-> ( x e. { I , J , K } \/ x e. ( D \ { I , J , K } ) ) ) |
164 |
162 163
|
sylib |
|- ( ( ph /\ x e. D ) -> ( x e. { I , J , K } \/ x e. ( D \ { I , J , K } ) ) ) |
165 |
102 156 164
|
mpjaodan |
|- ( ( ph /\ x e. D ) -> ( ( C ` <" I J K "> ) ` x ) = ( ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) ` x ) ) |
166 |
15 25 165
|
eqfnfvd |
|- ( ph -> ( C ` <" I J K "> ) = ( ( C ` <" I K "> ) .x. ( C ` <" I J "> ) ) ) |