Step |
Hyp |
Ref |
Expression |
1 |
|
cycpmconjvlem.f |
|- ( ph -> F : D -1-1-onto-> D ) |
2 |
|
cycpmconjvlem.b |
|- ( ph -> B C_ D ) |
3 |
|
f1ofun |
|- ( F : D -1-1-onto-> D -> Fun F ) |
4 |
1 3
|
syl |
|- ( ph -> Fun F ) |
5 |
|
funrel |
|- ( Fun F -> Rel F ) |
6 |
|
dfrel2 |
|- ( Rel F <-> `' `' F = F ) |
7 |
5 6
|
sylib |
|- ( Fun F -> `' `' F = F ) |
8 |
7
|
reseq1d |
|- ( Fun F -> ( `' `' F |` ( D \ B ) ) = ( F |` ( D \ B ) ) ) |
9 |
8
|
cnveqd |
|- ( Fun F -> `' ( `' `' F |` ( D \ B ) ) = `' ( F |` ( D \ B ) ) ) |
10 |
9
|
coeq2d |
|- ( Fun F -> ( ( F |` ( D \ B ) ) o. `' ( `' `' F |` ( D \ B ) ) ) = ( ( F |` ( D \ B ) ) o. `' ( F |` ( D \ B ) ) ) ) |
11 |
4 10
|
syl |
|- ( ph -> ( ( F |` ( D \ B ) ) o. `' ( `' `' F |` ( D \ B ) ) ) = ( ( F |` ( D \ B ) ) o. `' ( F |` ( D \ B ) ) ) ) |
12 |
|
difssd |
|- ( ph -> ( D \ B ) C_ D ) |
13 |
|
f1odm |
|- ( F : D -1-1-onto-> D -> dom F = D ) |
14 |
1 13
|
syl |
|- ( ph -> dom F = D ) |
15 |
12 14
|
sseqtrrd |
|- ( ph -> ( D \ B ) C_ dom F ) |
16 |
|
ssdmres |
|- ( ( D \ B ) C_ dom F <-> dom ( F |` ( D \ B ) ) = ( D \ B ) ) |
17 |
15 16
|
sylib |
|- ( ph -> dom ( F |` ( D \ B ) ) = ( D \ B ) ) |
18 |
|
ssidd |
|- ( ph -> ( D \ B ) C_ ( D \ B ) ) |
19 |
17 18
|
eqsstrd |
|- ( ph -> dom ( F |` ( D \ B ) ) C_ ( D \ B ) ) |
20 |
|
cores2 |
|- ( dom ( F |` ( D \ B ) ) C_ ( D \ B ) -> ( ( F |` ( D \ B ) ) o. `' ( `' `' F |` ( D \ B ) ) ) = ( ( F |` ( D \ B ) ) o. `' F ) ) |
21 |
19 20
|
syl |
|- ( ph -> ( ( F |` ( D \ B ) ) o. `' ( `' `' F |` ( D \ B ) ) ) = ( ( F |` ( D \ B ) ) o. `' F ) ) |
22 |
|
f1ocnv |
|- ( F : D -1-1-onto-> D -> `' F : D -1-1-onto-> D ) |
23 |
|
f1ofun |
|- ( `' F : D -1-1-onto-> D -> Fun `' F ) |
24 |
1 22 23
|
3syl |
|- ( ph -> Fun `' F ) |
25 |
|
ssidd |
|- ( ph -> D C_ D ) |
26 |
25 14
|
sseqtrrd |
|- ( ph -> D C_ dom F ) |
27 |
|
fores |
|- ( ( Fun F /\ D C_ dom F ) -> ( F |` D ) : D -onto-> ( F " D ) ) |
28 |
4 26 27
|
syl2anc |
|- ( ph -> ( F |` D ) : D -onto-> ( F " D ) ) |
29 |
|
df-ima |
|- ( F " D ) = ran ( F |` D ) |
30 |
|
foeq3 |
|- ( ( F " D ) = ran ( F |` D ) -> ( ( F |` D ) : D -onto-> ( F " D ) <-> ( F |` D ) : D -onto-> ran ( F |` D ) ) ) |
31 |
29 30
|
ax-mp |
|- ( ( F |` D ) : D -onto-> ( F " D ) <-> ( F |` D ) : D -onto-> ran ( F |` D ) ) |
32 |
28 31
|
sylib |
|- ( ph -> ( F |` D ) : D -onto-> ran ( F |` D ) ) |
33 |
2 14
|
sseqtrrd |
|- ( ph -> B C_ dom F ) |
34 |
|
fores |
|- ( ( Fun F /\ B C_ dom F ) -> ( F |` B ) : B -onto-> ( F " B ) ) |
35 |
4 33 34
|
syl2anc |
|- ( ph -> ( F |` B ) : B -onto-> ( F " B ) ) |
36 |
|
df-ima |
|- ( F " B ) = ran ( F |` B ) |
37 |
|
foeq3 |
|- ( ( F " B ) = ran ( F |` B ) -> ( ( F |` B ) : B -onto-> ( F " B ) <-> ( F |` B ) : B -onto-> ran ( F |` B ) ) ) |
38 |
36 37
|
ax-mp |
|- ( ( F |` B ) : B -onto-> ( F " B ) <-> ( F |` B ) : B -onto-> ran ( F |` B ) ) |
39 |
35 38
|
sylib |
|- ( ph -> ( F |` B ) : B -onto-> ran ( F |` B ) ) |
40 |
|
resdif |
|- ( ( Fun `' F /\ ( F |` D ) : D -onto-> ran ( F |` D ) /\ ( F |` B ) : B -onto-> ran ( F |` B ) ) -> ( F |` ( D \ B ) ) : ( D \ B ) -1-1-onto-> ( ran ( F |` D ) \ ran ( F |` B ) ) ) |
41 |
24 32 39 40
|
syl3anc |
|- ( ph -> ( F |` ( D \ B ) ) : ( D \ B ) -1-1-onto-> ( ran ( F |` D ) \ ran ( F |` B ) ) ) |
42 |
|
f1ofn |
|- ( F : D -1-1-onto-> D -> F Fn D ) |
43 |
|
fnresdm |
|- ( F Fn D -> ( F |` D ) = F ) |
44 |
1 42 43
|
3syl |
|- ( ph -> ( F |` D ) = F ) |
45 |
44
|
rneqd |
|- ( ph -> ran ( F |` D ) = ran F ) |
46 |
|
f1ofo |
|- ( F : D -1-1-onto-> D -> F : D -onto-> D ) |
47 |
|
forn |
|- ( F : D -onto-> D -> ran F = D ) |
48 |
1 46 47
|
3syl |
|- ( ph -> ran F = D ) |
49 |
45 48
|
eqtrd |
|- ( ph -> ran ( F |` D ) = D ) |
50 |
49
|
difeq1d |
|- ( ph -> ( ran ( F |` D ) \ ran ( F |` B ) ) = ( D \ ran ( F |` B ) ) ) |
51 |
50
|
f1oeq3d |
|- ( ph -> ( ( F |` ( D \ B ) ) : ( D \ B ) -1-1-onto-> ( ran ( F |` D ) \ ran ( F |` B ) ) <-> ( F |` ( D \ B ) ) : ( D \ B ) -1-1-onto-> ( D \ ran ( F |` B ) ) ) ) |
52 |
41 51
|
mpbid |
|- ( ph -> ( F |` ( D \ B ) ) : ( D \ B ) -1-1-onto-> ( D \ ran ( F |` B ) ) ) |
53 |
|
f1ococnv2 |
|- ( ( F |` ( D \ B ) ) : ( D \ B ) -1-1-onto-> ( D \ ran ( F |` B ) ) -> ( ( F |` ( D \ B ) ) o. `' ( F |` ( D \ B ) ) ) = ( _I |` ( D \ ran ( F |` B ) ) ) ) |
54 |
52 53
|
syl |
|- ( ph -> ( ( F |` ( D \ B ) ) o. `' ( F |` ( D \ B ) ) ) = ( _I |` ( D \ ran ( F |` B ) ) ) ) |
55 |
11 21 54
|
3eqtr3d |
|- ( ph -> ( ( F |` ( D \ B ) ) o. `' F ) = ( _I |` ( D \ ran ( F |` B ) ) ) ) |