| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cycpmconjv.s |
⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) |
| 2 |
|
cycpmconjv.m |
⊢ 𝑀 = ( toCyc ‘ 𝐷 ) |
| 3 |
|
cycpmconjv.p |
⊢ + = ( +g ‘ 𝑆 ) |
| 4 |
|
cycpmconjv.l |
⊢ − = ( -g ‘ 𝑆 ) |
| 5 |
|
cycpmconjv.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 6 |
1 5
|
symgbasf1o |
⊢ ( 𝐺 ∈ 𝐵 → 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) |
| 7 |
6
|
3ad2ant2 |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) |
| 8 |
|
simp3 |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → 𝑊 ∈ dom 𝑀 ) |
| 9 |
2 1 5
|
tocycf |
⊢ ( 𝐷 ∈ 𝑉 → 𝑀 : { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ⟶ 𝐵 ) |
| 10 |
9
|
3ad2ant1 |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → 𝑀 : { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ⟶ 𝐵 ) |
| 11 |
10
|
fdmd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → dom 𝑀 = { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) |
| 12 |
8 11
|
eleqtrd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → 𝑊 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) |
| 13 |
|
id |
⊢ ( 𝑤 = 𝑊 → 𝑤 = 𝑊 ) |
| 14 |
|
dmeq |
⊢ ( 𝑤 = 𝑊 → dom 𝑤 = dom 𝑊 ) |
| 15 |
|
eqidd |
⊢ ( 𝑤 = 𝑊 → 𝐷 = 𝐷 ) |
| 16 |
13 14 15
|
f1eq123d |
⊢ ( 𝑤 = 𝑊 → ( 𝑤 : dom 𝑤 –1-1→ 𝐷 ↔ 𝑊 : dom 𝑊 –1-1→ 𝐷 ) ) |
| 17 |
16
|
elrab |
⊢ ( 𝑊 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ↔ ( 𝑊 ∈ Word 𝐷 ∧ 𝑊 : dom 𝑊 –1-1→ 𝐷 ) ) |
| 18 |
12 17
|
sylib |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → ( 𝑊 ∈ Word 𝐷 ∧ 𝑊 : dom 𝑊 –1-1→ 𝐷 ) ) |
| 19 |
18
|
simprd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → 𝑊 : dom 𝑊 –1-1→ 𝐷 ) |
| 20 |
|
f1f |
⊢ ( 𝑊 : dom 𝑊 –1-1→ 𝐷 → 𝑊 : dom 𝑊 ⟶ 𝐷 ) |
| 21 |
19 20
|
syl |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → 𝑊 : dom 𝑊 ⟶ 𝐷 ) |
| 22 |
21
|
frnd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → ran 𝑊 ⊆ 𝐷 ) |
| 23 |
7 22
|
cycpmconjvlem |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → ( ( 𝐺 ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∘ ◡ 𝐺 ) = ( I ↾ ( 𝐷 ∖ ran ( 𝐺 ↾ ran 𝑊 ) ) ) ) |
| 24 |
|
rnco |
⊢ ran ( 𝐺 ∘ 𝑊 ) = ran ( 𝐺 ↾ ran 𝑊 ) |
| 25 |
24
|
difeq2i |
⊢ ( 𝐷 ∖ ran ( 𝐺 ∘ 𝑊 ) ) = ( 𝐷 ∖ ran ( 𝐺 ↾ ran 𝑊 ) ) |
| 26 |
25
|
reseq2i |
⊢ ( I ↾ ( 𝐷 ∖ ran ( 𝐺 ∘ 𝑊 ) ) ) = ( I ↾ ( 𝐷 ∖ ran ( 𝐺 ↾ ran 𝑊 ) ) ) |
| 27 |
23 26
|
eqtr4di |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → ( ( 𝐺 ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∘ ◡ 𝐺 ) = ( I ↾ ( 𝐷 ∖ ran ( 𝐺 ∘ 𝑊 ) ) ) ) |
| 28 |
|
coass |
⊢ ( ( ( ( 𝐺 ∘ 𝑊 ) cyclShift 1 ) ∘ ◡ 𝑊 ) ∘ ◡ 𝐺 ) = ( ( ( 𝐺 ∘ 𝑊 ) cyclShift 1 ) ∘ ( ◡ 𝑊 ∘ ◡ 𝐺 ) ) |
| 29 |
|
cnvco |
⊢ ◡ ( 𝐺 ∘ 𝑊 ) = ( ◡ 𝑊 ∘ ◡ 𝐺 ) |
| 30 |
29
|
coeq2i |
⊢ ( ( ( 𝐺 ∘ 𝑊 ) cyclShift 1 ) ∘ ◡ ( 𝐺 ∘ 𝑊 ) ) = ( ( ( 𝐺 ∘ 𝑊 ) cyclShift 1 ) ∘ ( ◡ 𝑊 ∘ ◡ 𝐺 ) ) |
| 31 |
28 30
|
eqtr4i |
⊢ ( ( ( ( 𝐺 ∘ 𝑊 ) cyclShift 1 ) ∘ ◡ 𝑊 ) ∘ ◡ 𝐺 ) = ( ( ( 𝐺 ∘ 𝑊 ) cyclShift 1 ) ∘ ◡ ( 𝐺 ∘ 𝑊 ) ) |
| 32 |
31
|
a1i |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → ( ( ( ( 𝐺 ∘ 𝑊 ) cyclShift 1 ) ∘ ◡ 𝑊 ) ∘ ◡ 𝐺 ) = ( ( ( 𝐺 ∘ 𝑊 ) cyclShift 1 ) ∘ ◡ ( 𝐺 ∘ 𝑊 ) ) ) |
| 33 |
27 32
|
uneq12d |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → ( ( ( 𝐺 ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∘ ◡ 𝐺 ) ∪ ( ( ( ( 𝐺 ∘ 𝑊 ) cyclShift 1 ) ∘ ◡ 𝑊 ) ∘ ◡ 𝐺 ) ) = ( ( I ↾ ( 𝐷 ∖ ran ( 𝐺 ∘ 𝑊 ) ) ) ∪ ( ( ( 𝐺 ∘ 𝑊 ) cyclShift 1 ) ∘ ◡ ( 𝐺 ∘ 𝑊 ) ) ) ) |
| 34 |
|
simp2 |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → 𝐺 ∈ 𝐵 ) |
| 35 |
10 12
|
ffvelcdmd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → ( 𝑀 ‘ 𝑊 ) ∈ 𝐵 ) |
| 36 |
1 5 3
|
symgcl |
⊢ ( ( 𝐺 ∈ 𝐵 ∧ ( 𝑀 ‘ 𝑊 ) ∈ 𝐵 ) → ( 𝐺 + ( 𝑀 ‘ 𝑊 ) ) ∈ 𝐵 ) |
| 37 |
34 35 36
|
syl2anc |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → ( 𝐺 + ( 𝑀 ‘ 𝑊 ) ) ∈ 𝐵 ) |
| 38 |
|
eqid |
⊢ ( invg ‘ 𝑆 ) = ( invg ‘ 𝑆 ) |
| 39 |
5 3 38 4
|
grpsubval |
⊢ ( ( ( 𝐺 + ( 𝑀 ‘ 𝑊 ) ) ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( ( 𝐺 + ( 𝑀 ‘ 𝑊 ) ) − 𝐺 ) = ( ( 𝐺 + ( 𝑀 ‘ 𝑊 ) ) + ( ( invg ‘ 𝑆 ) ‘ 𝐺 ) ) ) |
| 40 |
37 34 39
|
syl2anc |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → ( ( 𝐺 + ( 𝑀 ‘ 𝑊 ) ) − 𝐺 ) = ( ( 𝐺 + ( 𝑀 ‘ 𝑊 ) ) + ( ( invg ‘ 𝑆 ) ‘ 𝐺 ) ) ) |
| 41 |
1 5 38
|
symginv |
⊢ ( 𝐺 ∈ 𝐵 → ( ( invg ‘ 𝑆 ) ‘ 𝐺 ) = ◡ 𝐺 ) |
| 42 |
41
|
3ad2ant2 |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → ( ( invg ‘ 𝑆 ) ‘ 𝐺 ) = ◡ 𝐺 ) |
| 43 |
42
|
oveq2d |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → ( ( 𝐺 + ( 𝑀 ‘ 𝑊 ) ) + ( ( invg ‘ 𝑆 ) ‘ 𝐺 ) ) = ( ( 𝐺 + ( 𝑀 ‘ 𝑊 ) ) + ◡ 𝐺 ) ) |
| 44 |
|
simp1 |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → 𝐷 ∈ 𝑉 ) |
| 45 |
|
f1ocnv |
⊢ ( 𝐺 : 𝐷 –1-1-onto→ 𝐷 → ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) |
| 46 |
7 45
|
syl |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) |
| 47 |
1 5
|
elsymgbas |
⊢ ( 𝐷 ∈ 𝑉 → ( ◡ 𝐺 ∈ 𝐵 ↔ ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) ) |
| 48 |
47
|
biimpar |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) → ◡ 𝐺 ∈ 𝐵 ) |
| 49 |
44 46 48
|
syl2anc |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → ◡ 𝐺 ∈ 𝐵 ) |
| 50 |
1 5 3
|
symgov |
⊢ ( ( ( 𝐺 + ( 𝑀 ‘ 𝑊 ) ) ∈ 𝐵 ∧ ◡ 𝐺 ∈ 𝐵 ) → ( ( 𝐺 + ( 𝑀 ‘ 𝑊 ) ) + ◡ 𝐺 ) = ( ( 𝐺 + ( 𝑀 ‘ 𝑊 ) ) ∘ ◡ 𝐺 ) ) |
| 51 |
37 49 50
|
syl2anc |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → ( ( 𝐺 + ( 𝑀 ‘ 𝑊 ) ) + ◡ 𝐺 ) = ( ( 𝐺 + ( 𝑀 ‘ 𝑊 ) ) ∘ ◡ 𝐺 ) ) |
| 52 |
40 43 51
|
3eqtrd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → ( ( 𝐺 + ( 𝑀 ‘ 𝑊 ) ) − 𝐺 ) = ( ( 𝐺 + ( 𝑀 ‘ 𝑊 ) ) ∘ ◡ 𝐺 ) ) |
| 53 |
1 5 3
|
symgov |
⊢ ( ( 𝐺 ∈ 𝐵 ∧ ( 𝑀 ‘ 𝑊 ) ∈ 𝐵 ) → ( 𝐺 + ( 𝑀 ‘ 𝑊 ) ) = ( 𝐺 ∘ ( 𝑀 ‘ 𝑊 ) ) ) |
| 54 |
34 35 53
|
syl2anc |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → ( 𝐺 + ( 𝑀 ‘ 𝑊 ) ) = ( 𝐺 ∘ ( 𝑀 ‘ 𝑊 ) ) ) |
| 55 |
18
|
simpld |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → 𝑊 ∈ Word 𝐷 ) |
| 56 |
2 44 55 19
|
tocycfv |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → ( 𝑀 ‘ 𝑊 ) = ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∪ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) ) |
| 57 |
56
|
coeq2d |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → ( 𝐺 ∘ ( 𝑀 ‘ 𝑊 ) ) = ( 𝐺 ∘ ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∪ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) ) ) |
| 58 |
|
coundi |
⊢ ( 𝐺 ∘ ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∪ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) ) = ( ( 𝐺 ∘ ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ) ∪ ( 𝐺 ∘ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) ) |
| 59 |
58
|
a1i |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → ( 𝐺 ∘ ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∪ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) ) = ( ( 𝐺 ∘ ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ) ∪ ( 𝐺 ∘ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) ) ) |
| 60 |
54 57 59
|
3eqtrd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → ( 𝐺 + ( 𝑀 ‘ 𝑊 ) ) = ( ( 𝐺 ∘ ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ) ∪ ( 𝐺 ∘ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) ) ) |
| 61 |
|
coires1 |
⊢ ( 𝐺 ∘ ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ) = ( 𝐺 ↾ ( 𝐷 ∖ ran 𝑊 ) ) |
| 62 |
61
|
a1i |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → ( 𝐺 ∘ ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ) = ( 𝐺 ↾ ( 𝐷 ∖ ran 𝑊 ) ) ) |
| 63 |
|
coass |
⊢ ( ( 𝐺 ∘ ( 𝑊 cyclShift 1 ) ) ∘ ◡ 𝑊 ) = ( 𝐺 ∘ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) |
| 64 |
|
1zzd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → 1 ∈ ℤ ) |
| 65 |
|
f1of |
⊢ ( 𝐺 : 𝐷 –1-1-onto→ 𝐷 → 𝐺 : 𝐷 ⟶ 𝐷 ) |
| 66 |
7 65
|
syl |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → 𝐺 : 𝐷 ⟶ 𝐷 ) |
| 67 |
|
cshco |
⊢ ( ( 𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ ∧ 𝐺 : 𝐷 ⟶ 𝐷 ) → ( 𝐺 ∘ ( 𝑊 cyclShift 1 ) ) = ( ( 𝐺 ∘ 𝑊 ) cyclShift 1 ) ) |
| 68 |
55 64 66 67
|
syl3anc |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → ( 𝐺 ∘ ( 𝑊 cyclShift 1 ) ) = ( ( 𝐺 ∘ 𝑊 ) cyclShift 1 ) ) |
| 69 |
68
|
coeq1d |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → ( ( 𝐺 ∘ ( 𝑊 cyclShift 1 ) ) ∘ ◡ 𝑊 ) = ( ( ( 𝐺 ∘ 𝑊 ) cyclShift 1 ) ∘ ◡ 𝑊 ) ) |
| 70 |
63 69
|
eqtr3id |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → ( 𝐺 ∘ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) = ( ( ( 𝐺 ∘ 𝑊 ) cyclShift 1 ) ∘ ◡ 𝑊 ) ) |
| 71 |
62 70
|
uneq12d |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → ( ( 𝐺 ∘ ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ) ∪ ( 𝐺 ∘ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) ) = ( ( 𝐺 ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∪ ( ( ( 𝐺 ∘ 𝑊 ) cyclShift 1 ) ∘ ◡ 𝑊 ) ) ) |
| 72 |
60 71
|
eqtrd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → ( 𝐺 + ( 𝑀 ‘ 𝑊 ) ) = ( ( 𝐺 ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∪ ( ( ( 𝐺 ∘ 𝑊 ) cyclShift 1 ) ∘ ◡ 𝑊 ) ) ) |
| 73 |
72
|
coeq1d |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → ( ( 𝐺 + ( 𝑀 ‘ 𝑊 ) ) ∘ ◡ 𝐺 ) = ( ( ( 𝐺 ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∪ ( ( ( 𝐺 ∘ 𝑊 ) cyclShift 1 ) ∘ ◡ 𝑊 ) ) ∘ ◡ 𝐺 ) ) |
| 74 |
52 73
|
eqtrd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → ( ( 𝐺 + ( 𝑀 ‘ 𝑊 ) ) − 𝐺 ) = ( ( ( 𝐺 ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∪ ( ( ( 𝐺 ∘ 𝑊 ) cyclShift 1 ) ∘ ◡ 𝑊 ) ) ∘ ◡ 𝐺 ) ) |
| 75 |
|
coundir |
⊢ ( ( ( 𝐺 ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∪ ( ( ( 𝐺 ∘ 𝑊 ) cyclShift 1 ) ∘ ◡ 𝑊 ) ) ∘ ◡ 𝐺 ) = ( ( ( 𝐺 ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∘ ◡ 𝐺 ) ∪ ( ( ( ( 𝐺 ∘ 𝑊 ) cyclShift 1 ) ∘ ◡ 𝑊 ) ∘ ◡ 𝐺 ) ) |
| 76 |
74 75
|
eqtrdi |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → ( ( 𝐺 + ( 𝑀 ‘ 𝑊 ) ) − 𝐺 ) = ( ( ( 𝐺 ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∘ ◡ 𝐺 ) ∪ ( ( ( ( 𝐺 ∘ 𝑊 ) cyclShift 1 ) ∘ ◡ 𝑊 ) ∘ ◡ 𝐺 ) ) ) |
| 77 |
|
wrdco |
⊢ ( ( 𝑊 ∈ Word 𝐷 ∧ 𝐺 : 𝐷 ⟶ 𝐷 ) → ( 𝐺 ∘ 𝑊 ) ∈ Word 𝐷 ) |
| 78 |
55 66 77
|
syl2anc |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → ( 𝐺 ∘ 𝑊 ) ∈ Word 𝐷 ) |
| 79 |
|
f1of1 |
⊢ ( 𝐺 : 𝐷 –1-1-onto→ 𝐷 → 𝐺 : 𝐷 –1-1→ 𝐷 ) |
| 80 |
7 79
|
syl |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → 𝐺 : 𝐷 –1-1→ 𝐷 ) |
| 81 |
|
f1co |
⊢ ( ( 𝐺 : 𝐷 –1-1→ 𝐷 ∧ 𝑊 : dom 𝑊 –1-1→ 𝐷 ) → ( 𝐺 ∘ 𝑊 ) : dom 𝑊 –1-1→ 𝐷 ) |
| 82 |
80 19 81
|
syl2anc |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → ( 𝐺 ∘ 𝑊 ) : dom 𝑊 –1-1→ 𝐷 ) |
| 83 |
66
|
fdmd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → dom 𝐺 = 𝐷 ) |
| 84 |
22 83
|
sseqtrrd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → ran 𝑊 ⊆ dom 𝐺 ) |
| 85 |
|
dmcosseq |
⊢ ( ran 𝑊 ⊆ dom 𝐺 → dom ( 𝐺 ∘ 𝑊 ) = dom 𝑊 ) |
| 86 |
84 85
|
syl |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → dom ( 𝐺 ∘ 𝑊 ) = dom 𝑊 ) |
| 87 |
|
f1eq2 |
⊢ ( dom ( 𝐺 ∘ 𝑊 ) = dom 𝑊 → ( ( 𝐺 ∘ 𝑊 ) : dom ( 𝐺 ∘ 𝑊 ) –1-1→ 𝐷 ↔ ( 𝐺 ∘ 𝑊 ) : dom 𝑊 –1-1→ 𝐷 ) ) |
| 88 |
86 87
|
syl |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → ( ( 𝐺 ∘ 𝑊 ) : dom ( 𝐺 ∘ 𝑊 ) –1-1→ 𝐷 ↔ ( 𝐺 ∘ 𝑊 ) : dom 𝑊 –1-1→ 𝐷 ) ) |
| 89 |
82 88
|
mpbird |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → ( 𝐺 ∘ 𝑊 ) : dom ( 𝐺 ∘ 𝑊 ) –1-1→ 𝐷 ) |
| 90 |
2 44 78 89
|
tocycfv |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → ( 𝑀 ‘ ( 𝐺 ∘ 𝑊 ) ) = ( ( I ↾ ( 𝐷 ∖ ran ( 𝐺 ∘ 𝑊 ) ) ) ∪ ( ( ( 𝐺 ∘ 𝑊 ) cyclShift 1 ) ∘ ◡ ( 𝐺 ∘ 𝑊 ) ) ) ) |
| 91 |
33 76 90
|
3eqtr4d |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀 ) → ( ( 𝐺 + ( 𝑀 ‘ 𝑊 ) ) − 𝐺 ) = ( 𝑀 ‘ ( 𝐺 ∘ 𝑊 ) ) ) |