| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cycpmconjvlem.f |
|- ( ph -> F : D -1-1-onto-> D ) |
| 2 |
|
cycpmconjvlem.b |
|- ( ph -> B C_ D ) |
| 3 |
|
f1ofun |
|- ( F : D -1-1-onto-> D -> Fun F ) |
| 4 |
1 3
|
syl |
|- ( ph -> Fun F ) |
| 5 |
|
funrel |
|- ( Fun F -> Rel F ) |
| 6 |
|
dfrel2 |
|- ( Rel F <-> `' `' F = F ) |
| 7 |
5 6
|
sylib |
|- ( Fun F -> `' `' F = F ) |
| 8 |
7
|
reseq1d |
|- ( Fun F -> ( `' `' F |` ( D \ B ) ) = ( F |` ( D \ B ) ) ) |
| 9 |
8
|
cnveqd |
|- ( Fun F -> `' ( `' `' F |` ( D \ B ) ) = `' ( F |` ( D \ B ) ) ) |
| 10 |
9
|
coeq2d |
|- ( Fun F -> ( ( F |` ( D \ B ) ) o. `' ( `' `' F |` ( D \ B ) ) ) = ( ( F |` ( D \ B ) ) o. `' ( F |` ( D \ B ) ) ) ) |
| 11 |
4 10
|
syl |
|- ( ph -> ( ( F |` ( D \ B ) ) o. `' ( `' `' F |` ( D \ B ) ) ) = ( ( F |` ( D \ B ) ) o. `' ( F |` ( D \ B ) ) ) ) |
| 12 |
|
difssd |
|- ( ph -> ( D \ B ) C_ D ) |
| 13 |
|
f1odm |
|- ( F : D -1-1-onto-> D -> dom F = D ) |
| 14 |
1 13
|
syl |
|- ( ph -> dom F = D ) |
| 15 |
12 14
|
sseqtrrd |
|- ( ph -> ( D \ B ) C_ dom F ) |
| 16 |
|
ssdmres |
|- ( ( D \ B ) C_ dom F <-> dom ( F |` ( D \ B ) ) = ( D \ B ) ) |
| 17 |
15 16
|
sylib |
|- ( ph -> dom ( F |` ( D \ B ) ) = ( D \ B ) ) |
| 18 |
|
ssidd |
|- ( ph -> ( D \ B ) C_ ( D \ B ) ) |
| 19 |
17 18
|
eqsstrd |
|- ( ph -> dom ( F |` ( D \ B ) ) C_ ( D \ B ) ) |
| 20 |
|
cores2 |
|- ( dom ( F |` ( D \ B ) ) C_ ( D \ B ) -> ( ( F |` ( D \ B ) ) o. `' ( `' `' F |` ( D \ B ) ) ) = ( ( F |` ( D \ B ) ) o. `' F ) ) |
| 21 |
19 20
|
syl |
|- ( ph -> ( ( F |` ( D \ B ) ) o. `' ( `' `' F |` ( D \ B ) ) ) = ( ( F |` ( D \ B ) ) o. `' F ) ) |
| 22 |
|
f1ocnv |
|- ( F : D -1-1-onto-> D -> `' F : D -1-1-onto-> D ) |
| 23 |
|
f1ofun |
|- ( `' F : D -1-1-onto-> D -> Fun `' F ) |
| 24 |
1 22 23
|
3syl |
|- ( ph -> Fun `' F ) |
| 25 |
|
ssidd |
|- ( ph -> D C_ D ) |
| 26 |
25 14
|
sseqtrrd |
|- ( ph -> D C_ dom F ) |
| 27 |
|
fores |
|- ( ( Fun F /\ D C_ dom F ) -> ( F |` D ) : D -onto-> ( F " D ) ) |
| 28 |
4 26 27
|
syl2anc |
|- ( ph -> ( F |` D ) : D -onto-> ( F " D ) ) |
| 29 |
|
df-ima |
|- ( F " D ) = ran ( F |` D ) |
| 30 |
|
foeq3 |
|- ( ( F " D ) = ran ( F |` D ) -> ( ( F |` D ) : D -onto-> ( F " D ) <-> ( F |` D ) : D -onto-> ran ( F |` D ) ) ) |
| 31 |
29 30
|
ax-mp |
|- ( ( F |` D ) : D -onto-> ( F " D ) <-> ( F |` D ) : D -onto-> ran ( F |` D ) ) |
| 32 |
28 31
|
sylib |
|- ( ph -> ( F |` D ) : D -onto-> ran ( F |` D ) ) |
| 33 |
2 14
|
sseqtrrd |
|- ( ph -> B C_ dom F ) |
| 34 |
|
fores |
|- ( ( Fun F /\ B C_ dom F ) -> ( F |` B ) : B -onto-> ( F " B ) ) |
| 35 |
4 33 34
|
syl2anc |
|- ( ph -> ( F |` B ) : B -onto-> ( F " B ) ) |
| 36 |
|
df-ima |
|- ( F " B ) = ran ( F |` B ) |
| 37 |
|
foeq3 |
|- ( ( F " B ) = ran ( F |` B ) -> ( ( F |` B ) : B -onto-> ( F " B ) <-> ( F |` B ) : B -onto-> ran ( F |` B ) ) ) |
| 38 |
36 37
|
ax-mp |
|- ( ( F |` B ) : B -onto-> ( F " B ) <-> ( F |` B ) : B -onto-> ran ( F |` B ) ) |
| 39 |
35 38
|
sylib |
|- ( ph -> ( F |` B ) : B -onto-> ran ( F |` B ) ) |
| 40 |
|
resdif |
|- ( ( Fun `' F /\ ( F |` D ) : D -onto-> ran ( F |` D ) /\ ( F |` B ) : B -onto-> ran ( F |` B ) ) -> ( F |` ( D \ B ) ) : ( D \ B ) -1-1-onto-> ( ran ( F |` D ) \ ran ( F |` B ) ) ) |
| 41 |
24 32 39 40
|
syl3anc |
|- ( ph -> ( F |` ( D \ B ) ) : ( D \ B ) -1-1-onto-> ( ran ( F |` D ) \ ran ( F |` B ) ) ) |
| 42 |
|
f1ofn |
|- ( F : D -1-1-onto-> D -> F Fn D ) |
| 43 |
|
fnresdm |
|- ( F Fn D -> ( F |` D ) = F ) |
| 44 |
1 42 43
|
3syl |
|- ( ph -> ( F |` D ) = F ) |
| 45 |
44
|
rneqd |
|- ( ph -> ran ( F |` D ) = ran F ) |
| 46 |
|
f1ofo |
|- ( F : D -1-1-onto-> D -> F : D -onto-> D ) |
| 47 |
|
forn |
|- ( F : D -onto-> D -> ran F = D ) |
| 48 |
1 46 47
|
3syl |
|- ( ph -> ran F = D ) |
| 49 |
45 48
|
eqtrd |
|- ( ph -> ran ( F |` D ) = D ) |
| 50 |
49
|
difeq1d |
|- ( ph -> ( ran ( F |` D ) \ ran ( F |` B ) ) = ( D \ ran ( F |` B ) ) ) |
| 51 |
50
|
f1oeq3d |
|- ( ph -> ( ( F |` ( D \ B ) ) : ( D \ B ) -1-1-onto-> ( ran ( F |` D ) \ ran ( F |` B ) ) <-> ( F |` ( D \ B ) ) : ( D \ B ) -1-1-onto-> ( D \ ran ( F |` B ) ) ) ) |
| 52 |
41 51
|
mpbid |
|- ( ph -> ( F |` ( D \ B ) ) : ( D \ B ) -1-1-onto-> ( D \ ran ( F |` B ) ) ) |
| 53 |
|
f1ococnv2 |
|- ( ( F |` ( D \ B ) ) : ( D \ B ) -1-1-onto-> ( D \ ran ( F |` B ) ) -> ( ( F |` ( D \ B ) ) o. `' ( F |` ( D \ B ) ) ) = ( _I |` ( D \ ran ( F |` B ) ) ) ) |
| 54 |
52 53
|
syl |
|- ( ph -> ( ( F |` ( D \ B ) ) o. `' ( F |` ( D \ B ) ) ) = ( _I |` ( D \ ran ( F |` B ) ) ) ) |
| 55 |
11 21 54
|
3eqtr3d |
|- ( ph -> ( ( F |` ( D \ B ) ) o. `' F ) = ( _I |` ( D \ ran ( F |` B ) ) ) ) |