Step |
Hyp |
Ref |
Expression |
1 |
|
s2rn.i |
|- ( ph -> I e. D ) |
2 |
|
s2rn.j |
|- ( ph -> J e. D ) |
3 |
|
s3rn.k |
|- ( ph -> K e. D ) |
4 |
|
df-s3 |
|- <" I J K "> = ( <" I J "> ++ <" K "> ) |
5 |
4
|
a1i |
|- ( ph -> <" I J K "> = ( <" I J "> ++ <" K "> ) ) |
6 |
5
|
rneqd |
|- ( ph -> ran <" I J K "> = ran ( <" I J "> ++ <" K "> ) ) |
7 |
|
s2cli |
|- <" I J "> e. Word _V |
8 |
|
s1cli |
|- <" K "> e. Word _V |
9 |
7 8
|
pm3.2i |
|- ( <" I J "> e. Word _V /\ <" K "> e. Word _V ) |
10 |
|
ccatrn |
|- ( ( <" I J "> e. Word _V /\ <" K "> e. Word _V ) -> ran ( <" I J "> ++ <" K "> ) = ( ran <" I J "> u. ran <" K "> ) ) |
11 |
9 10
|
mp1i |
|- ( ph -> ran ( <" I J "> ++ <" K "> ) = ( ran <" I J "> u. ran <" K "> ) ) |
12 |
1 2
|
s2rn |
|- ( ph -> ran <" I J "> = { I , J } ) |
13 |
|
s1rn |
|- ( K e. D -> ran <" K "> = { K } ) |
14 |
3 13
|
syl |
|- ( ph -> ran <" K "> = { K } ) |
15 |
12 14
|
uneq12d |
|- ( ph -> ( ran <" I J "> u. ran <" K "> ) = ( { I , J } u. { K } ) ) |
16 |
|
df-tp |
|- { I , J , K } = ( { I , J } u. { K } ) |
17 |
15 16
|
eqtr4di |
|- ( ph -> ( ran <" I J "> u. ran <" K "> ) = { I , J , K } ) |
18 |
6 11 17
|
3eqtrd |
|- ( ph -> ran <" I J K "> = { I , J , K } ) |