Step |
Hyp |
Ref |
Expression |
1 |
|
cycpmconjvlem.f |
⊢ ( 𝜑 → 𝐹 : 𝐷 –1-1-onto→ 𝐷 ) |
2 |
|
cycpmconjvlem.b |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐷 ) |
3 |
|
f1ofun |
⊢ ( 𝐹 : 𝐷 –1-1-onto→ 𝐷 → Fun 𝐹 ) |
4 |
1 3
|
syl |
⊢ ( 𝜑 → Fun 𝐹 ) |
5 |
|
funrel |
⊢ ( Fun 𝐹 → Rel 𝐹 ) |
6 |
|
dfrel2 |
⊢ ( Rel 𝐹 ↔ ◡ ◡ 𝐹 = 𝐹 ) |
7 |
5 6
|
sylib |
⊢ ( Fun 𝐹 → ◡ ◡ 𝐹 = 𝐹 ) |
8 |
7
|
reseq1d |
⊢ ( Fun 𝐹 → ( ◡ ◡ 𝐹 ↾ ( 𝐷 ∖ 𝐵 ) ) = ( 𝐹 ↾ ( 𝐷 ∖ 𝐵 ) ) ) |
9 |
8
|
cnveqd |
⊢ ( Fun 𝐹 → ◡ ( ◡ ◡ 𝐹 ↾ ( 𝐷 ∖ 𝐵 ) ) = ◡ ( 𝐹 ↾ ( 𝐷 ∖ 𝐵 ) ) ) |
10 |
9
|
coeq2d |
⊢ ( Fun 𝐹 → ( ( 𝐹 ↾ ( 𝐷 ∖ 𝐵 ) ) ∘ ◡ ( ◡ ◡ 𝐹 ↾ ( 𝐷 ∖ 𝐵 ) ) ) = ( ( 𝐹 ↾ ( 𝐷 ∖ 𝐵 ) ) ∘ ◡ ( 𝐹 ↾ ( 𝐷 ∖ 𝐵 ) ) ) ) |
11 |
4 10
|
syl |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐷 ∖ 𝐵 ) ) ∘ ◡ ( ◡ ◡ 𝐹 ↾ ( 𝐷 ∖ 𝐵 ) ) ) = ( ( 𝐹 ↾ ( 𝐷 ∖ 𝐵 ) ) ∘ ◡ ( 𝐹 ↾ ( 𝐷 ∖ 𝐵 ) ) ) ) |
12 |
|
difssd |
⊢ ( 𝜑 → ( 𝐷 ∖ 𝐵 ) ⊆ 𝐷 ) |
13 |
|
f1odm |
⊢ ( 𝐹 : 𝐷 –1-1-onto→ 𝐷 → dom 𝐹 = 𝐷 ) |
14 |
1 13
|
syl |
⊢ ( 𝜑 → dom 𝐹 = 𝐷 ) |
15 |
12 14
|
sseqtrrd |
⊢ ( 𝜑 → ( 𝐷 ∖ 𝐵 ) ⊆ dom 𝐹 ) |
16 |
|
ssdmres |
⊢ ( ( 𝐷 ∖ 𝐵 ) ⊆ dom 𝐹 ↔ dom ( 𝐹 ↾ ( 𝐷 ∖ 𝐵 ) ) = ( 𝐷 ∖ 𝐵 ) ) |
17 |
15 16
|
sylib |
⊢ ( 𝜑 → dom ( 𝐹 ↾ ( 𝐷 ∖ 𝐵 ) ) = ( 𝐷 ∖ 𝐵 ) ) |
18 |
|
ssidd |
⊢ ( 𝜑 → ( 𝐷 ∖ 𝐵 ) ⊆ ( 𝐷 ∖ 𝐵 ) ) |
19 |
17 18
|
eqsstrd |
⊢ ( 𝜑 → dom ( 𝐹 ↾ ( 𝐷 ∖ 𝐵 ) ) ⊆ ( 𝐷 ∖ 𝐵 ) ) |
20 |
|
cores2 |
⊢ ( dom ( 𝐹 ↾ ( 𝐷 ∖ 𝐵 ) ) ⊆ ( 𝐷 ∖ 𝐵 ) → ( ( 𝐹 ↾ ( 𝐷 ∖ 𝐵 ) ) ∘ ◡ ( ◡ ◡ 𝐹 ↾ ( 𝐷 ∖ 𝐵 ) ) ) = ( ( 𝐹 ↾ ( 𝐷 ∖ 𝐵 ) ) ∘ ◡ 𝐹 ) ) |
21 |
19 20
|
syl |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐷 ∖ 𝐵 ) ) ∘ ◡ ( ◡ ◡ 𝐹 ↾ ( 𝐷 ∖ 𝐵 ) ) ) = ( ( 𝐹 ↾ ( 𝐷 ∖ 𝐵 ) ) ∘ ◡ 𝐹 ) ) |
22 |
|
f1ocnv |
⊢ ( 𝐹 : 𝐷 –1-1-onto→ 𝐷 → ◡ 𝐹 : 𝐷 –1-1-onto→ 𝐷 ) |
23 |
|
f1ofun |
⊢ ( ◡ 𝐹 : 𝐷 –1-1-onto→ 𝐷 → Fun ◡ 𝐹 ) |
24 |
1 22 23
|
3syl |
⊢ ( 𝜑 → Fun ◡ 𝐹 ) |
25 |
|
ssidd |
⊢ ( 𝜑 → 𝐷 ⊆ 𝐷 ) |
26 |
25 14
|
sseqtrrd |
⊢ ( 𝜑 → 𝐷 ⊆ dom 𝐹 ) |
27 |
|
fores |
⊢ ( ( Fun 𝐹 ∧ 𝐷 ⊆ dom 𝐹 ) → ( 𝐹 ↾ 𝐷 ) : 𝐷 –onto→ ( 𝐹 “ 𝐷 ) ) |
28 |
4 26 27
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐷 ) : 𝐷 –onto→ ( 𝐹 “ 𝐷 ) ) |
29 |
|
df-ima |
⊢ ( 𝐹 “ 𝐷 ) = ran ( 𝐹 ↾ 𝐷 ) |
30 |
|
foeq3 |
⊢ ( ( 𝐹 “ 𝐷 ) = ran ( 𝐹 ↾ 𝐷 ) → ( ( 𝐹 ↾ 𝐷 ) : 𝐷 –onto→ ( 𝐹 “ 𝐷 ) ↔ ( 𝐹 ↾ 𝐷 ) : 𝐷 –onto→ ran ( 𝐹 ↾ 𝐷 ) ) ) |
31 |
29 30
|
ax-mp |
⊢ ( ( 𝐹 ↾ 𝐷 ) : 𝐷 –onto→ ( 𝐹 “ 𝐷 ) ↔ ( 𝐹 ↾ 𝐷 ) : 𝐷 –onto→ ran ( 𝐹 ↾ 𝐷 ) ) |
32 |
28 31
|
sylib |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐷 ) : 𝐷 –onto→ ran ( 𝐹 ↾ 𝐷 ) ) |
33 |
2 14
|
sseqtrrd |
⊢ ( 𝜑 → 𝐵 ⊆ dom 𝐹 ) |
34 |
|
fores |
⊢ ( ( Fun 𝐹 ∧ 𝐵 ⊆ dom 𝐹 ) → ( 𝐹 ↾ 𝐵 ) : 𝐵 –onto→ ( 𝐹 “ 𝐵 ) ) |
35 |
4 33 34
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐵 ) : 𝐵 –onto→ ( 𝐹 “ 𝐵 ) ) |
36 |
|
df-ima |
⊢ ( 𝐹 “ 𝐵 ) = ran ( 𝐹 ↾ 𝐵 ) |
37 |
|
foeq3 |
⊢ ( ( 𝐹 “ 𝐵 ) = ran ( 𝐹 ↾ 𝐵 ) → ( ( 𝐹 ↾ 𝐵 ) : 𝐵 –onto→ ( 𝐹 “ 𝐵 ) ↔ ( 𝐹 ↾ 𝐵 ) : 𝐵 –onto→ ran ( 𝐹 ↾ 𝐵 ) ) ) |
38 |
36 37
|
ax-mp |
⊢ ( ( 𝐹 ↾ 𝐵 ) : 𝐵 –onto→ ( 𝐹 “ 𝐵 ) ↔ ( 𝐹 ↾ 𝐵 ) : 𝐵 –onto→ ran ( 𝐹 ↾ 𝐵 ) ) |
39 |
35 38
|
sylib |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐵 ) : 𝐵 –onto→ ran ( 𝐹 ↾ 𝐵 ) ) |
40 |
|
resdif |
⊢ ( ( Fun ◡ 𝐹 ∧ ( 𝐹 ↾ 𝐷 ) : 𝐷 –onto→ ran ( 𝐹 ↾ 𝐷 ) ∧ ( 𝐹 ↾ 𝐵 ) : 𝐵 –onto→ ran ( 𝐹 ↾ 𝐵 ) ) → ( 𝐹 ↾ ( 𝐷 ∖ 𝐵 ) ) : ( 𝐷 ∖ 𝐵 ) –1-1-onto→ ( ran ( 𝐹 ↾ 𝐷 ) ∖ ran ( 𝐹 ↾ 𝐵 ) ) ) |
41 |
24 32 39 40
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐷 ∖ 𝐵 ) ) : ( 𝐷 ∖ 𝐵 ) –1-1-onto→ ( ran ( 𝐹 ↾ 𝐷 ) ∖ ran ( 𝐹 ↾ 𝐵 ) ) ) |
42 |
|
f1ofn |
⊢ ( 𝐹 : 𝐷 –1-1-onto→ 𝐷 → 𝐹 Fn 𝐷 ) |
43 |
|
fnresdm |
⊢ ( 𝐹 Fn 𝐷 → ( 𝐹 ↾ 𝐷 ) = 𝐹 ) |
44 |
1 42 43
|
3syl |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐷 ) = 𝐹 ) |
45 |
44
|
rneqd |
⊢ ( 𝜑 → ran ( 𝐹 ↾ 𝐷 ) = ran 𝐹 ) |
46 |
|
f1ofo |
⊢ ( 𝐹 : 𝐷 –1-1-onto→ 𝐷 → 𝐹 : 𝐷 –onto→ 𝐷 ) |
47 |
|
forn |
⊢ ( 𝐹 : 𝐷 –onto→ 𝐷 → ran 𝐹 = 𝐷 ) |
48 |
1 46 47
|
3syl |
⊢ ( 𝜑 → ran 𝐹 = 𝐷 ) |
49 |
45 48
|
eqtrd |
⊢ ( 𝜑 → ran ( 𝐹 ↾ 𝐷 ) = 𝐷 ) |
50 |
49
|
difeq1d |
⊢ ( 𝜑 → ( ran ( 𝐹 ↾ 𝐷 ) ∖ ran ( 𝐹 ↾ 𝐵 ) ) = ( 𝐷 ∖ ran ( 𝐹 ↾ 𝐵 ) ) ) |
51 |
50
|
f1oeq3d |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐷 ∖ 𝐵 ) ) : ( 𝐷 ∖ 𝐵 ) –1-1-onto→ ( ran ( 𝐹 ↾ 𝐷 ) ∖ ran ( 𝐹 ↾ 𝐵 ) ) ↔ ( 𝐹 ↾ ( 𝐷 ∖ 𝐵 ) ) : ( 𝐷 ∖ 𝐵 ) –1-1-onto→ ( 𝐷 ∖ ran ( 𝐹 ↾ 𝐵 ) ) ) ) |
52 |
41 51
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐷 ∖ 𝐵 ) ) : ( 𝐷 ∖ 𝐵 ) –1-1-onto→ ( 𝐷 ∖ ran ( 𝐹 ↾ 𝐵 ) ) ) |
53 |
|
f1ococnv2 |
⊢ ( ( 𝐹 ↾ ( 𝐷 ∖ 𝐵 ) ) : ( 𝐷 ∖ 𝐵 ) –1-1-onto→ ( 𝐷 ∖ ran ( 𝐹 ↾ 𝐵 ) ) → ( ( 𝐹 ↾ ( 𝐷 ∖ 𝐵 ) ) ∘ ◡ ( 𝐹 ↾ ( 𝐷 ∖ 𝐵 ) ) ) = ( I ↾ ( 𝐷 ∖ ran ( 𝐹 ↾ 𝐵 ) ) ) ) |
54 |
52 53
|
syl |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐷 ∖ 𝐵 ) ) ∘ ◡ ( 𝐹 ↾ ( 𝐷 ∖ 𝐵 ) ) ) = ( I ↾ ( 𝐷 ∖ ran ( 𝐹 ↾ 𝐵 ) ) ) ) |
55 |
11 21 54
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐷 ∖ 𝐵 ) ) ∘ ◡ 𝐹 ) = ( I ↾ ( 𝐷 ∖ ran ( 𝐹 ↾ 𝐵 ) ) ) ) |