Step |
Hyp |
Ref |
Expression |
1 |
|
cycpmrn.1 |
⊢ 𝑀 = ( toCyc ‘ 𝐷 ) |
2 |
|
cycpmrn.2 |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
3 |
|
cycpmrn.3 |
⊢ ( 𝜑 → 𝑊 ∈ Word 𝐷 ) |
4 |
|
cycpmrn.4 |
⊢ ( 𝜑 → 𝑊 : dom 𝑊 –1-1→ 𝐷 ) |
5 |
|
cycpmrn.5 |
⊢ ( 𝜑 → 1 < ( ♯ ‘ 𝑊 ) ) |
6 |
4
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) ∧ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → 𝑊 : dom 𝑊 –1-1→ 𝐷 ) |
7 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) ∧ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → 𝑥 ∈ dom 𝑊 ) |
8 |
|
fzo0ss1 |
⊢ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) |
9 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) ∧ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
10 |
|
lencl |
⊢ ( 𝑊 ∈ Word 𝐷 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
11 |
3 10
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
12 |
11
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) ∧ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
13 |
12
|
nn0zd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) ∧ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
14 |
|
1zzd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) ∧ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → 1 ∈ ℤ ) |
15 |
|
fzoaddel2 |
⊢ ( ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ∧ ( ♯ ‘ 𝑊 ) ∈ ℤ ∧ 1 ∈ ℤ ) → ( 𝑥 + 1 ) ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) |
16 |
9 13 14 15
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) ∧ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → ( 𝑥 + 1 ) ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) |
17 |
8 16
|
sselid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) ∧ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → ( 𝑥 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
18 |
3
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) ∧ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → 𝑊 ∈ Word 𝐷 ) |
19 |
|
wrddm |
⊢ ( 𝑊 ∈ Word 𝐷 → dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
20 |
18 19
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) ∧ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
21 |
17 20
|
eleqtrrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) ∧ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → ( 𝑥 + 1 ) ∈ dom 𝑊 ) |
22 |
|
fzossz |
⊢ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ⊆ ℤ |
23 |
22 9
|
sselid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) ∧ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → 𝑥 ∈ ℤ ) |
24 |
23
|
zred |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) ∧ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → 𝑥 ∈ ℝ ) |
25 |
24
|
ltp1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) ∧ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → 𝑥 < ( 𝑥 + 1 ) ) |
26 |
24 25
|
ltned |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) ∧ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → 𝑥 ≠ ( 𝑥 + 1 ) ) |
27 |
|
f1veqaeq |
⊢ ( ( 𝑊 : dom 𝑊 –1-1→ 𝐷 ∧ ( 𝑥 ∈ dom 𝑊 ∧ ( 𝑥 + 1 ) ∈ dom 𝑊 ) ) → ( ( 𝑊 ‘ 𝑥 ) = ( 𝑊 ‘ ( 𝑥 + 1 ) ) → 𝑥 = ( 𝑥 + 1 ) ) ) |
28 |
27
|
necon3d |
⊢ ( ( 𝑊 : dom 𝑊 –1-1→ 𝐷 ∧ ( 𝑥 ∈ dom 𝑊 ∧ ( 𝑥 + 1 ) ∈ dom 𝑊 ) ) → ( 𝑥 ≠ ( 𝑥 + 1 ) → ( 𝑊 ‘ 𝑥 ) ≠ ( 𝑊 ‘ ( 𝑥 + 1 ) ) ) ) |
29 |
28
|
anassrs |
⊢ ( ( ( 𝑊 : dom 𝑊 –1-1→ 𝐷 ∧ 𝑥 ∈ dom 𝑊 ) ∧ ( 𝑥 + 1 ) ∈ dom 𝑊 ) → ( 𝑥 ≠ ( 𝑥 + 1 ) → ( 𝑊 ‘ 𝑥 ) ≠ ( 𝑊 ‘ ( 𝑥 + 1 ) ) ) ) |
30 |
29
|
imp |
⊢ ( ( ( ( 𝑊 : dom 𝑊 –1-1→ 𝐷 ∧ 𝑥 ∈ dom 𝑊 ) ∧ ( 𝑥 + 1 ) ∈ dom 𝑊 ) ∧ 𝑥 ≠ ( 𝑥 + 1 ) ) → ( 𝑊 ‘ 𝑥 ) ≠ ( 𝑊 ‘ ( 𝑥 + 1 ) ) ) |
31 |
6 7 21 26 30
|
syl1111anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) ∧ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → ( 𝑊 ‘ 𝑥 ) ≠ ( 𝑊 ‘ ( 𝑥 + 1 ) ) ) |
32 |
2
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) ∧ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → 𝐷 ∈ 𝑉 ) |
33 |
1 32 18 6 9
|
cycpmfv1 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) ∧ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → ( ( 𝑀 ‘ 𝑊 ) ‘ ( 𝑊 ‘ 𝑥 ) ) = ( 𝑊 ‘ ( 𝑥 + 1 ) ) ) |
34 |
31 33
|
neeqtrrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) ∧ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → ( 𝑊 ‘ 𝑥 ) ≠ ( ( 𝑀 ‘ 𝑊 ) ‘ ( 𝑊 ‘ 𝑥 ) ) ) |
35 |
34
|
necomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) ∧ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → ( ( 𝑀 ‘ 𝑊 ) ‘ ( 𝑊 ‘ 𝑥 ) ) ≠ ( 𝑊 ‘ 𝑥 ) ) |
36 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) ∧ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → 𝑦 = ( 𝑊 ‘ 𝑥 ) ) |
37 |
36
|
fveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) ∧ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → ( ( 𝑀 ‘ 𝑊 ) ‘ 𝑦 ) = ( ( 𝑀 ‘ 𝑊 ) ‘ ( 𝑊 ‘ 𝑥 ) ) ) |
38 |
35 37 36
|
3netr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) ∧ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → ( ( 𝑀 ‘ 𝑊 ) ‘ 𝑦 ) ≠ 𝑦 ) |
39 |
4
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) ∧ 𝑥 = ( ( ♯ ‘ 𝑊 ) − 1 ) ) → 𝑊 : dom 𝑊 –1-1→ 𝐷 ) |
40 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) → 𝑊 ∈ Word 𝐷 ) |
41 |
|
eldmne0 |
⊢ ( 𝑥 ∈ dom 𝑊 → 𝑊 ≠ ∅ ) |
42 |
41
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) → 𝑊 ≠ ∅ ) |
43 |
|
lennncl |
⊢ ( ( 𝑊 ∈ Word 𝐷 ∧ 𝑊 ≠ ∅ ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
44 |
40 42 43
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
45 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
46 |
44 45
|
sylibr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
47 |
40 19
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) → dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
48 |
46 47
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) → 0 ∈ dom 𝑊 ) |
49 |
48
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) ∧ 𝑥 = ( ( ♯ ‘ 𝑊 ) − 1 ) ) → 0 ∈ dom 𝑊 ) |
50 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) ∧ 𝑥 = ( ( ♯ ‘ 𝑊 ) − 1 ) ) → 𝑥 ∈ dom 𝑊 ) |
51 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
52 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
53 |
11
|
nn0red |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ℝ ) |
54 |
52 53
|
posdifd |
⊢ ( 𝜑 → ( 1 < ( ♯ ‘ 𝑊 ) ↔ 0 < ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
55 |
5 54
|
mpbid |
⊢ ( 𝜑 → 0 < ( ( ♯ ‘ 𝑊 ) − 1 ) ) |
56 |
51 55
|
ltned |
⊢ ( 𝜑 → 0 ≠ ( ( ♯ ‘ 𝑊 ) − 1 ) ) |
57 |
56
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) ∧ 𝑥 = ( ( ♯ ‘ 𝑊 ) − 1 ) ) → 0 ≠ ( ( ♯ ‘ 𝑊 ) − 1 ) ) |
58 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) ∧ 𝑥 = ( ( ♯ ‘ 𝑊 ) − 1 ) ) → 𝑥 = ( ( ♯ ‘ 𝑊 ) − 1 ) ) |
59 |
57 58
|
neeqtrrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) ∧ 𝑥 = ( ( ♯ ‘ 𝑊 ) − 1 ) ) → 0 ≠ 𝑥 ) |
60 |
|
f1veqaeq |
⊢ ( ( 𝑊 : dom 𝑊 –1-1→ 𝐷 ∧ ( 0 ∈ dom 𝑊 ∧ 𝑥 ∈ dom 𝑊 ) ) → ( ( 𝑊 ‘ 0 ) = ( 𝑊 ‘ 𝑥 ) → 0 = 𝑥 ) ) |
61 |
60
|
necon3d |
⊢ ( ( 𝑊 : dom 𝑊 –1-1→ 𝐷 ∧ ( 0 ∈ dom 𝑊 ∧ 𝑥 ∈ dom 𝑊 ) ) → ( 0 ≠ 𝑥 → ( 𝑊 ‘ 0 ) ≠ ( 𝑊 ‘ 𝑥 ) ) ) |
62 |
61
|
anassrs |
⊢ ( ( ( 𝑊 : dom 𝑊 –1-1→ 𝐷 ∧ 0 ∈ dom 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) → ( 0 ≠ 𝑥 → ( 𝑊 ‘ 0 ) ≠ ( 𝑊 ‘ 𝑥 ) ) ) |
63 |
62
|
imp |
⊢ ( ( ( ( 𝑊 : dom 𝑊 –1-1→ 𝐷 ∧ 0 ∈ dom 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 0 ≠ 𝑥 ) → ( 𝑊 ‘ 0 ) ≠ ( 𝑊 ‘ 𝑥 ) ) |
64 |
39 49 50 59 63
|
syl1111anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) ∧ 𝑥 = ( ( ♯ ‘ 𝑊 ) − 1 ) ) → ( 𝑊 ‘ 0 ) ≠ ( 𝑊 ‘ 𝑥 ) ) |
65 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) ∧ 𝑥 = ( ( ♯ ‘ 𝑊 ) − 1 ) ) → 𝑦 = ( 𝑊 ‘ 𝑥 ) ) |
66 |
65
|
fveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) ∧ 𝑥 = ( ( ♯ ‘ 𝑊 ) − 1 ) ) → ( ( 𝑀 ‘ 𝑊 ) ‘ 𝑦 ) = ( ( 𝑀 ‘ 𝑊 ) ‘ ( 𝑊 ‘ 𝑥 ) ) ) |
67 |
2
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) ∧ 𝑥 = ( ( ♯ ‘ 𝑊 ) − 1 ) ) → 𝐷 ∈ 𝑉 ) |
68 |
3
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) ∧ 𝑥 = ( ( ♯ ‘ 𝑊 ) − 1 ) ) → 𝑊 ∈ Word 𝐷 ) |
69 |
44
|
nngt0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) → 0 < ( ♯ ‘ 𝑊 ) ) |
70 |
69
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) ∧ 𝑥 = ( ( ♯ ‘ 𝑊 ) − 1 ) ) → 0 < ( ♯ ‘ 𝑊 ) ) |
71 |
1 67 68 39 70 58
|
cycpmfv2 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) ∧ 𝑥 = ( ( ♯ ‘ 𝑊 ) − 1 ) ) → ( ( 𝑀 ‘ 𝑊 ) ‘ ( 𝑊 ‘ 𝑥 ) ) = ( 𝑊 ‘ 0 ) ) |
72 |
66 71
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) ∧ 𝑥 = ( ( ♯ ‘ 𝑊 ) − 1 ) ) → ( ( 𝑀 ‘ 𝑊 ) ‘ 𝑦 ) = ( 𝑊 ‘ 0 ) ) |
73 |
64 72 65
|
3netr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) ∧ 𝑥 = ( ( ♯ ‘ 𝑊 ) − 1 ) ) → ( ( 𝑀 ‘ 𝑊 ) ‘ 𝑦 ) ≠ 𝑦 ) |
74 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) → 𝑥 ∈ dom 𝑊 ) |
75 |
74 47
|
eleqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) → 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
76 |
|
0z |
⊢ 0 ∈ ℤ |
77 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
78 |
77
|
fveq2i |
⊢ ( ℤ≥ ‘ ( 0 + 1 ) ) = ( ℤ≥ ‘ 1 ) |
79 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
80 |
78 79
|
eqtr4i |
⊢ ( ℤ≥ ‘ ( 0 + 1 ) ) = ℕ |
81 |
44 80
|
eleqtrrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) → ( ♯ ‘ 𝑊 ) ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ) |
82 |
|
fzosplitsnm1 |
⊢ ( ( 0 ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ) → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ∪ { ( ( ♯ ‘ 𝑊 ) − 1 ) } ) ) |
83 |
76 81 82
|
sylancr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ∪ { ( ( ♯ ‘ 𝑊 ) − 1 ) } ) ) |
84 |
75 83
|
eleqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) → 𝑥 ∈ ( ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ∪ { ( ( ♯ ‘ 𝑊 ) − 1 ) } ) ) |
85 |
|
elun |
⊢ ( 𝑥 ∈ ( ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ∪ { ( ( ♯ ‘ 𝑊 ) − 1 ) } ) ↔ ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ∨ 𝑥 ∈ { ( ( ♯ ‘ 𝑊 ) − 1 ) } ) ) |
86 |
84 85
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) → ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ∨ 𝑥 ∈ { ( ( ♯ ‘ 𝑊 ) − 1 ) } ) ) |
87 |
|
velsn |
⊢ ( 𝑥 ∈ { ( ( ♯ ‘ 𝑊 ) − 1 ) } ↔ 𝑥 = ( ( ♯ ‘ 𝑊 ) − 1 ) ) |
88 |
87
|
orbi2i |
⊢ ( ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ∨ 𝑥 ∈ { ( ( ♯ ‘ 𝑊 ) − 1 ) } ) ↔ ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ∨ 𝑥 = ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
89 |
86 88
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) → ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ∨ 𝑥 = ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
90 |
38 73 89
|
mpjaodan |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) ∧ 𝑥 ∈ dom 𝑊 ) ∧ 𝑦 = ( 𝑊 ‘ 𝑥 ) ) → ( ( 𝑀 ‘ 𝑊 ) ‘ 𝑦 ) ≠ 𝑦 ) |
91 |
|
f1fun |
⊢ ( 𝑊 : dom 𝑊 –1-1→ 𝐷 → Fun 𝑊 ) |
92 |
|
elrnrexdmb |
⊢ ( Fun 𝑊 → ( 𝑦 ∈ ran 𝑊 ↔ ∃ 𝑥 ∈ dom 𝑊 𝑦 = ( 𝑊 ‘ 𝑥 ) ) ) |
93 |
4 91 92
|
3syl |
⊢ ( 𝜑 → ( 𝑦 ∈ ran 𝑊 ↔ ∃ 𝑥 ∈ dom 𝑊 𝑦 = ( 𝑊 ‘ 𝑥 ) ) ) |
94 |
93
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) → ∃ 𝑥 ∈ dom 𝑊 𝑦 = ( 𝑊 ‘ 𝑥 ) ) |
95 |
90 94
|
r19.29a |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) → ( ( 𝑀 ‘ 𝑊 ) ‘ 𝑦 ) ≠ 𝑦 ) |
96 |
|
eqid |
⊢ ( SymGrp ‘ 𝐷 ) = ( SymGrp ‘ 𝐷 ) |
97 |
1 2 3 4 96
|
cycpmcl |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑊 ) ∈ ( Base ‘ ( SymGrp ‘ 𝐷 ) ) ) |
98 |
|
eqid |
⊢ ( Base ‘ ( SymGrp ‘ 𝐷 ) ) = ( Base ‘ ( SymGrp ‘ 𝐷 ) ) |
99 |
96 98
|
elsymgbas |
⊢ ( 𝐷 ∈ 𝑉 → ( ( 𝑀 ‘ 𝑊 ) ∈ ( Base ‘ ( SymGrp ‘ 𝐷 ) ) ↔ ( 𝑀 ‘ 𝑊 ) : 𝐷 –1-1-onto→ 𝐷 ) ) |
100 |
2 99
|
syl |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑊 ) ∈ ( Base ‘ ( SymGrp ‘ 𝐷 ) ) ↔ ( 𝑀 ‘ 𝑊 ) : 𝐷 –1-1-onto→ 𝐷 ) ) |
101 |
97 100
|
mpbid |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑊 ) : 𝐷 –1-1-onto→ 𝐷 ) |
102 |
|
f1ofn |
⊢ ( ( 𝑀 ‘ 𝑊 ) : 𝐷 –1-1-onto→ 𝐷 → ( 𝑀 ‘ 𝑊 ) Fn 𝐷 ) |
103 |
101 102
|
syl |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑊 ) Fn 𝐷 ) |
104 |
103
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) → ( 𝑀 ‘ 𝑊 ) Fn 𝐷 ) |
105 |
|
wrdf |
⊢ ( 𝑊 ∈ Word 𝐷 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐷 ) |
106 |
|
frn |
⊢ ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐷 → ran 𝑊 ⊆ 𝐷 ) |
107 |
3 105 106
|
3syl |
⊢ ( 𝜑 → ran 𝑊 ⊆ 𝐷 ) |
108 |
107
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) → 𝑦 ∈ 𝐷 ) |
109 |
|
fnelnfp |
⊢ ( ( ( 𝑀 ‘ 𝑊 ) Fn 𝐷 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑦 ∈ dom ( ( 𝑀 ‘ 𝑊 ) ∖ I ) ↔ ( ( 𝑀 ‘ 𝑊 ) ‘ 𝑦 ) ≠ 𝑦 ) ) |
110 |
104 108 109
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) → ( 𝑦 ∈ dom ( ( 𝑀 ‘ 𝑊 ) ∖ I ) ↔ ( ( 𝑀 ‘ 𝑊 ) ‘ 𝑦 ) ≠ 𝑦 ) ) |
111 |
95 110
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑊 ) → 𝑦 ∈ dom ( ( 𝑀 ‘ 𝑊 ) ∖ I ) ) |
112 |
111
|
ex |
⊢ ( 𝜑 → ( 𝑦 ∈ ran 𝑊 → 𝑦 ∈ dom ( ( 𝑀 ‘ 𝑊 ) ∖ I ) ) ) |
113 |
112
|
ssrdv |
⊢ ( 𝜑 → ran 𝑊 ⊆ dom ( ( 𝑀 ‘ 𝑊 ) ∖ I ) ) |
114 |
1 2 3 4
|
tocycfv |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑊 ) = ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∪ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) ) |
115 |
114
|
difeq1d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑊 ) ∖ I ) = ( ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∪ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) ∖ I ) ) |
116 |
115
|
dmeqd |
⊢ ( 𝜑 → dom ( ( 𝑀 ‘ 𝑊 ) ∖ I ) = dom ( ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∪ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) ∖ I ) ) |
117 |
|
difundir |
⊢ ( ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∪ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) ∖ I ) = ( ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∖ I ) ∪ ( ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ∖ I ) ) |
118 |
|
resdifcom |
⊢ ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∖ I ) = ( ( I ∖ I ) ↾ ( 𝐷 ∖ ran 𝑊 ) ) |
119 |
|
difid |
⊢ ( I ∖ I ) = ∅ |
120 |
119
|
reseq1i |
⊢ ( ( I ∖ I ) ↾ ( 𝐷 ∖ ran 𝑊 ) ) = ( ∅ ↾ ( 𝐷 ∖ ran 𝑊 ) ) |
121 |
|
0res |
⊢ ( ∅ ↾ ( 𝐷 ∖ ran 𝑊 ) ) = ∅ |
122 |
118 120 121
|
3eqtri |
⊢ ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∖ I ) = ∅ |
123 |
122
|
uneq1i |
⊢ ( ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∖ I ) ∪ ( ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ∖ I ) ) = ( ∅ ∪ ( ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ∖ I ) ) |
124 |
|
0un |
⊢ ( ∅ ∪ ( ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ∖ I ) ) = ( ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ∖ I ) |
125 |
117 123 124
|
3eqtri |
⊢ ( ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∪ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) ∖ I ) = ( ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ∖ I ) |
126 |
125
|
dmeqi |
⊢ dom ( ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∪ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) ∖ I ) = dom ( ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ∖ I ) |
127 |
|
difss |
⊢ ( ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ∖ I ) ⊆ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) |
128 |
|
dmss |
⊢ ( ( ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ∖ I ) ⊆ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) → dom ( ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ∖ I ) ⊆ dom ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) |
129 |
127 128
|
ax-mp |
⊢ dom ( ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ∖ I ) ⊆ dom ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) |
130 |
|
dmcoss |
⊢ dom ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ⊆ dom ◡ 𝑊 |
131 |
|
df-rn |
⊢ ran 𝑊 = dom ◡ 𝑊 |
132 |
130 131
|
sseqtrri |
⊢ dom ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ⊆ ran 𝑊 |
133 |
129 132
|
sstri |
⊢ dom ( ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ∖ I ) ⊆ ran 𝑊 |
134 |
126 133
|
eqsstri |
⊢ dom ( ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∪ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) ∖ I ) ⊆ ran 𝑊 |
135 |
116 134
|
eqsstrdi |
⊢ ( 𝜑 → dom ( ( 𝑀 ‘ 𝑊 ) ∖ I ) ⊆ ran 𝑊 ) |
136 |
113 135
|
eqssd |
⊢ ( 𝜑 → ran 𝑊 = dom ( ( 𝑀 ‘ 𝑊 ) ∖ I ) ) |