| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycpmconjv.s | ⊢ 𝑆  =  ( SymGrp ‘ 𝐷 ) | 
						
							| 2 |  | cycpmconjv.m | ⊢ 𝑀  =  ( toCyc ‘ 𝐷 ) | 
						
							| 3 |  | cycpmconjv.p | ⊢  +   =  ( +g ‘ 𝑆 ) | 
						
							| 4 |  | cycpmconjv.l | ⊢  −   =  ( -g ‘ 𝑆 ) | 
						
							| 5 |  | cycpmconjv.b | ⊢ 𝐵  =  ( Base ‘ 𝑆 ) | 
						
							| 6 | 1 5 | symgbasf1o | ⊢ ( 𝐺  ∈  𝐵  →  𝐺 : 𝐷 –1-1-onto→ 𝐷 ) | 
						
							| 7 | 6 | 3ad2ant2 | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  𝐺 : 𝐷 –1-1-onto→ 𝐷 ) | 
						
							| 8 |  | simp3 | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  𝑊  ∈  dom  𝑀 ) | 
						
							| 9 | 2 1 5 | tocycf | ⊢ ( 𝐷  ∈  𝑉  →  𝑀 : { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ⟶ 𝐵 ) | 
						
							| 10 | 9 | 3ad2ant1 | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  𝑀 : { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ⟶ 𝐵 ) | 
						
							| 11 | 10 | fdmd | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  dom  𝑀  =  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ) | 
						
							| 12 | 8 11 | eleqtrd | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  𝑊  ∈  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ) | 
						
							| 13 |  | id | ⊢ ( 𝑤  =  𝑊  →  𝑤  =  𝑊 ) | 
						
							| 14 |  | dmeq | ⊢ ( 𝑤  =  𝑊  →  dom  𝑤  =  dom  𝑊 ) | 
						
							| 15 |  | eqidd | ⊢ ( 𝑤  =  𝑊  →  𝐷  =  𝐷 ) | 
						
							| 16 | 13 14 15 | f1eq123d | ⊢ ( 𝑤  =  𝑊  →  ( 𝑤 : dom  𝑤 –1-1→ 𝐷  ↔  𝑊 : dom  𝑊 –1-1→ 𝐷 ) ) | 
						
							| 17 | 16 | elrab | ⊢ ( 𝑊  ∈  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ↔  ( 𝑊  ∈  Word  𝐷  ∧  𝑊 : dom  𝑊 –1-1→ 𝐷 ) ) | 
						
							| 18 | 12 17 | sylib | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  ( 𝑊  ∈  Word  𝐷  ∧  𝑊 : dom  𝑊 –1-1→ 𝐷 ) ) | 
						
							| 19 | 18 | simprd | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  𝑊 : dom  𝑊 –1-1→ 𝐷 ) | 
						
							| 20 |  | f1f | ⊢ ( 𝑊 : dom  𝑊 –1-1→ 𝐷  →  𝑊 : dom  𝑊 ⟶ 𝐷 ) | 
						
							| 21 | 19 20 | syl | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  𝑊 : dom  𝑊 ⟶ 𝐷 ) | 
						
							| 22 | 21 | frnd | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  ran  𝑊  ⊆  𝐷 ) | 
						
							| 23 | 7 22 | cycpmconjvlem | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  ( ( 𝐺  ↾  ( 𝐷  ∖  ran  𝑊 ) )  ∘  ◡ 𝐺 )  =  (  I   ↾  ( 𝐷  ∖  ran  ( 𝐺  ↾  ran  𝑊 ) ) ) ) | 
						
							| 24 |  | rnco | ⊢ ran  ( 𝐺  ∘  𝑊 )  =  ran  ( 𝐺  ↾  ran  𝑊 ) | 
						
							| 25 | 24 | difeq2i | ⊢ ( 𝐷  ∖  ran  ( 𝐺  ∘  𝑊 ) )  =  ( 𝐷  ∖  ran  ( 𝐺  ↾  ran  𝑊 ) ) | 
						
							| 26 | 25 | reseq2i | ⊢ (  I   ↾  ( 𝐷  ∖  ran  ( 𝐺  ∘  𝑊 ) ) )  =  (  I   ↾  ( 𝐷  ∖  ran  ( 𝐺  ↾  ran  𝑊 ) ) ) | 
						
							| 27 | 23 26 | eqtr4di | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  ( ( 𝐺  ↾  ( 𝐷  ∖  ran  𝑊 ) )  ∘  ◡ 𝐺 )  =  (  I   ↾  ( 𝐷  ∖  ran  ( 𝐺  ∘  𝑊 ) ) ) ) | 
						
							| 28 |  | coass | ⊢ ( ( ( ( 𝐺  ∘  𝑊 )  cyclShift  1 )  ∘  ◡ 𝑊 )  ∘  ◡ 𝐺 )  =  ( ( ( 𝐺  ∘  𝑊 )  cyclShift  1 )  ∘  ( ◡ 𝑊  ∘  ◡ 𝐺 ) ) | 
						
							| 29 |  | cnvco | ⊢ ◡ ( 𝐺  ∘  𝑊 )  =  ( ◡ 𝑊  ∘  ◡ 𝐺 ) | 
						
							| 30 | 29 | coeq2i | ⊢ ( ( ( 𝐺  ∘  𝑊 )  cyclShift  1 )  ∘  ◡ ( 𝐺  ∘  𝑊 ) )  =  ( ( ( 𝐺  ∘  𝑊 )  cyclShift  1 )  ∘  ( ◡ 𝑊  ∘  ◡ 𝐺 ) ) | 
						
							| 31 | 28 30 | eqtr4i | ⊢ ( ( ( ( 𝐺  ∘  𝑊 )  cyclShift  1 )  ∘  ◡ 𝑊 )  ∘  ◡ 𝐺 )  =  ( ( ( 𝐺  ∘  𝑊 )  cyclShift  1 )  ∘  ◡ ( 𝐺  ∘  𝑊 ) ) | 
						
							| 32 | 31 | a1i | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  ( ( ( ( 𝐺  ∘  𝑊 )  cyclShift  1 )  ∘  ◡ 𝑊 )  ∘  ◡ 𝐺 )  =  ( ( ( 𝐺  ∘  𝑊 )  cyclShift  1 )  ∘  ◡ ( 𝐺  ∘  𝑊 ) ) ) | 
						
							| 33 | 27 32 | uneq12d | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  ( ( ( 𝐺  ↾  ( 𝐷  ∖  ran  𝑊 ) )  ∘  ◡ 𝐺 )  ∪  ( ( ( ( 𝐺  ∘  𝑊 )  cyclShift  1 )  ∘  ◡ 𝑊 )  ∘  ◡ 𝐺 ) )  =  ( (  I   ↾  ( 𝐷  ∖  ran  ( 𝐺  ∘  𝑊 ) ) )  ∪  ( ( ( 𝐺  ∘  𝑊 )  cyclShift  1 )  ∘  ◡ ( 𝐺  ∘  𝑊 ) ) ) ) | 
						
							| 34 |  | simp2 | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  𝐺  ∈  𝐵 ) | 
						
							| 35 | 10 12 | ffvelcdmd | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  ( 𝑀 ‘ 𝑊 )  ∈  𝐵 ) | 
						
							| 36 | 1 5 3 | symgcl | ⊢ ( ( 𝐺  ∈  𝐵  ∧  ( 𝑀 ‘ 𝑊 )  ∈  𝐵 )  →  ( 𝐺  +  ( 𝑀 ‘ 𝑊 ) )  ∈  𝐵 ) | 
						
							| 37 | 34 35 36 | syl2anc | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  ( 𝐺  +  ( 𝑀 ‘ 𝑊 ) )  ∈  𝐵 ) | 
						
							| 38 |  | eqid | ⊢ ( invg ‘ 𝑆 )  =  ( invg ‘ 𝑆 ) | 
						
							| 39 | 5 3 38 4 | grpsubval | ⊢ ( ( ( 𝐺  +  ( 𝑀 ‘ 𝑊 ) )  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  →  ( ( 𝐺  +  ( 𝑀 ‘ 𝑊 ) )  −  𝐺 )  =  ( ( 𝐺  +  ( 𝑀 ‘ 𝑊 ) )  +  ( ( invg ‘ 𝑆 ) ‘ 𝐺 ) ) ) | 
						
							| 40 | 37 34 39 | syl2anc | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  ( ( 𝐺  +  ( 𝑀 ‘ 𝑊 ) )  −  𝐺 )  =  ( ( 𝐺  +  ( 𝑀 ‘ 𝑊 ) )  +  ( ( invg ‘ 𝑆 ) ‘ 𝐺 ) ) ) | 
						
							| 41 | 1 5 38 | symginv | ⊢ ( 𝐺  ∈  𝐵  →  ( ( invg ‘ 𝑆 ) ‘ 𝐺 )  =  ◡ 𝐺 ) | 
						
							| 42 | 41 | 3ad2ant2 | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  ( ( invg ‘ 𝑆 ) ‘ 𝐺 )  =  ◡ 𝐺 ) | 
						
							| 43 | 42 | oveq2d | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  ( ( 𝐺  +  ( 𝑀 ‘ 𝑊 ) )  +  ( ( invg ‘ 𝑆 ) ‘ 𝐺 ) )  =  ( ( 𝐺  +  ( 𝑀 ‘ 𝑊 ) )  +  ◡ 𝐺 ) ) | 
						
							| 44 |  | simp1 | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  𝐷  ∈  𝑉 ) | 
						
							| 45 |  | f1ocnv | ⊢ ( 𝐺 : 𝐷 –1-1-onto→ 𝐷  →  ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) | 
						
							| 46 | 7 45 | syl | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) | 
						
							| 47 | 1 5 | elsymgbas | ⊢ ( 𝐷  ∈  𝑉  →  ( ◡ 𝐺  ∈  𝐵  ↔  ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) ) | 
						
							| 48 | 47 | biimpar | ⊢ ( ( 𝐷  ∈  𝑉  ∧  ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐷 )  →  ◡ 𝐺  ∈  𝐵 ) | 
						
							| 49 | 44 46 48 | syl2anc | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  ◡ 𝐺  ∈  𝐵 ) | 
						
							| 50 | 1 5 3 | symgov | ⊢ ( ( ( 𝐺  +  ( 𝑀 ‘ 𝑊 ) )  ∈  𝐵  ∧  ◡ 𝐺  ∈  𝐵 )  →  ( ( 𝐺  +  ( 𝑀 ‘ 𝑊 ) )  +  ◡ 𝐺 )  =  ( ( 𝐺  +  ( 𝑀 ‘ 𝑊 ) )  ∘  ◡ 𝐺 ) ) | 
						
							| 51 | 37 49 50 | syl2anc | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  ( ( 𝐺  +  ( 𝑀 ‘ 𝑊 ) )  +  ◡ 𝐺 )  =  ( ( 𝐺  +  ( 𝑀 ‘ 𝑊 ) )  ∘  ◡ 𝐺 ) ) | 
						
							| 52 | 40 43 51 | 3eqtrd | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  ( ( 𝐺  +  ( 𝑀 ‘ 𝑊 ) )  −  𝐺 )  =  ( ( 𝐺  +  ( 𝑀 ‘ 𝑊 ) )  ∘  ◡ 𝐺 ) ) | 
						
							| 53 | 1 5 3 | symgov | ⊢ ( ( 𝐺  ∈  𝐵  ∧  ( 𝑀 ‘ 𝑊 )  ∈  𝐵 )  →  ( 𝐺  +  ( 𝑀 ‘ 𝑊 ) )  =  ( 𝐺  ∘  ( 𝑀 ‘ 𝑊 ) ) ) | 
						
							| 54 | 34 35 53 | syl2anc | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  ( 𝐺  +  ( 𝑀 ‘ 𝑊 ) )  =  ( 𝐺  ∘  ( 𝑀 ‘ 𝑊 ) ) ) | 
						
							| 55 | 18 | simpld | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  𝑊  ∈  Word  𝐷 ) | 
						
							| 56 | 2 44 55 19 | tocycfv | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  ( 𝑀 ‘ 𝑊 )  =  ( (  I   ↾  ( 𝐷  ∖  ran  𝑊 ) )  ∪  ( ( 𝑊  cyclShift  1 )  ∘  ◡ 𝑊 ) ) ) | 
						
							| 57 | 56 | coeq2d | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  ( 𝐺  ∘  ( 𝑀 ‘ 𝑊 ) )  =  ( 𝐺  ∘  ( (  I   ↾  ( 𝐷  ∖  ran  𝑊 ) )  ∪  ( ( 𝑊  cyclShift  1 )  ∘  ◡ 𝑊 ) ) ) ) | 
						
							| 58 |  | coundi | ⊢ ( 𝐺  ∘  ( (  I   ↾  ( 𝐷  ∖  ran  𝑊 ) )  ∪  ( ( 𝑊  cyclShift  1 )  ∘  ◡ 𝑊 ) ) )  =  ( ( 𝐺  ∘  (  I   ↾  ( 𝐷  ∖  ran  𝑊 ) ) )  ∪  ( 𝐺  ∘  ( ( 𝑊  cyclShift  1 )  ∘  ◡ 𝑊 ) ) ) | 
						
							| 59 | 58 | a1i | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  ( 𝐺  ∘  ( (  I   ↾  ( 𝐷  ∖  ran  𝑊 ) )  ∪  ( ( 𝑊  cyclShift  1 )  ∘  ◡ 𝑊 ) ) )  =  ( ( 𝐺  ∘  (  I   ↾  ( 𝐷  ∖  ran  𝑊 ) ) )  ∪  ( 𝐺  ∘  ( ( 𝑊  cyclShift  1 )  ∘  ◡ 𝑊 ) ) ) ) | 
						
							| 60 | 54 57 59 | 3eqtrd | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  ( 𝐺  +  ( 𝑀 ‘ 𝑊 ) )  =  ( ( 𝐺  ∘  (  I   ↾  ( 𝐷  ∖  ran  𝑊 ) ) )  ∪  ( 𝐺  ∘  ( ( 𝑊  cyclShift  1 )  ∘  ◡ 𝑊 ) ) ) ) | 
						
							| 61 |  | coires1 | ⊢ ( 𝐺  ∘  (  I   ↾  ( 𝐷  ∖  ran  𝑊 ) ) )  =  ( 𝐺  ↾  ( 𝐷  ∖  ran  𝑊 ) ) | 
						
							| 62 | 61 | a1i | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  ( 𝐺  ∘  (  I   ↾  ( 𝐷  ∖  ran  𝑊 ) ) )  =  ( 𝐺  ↾  ( 𝐷  ∖  ran  𝑊 ) ) ) | 
						
							| 63 |  | coass | ⊢ ( ( 𝐺  ∘  ( 𝑊  cyclShift  1 ) )  ∘  ◡ 𝑊 )  =  ( 𝐺  ∘  ( ( 𝑊  cyclShift  1 )  ∘  ◡ 𝑊 ) ) | 
						
							| 64 |  | 1zzd | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  1  ∈  ℤ ) | 
						
							| 65 |  | f1of | ⊢ ( 𝐺 : 𝐷 –1-1-onto→ 𝐷  →  𝐺 : 𝐷 ⟶ 𝐷 ) | 
						
							| 66 | 7 65 | syl | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  𝐺 : 𝐷 ⟶ 𝐷 ) | 
						
							| 67 |  | cshco | ⊢ ( ( 𝑊  ∈  Word  𝐷  ∧  1  ∈  ℤ  ∧  𝐺 : 𝐷 ⟶ 𝐷 )  →  ( 𝐺  ∘  ( 𝑊  cyclShift  1 ) )  =  ( ( 𝐺  ∘  𝑊 )  cyclShift  1 ) ) | 
						
							| 68 | 55 64 66 67 | syl3anc | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  ( 𝐺  ∘  ( 𝑊  cyclShift  1 ) )  =  ( ( 𝐺  ∘  𝑊 )  cyclShift  1 ) ) | 
						
							| 69 | 68 | coeq1d | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  ( ( 𝐺  ∘  ( 𝑊  cyclShift  1 ) )  ∘  ◡ 𝑊 )  =  ( ( ( 𝐺  ∘  𝑊 )  cyclShift  1 )  ∘  ◡ 𝑊 ) ) | 
						
							| 70 | 63 69 | eqtr3id | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  ( 𝐺  ∘  ( ( 𝑊  cyclShift  1 )  ∘  ◡ 𝑊 ) )  =  ( ( ( 𝐺  ∘  𝑊 )  cyclShift  1 )  ∘  ◡ 𝑊 ) ) | 
						
							| 71 | 62 70 | uneq12d | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  ( ( 𝐺  ∘  (  I   ↾  ( 𝐷  ∖  ran  𝑊 ) ) )  ∪  ( 𝐺  ∘  ( ( 𝑊  cyclShift  1 )  ∘  ◡ 𝑊 ) ) )  =  ( ( 𝐺  ↾  ( 𝐷  ∖  ran  𝑊 ) )  ∪  ( ( ( 𝐺  ∘  𝑊 )  cyclShift  1 )  ∘  ◡ 𝑊 ) ) ) | 
						
							| 72 | 60 71 | eqtrd | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  ( 𝐺  +  ( 𝑀 ‘ 𝑊 ) )  =  ( ( 𝐺  ↾  ( 𝐷  ∖  ran  𝑊 ) )  ∪  ( ( ( 𝐺  ∘  𝑊 )  cyclShift  1 )  ∘  ◡ 𝑊 ) ) ) | 
						
							| 73 | 72 | coeq1d | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  ( ( 𝐺  +  ( 𝑀 ‘ 𝑊 ) )  ∘  ◡ 𝐺 )  =  ( ( ( 𝐺  ↾  ( 𝐷  ∖  ran  𝑊 ) )  ∪  ( ( ( 𝐺  ∘  𝑊 )  cyclShift  1 )  ∘  ◡ 𝑊 ) )  ∘  ◡ 𝐺 ) ) | 
						
							| 74 | 52 73 | eqtrd | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  ( ( 𝐺  +  ( 𝑀 ‘ 𝑊 ) )  −  𝐺 )  =  ( ( ( 𝐺  ↾  ( 𝐷  ∖  ran  𝑊 ) )  ∪  ( ( ( 𝐺  ∘  𝑊 )  cyclShift  1 )  ∘  ◡ 𝑊 ) )  ∘  ◡ 𝐺 ) ) | 
						
							| 75 |  | coundir | ⊢ ( ( ( 𝐺  ↾  ( 𝐷  ∖  ran  𝑊 ) )  ∪  ( ( ( 𝐺  ∘  𝑊 )  cyclShift  1 )  ∘  ◡ 𝑊 ) )  ∘  ◡ 𝐺 )  =  ( ( ( 𝐺  ↾  ( 𝐷  ∖  ran  𝑊 ) )  ∘  ◡ 𝐺 )  ∪  ( ( ( ( 𝐺  ∘  𝑊 )  cyclShift  1 )  ∘  ◡ 𝑊 )  ∘  ◡ 𝐺 ) ) | 
						
							| 76 | 74 75 | eqtrdi | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  ( ( 𝐺  +  ( 𝑀 ‘ 𝑊 ) )  −  𝐺 )  =  ( ( ( 𝐺  ↾  ( 𝐷  ∖  ran  𝑊 ) )  ∘  ◡ 𝐺 )  ∪  ( ( ( ( 𝐺  ∘  𝑊 )  cyclShift  1 )  ∘  ◡ 𝑊 )  ∘  ◡ 𝐺 ) ) ) | 
						
							| 77 |  | wrdco | ⊢ ( ( 𝑊  ∈  Word  𝐷  ∧  𝐺 : 𝐷 ⟶ 𝐷 )  →  ( 𝐺  ∘  𝑊 )  ∈  Word  𝐷 ) | 
						
							| 78 | 55 66 77 | syl2anc | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  ( 𝐺  ∘  𝑊 )  ∈  Word  𝐷 ) | 
						
							| 79 |  | f1of1 | ⊢ ( 𝐺 : 𝐷 –1-1-onto→ 𝐷  →  𝐺 : 𝐷 –1-1→ 𝐷 ) | 
						
							| 80 | 7 79 | syl | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  𝐺 : 𝐷 –1-1→ 𝐷 ) | 
						
							| 81 |  | f1co | ⊢ ( ( 𝐺 : 𝐷 –1-1→ 𝐷  ∧  𝑊 : dom  𝑊 –1-1→ 𝐷 )  →  ( 𝐺  ∘  𝑊 ) : dom  𝑊 –1-1→ 𝐷 ) | 
						
							| 82 | 80 19 81 | syl2anc | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  ( 𝐺  ∘  𝑊 ) : dom  𝑊 –1-1→ 𝐷 ) | 
						
							| 83 | 66 | fdmd | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  dom  𝐺  =  𝐷 ) | 
						
							| 84 | 22 83 | sseqtrrd | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  ran  𝑊  ⊆  dom  𝐺 ) | 
						
							| 85 |  | dmcosseq | ⊢ ( ran  𝑊  ⊆  dom  𝐺  →  dom  ( 𝐺  ∘  𝑊 )  =  dom  𝑊 ) | 
						
							| 86 | 84 85 | syl | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  dom  ( 𝐺  ∘  𝑊 )  =  dom  𝑊 ) | 
						
							| 87 |  | f1eq2 | ⊢ ( dom  ( 𝐺  ∘  𝑊 )  =  dom  𝑊  →  ( ( 𝐺  ∘  𝑊 ) : dom  ( 𝐺  ∘  𝑊 ) –1-1→ 𝐷  ↔  ( 𝐺  ∘  𝑊 ) : dom  𝑊 –1-1→ 𝐷 ) ) | 
						
							| 88 | 86 87 | syl | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  ( ( 𝐺  ∘  𝑊 ) : dom  ( 𝐺  ∘  𝑊 ) –1-1→ 𝐷  ↔  ( 𝐺  ∘  𝑊 ) : dom  𝑊 –1-1→ 𝐷 ) ) | 
						
							| 89 | 82 88 | mpbird | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  ( 𝐺  ∘  𝑊 ) : dom  ( 𝐺  ∘  𝑊 ) –1-1→ 𝐷 ) | 
						
							| 90 | 2 44 78 89 | tocycfv | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  ( 𝑀 ‘ ( 𝐺  ∘  𝑊 ) )  =  ( (  I   ↾  ( 𝐷  ∖  ran  ( 𝐺  ∘  𝑊 ) ) )  ∪  ( ( ( 𝐺  ∘  𝑊 )  cyclShift  1 )  ∘  ◡ ( 𝐺  ∘  𝑊 ) ) ) ) | 
						
							| 91 | 33 76 90 | 3eqtr4d | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝐺  ∈  𝐵  ∧  𝑊  ∈  dom  𝑀 )  →  ( ( 𝐺  +  ( 𝑀 ‘ 𝑊 ) )  −  𝐺 )  =  ( 𝑀 ‘ ( 𝐺  ∘  𝑊 ) ) ) |