Step |
Hyp |
Ref |
Expression |
1 |
|
cycpmrn.1 |
|- M = ( toCyc ` D ) |
2 |
|
cycpmrn.2 |
|- ( ph -> D e. V ) |
3 |
|
cycpmrn.3 |
|- ( ph -> W e. Word D ) |
4 |
|
cycpmrn.4 |
|- ( ph -> W : dom W -1-1-> D ) |
5 |
|
cycpmrn.5 |
|- ( ph -> 1 < ( # ` W ) ) |
6 |
4
|
ad4antr |
|- ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> W : dom W -1-1-> D ) |
7 |
|
simpllr |
|- ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> x e. dom W ) |
8 |
|
fzo0ss1 |
|- ( 1 ..^ ( # ` W ) ) C_ ( 0 ..^ ( # ` W ) ) |
9 |
|
simpr |
|- ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) |
10 |
|
lencl |
|- ( W e. Word D -> ( # ` W ) e. NN0 ) |
11 |
3 10
|
syl |
|- ( ph -> ( # ` W ) e. NN0 ) |
12 |
11
|
ad4antr |
|- ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> ( # ` W ) e. NN0 ) |
13 |
12
|
nn0zd |
|- ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> ( # ` W ) e. ZZ ) |
14 |
|
1zzd |
|- ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> 1 e. ZZ ) |
15 |
|
fzoaddel2 |
|- ( ( x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) /\ ( # ` W ) e. ZZ /\ 1 e. ZZ ) -> ( x + 1 ) e. ( 1 ..^ ( # ` W ) ) ) |
16 |
9 13 14 15
|
syl3anc |
|- ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> ( x + 1 ) e. ( 1 ..^ ( # ` W ) ) ) |
17 |
8 16
|
sselid |
|- ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> ( x + 1 ) e. ( 0 ..^ ( # ` W ) ) ) |
18 |
3
|
ad4antr |
|- ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> W e. Word D ) |
19 |
|
wrddm |
|- ( W e. Word D -> dom W = ( 0 ..^ ( # ` W ) ) ) |
20 |
18 19
|
syl |
|- ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> dom W = ( 0 ..^ ( # ` W ) ) ) |
21 |
17 20
|
eleqtrrd |
|- ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> ( x + 1 ) e. dom W ) |
22 |
|
fzossz |
|- ( 0 ..^ ( ( # ` W ) - 1 ) ) C_ ZZ |
23 |
22 9
|
sselid |
|- ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> x e. ZZ ) |
24 |
23
|
zred |
|- ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> x e. RR ) |
25 |
24
|
ltp1d |
|- ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> x < ( x + 1 ) ) |
26 |
24 25
|
ltned |
|- ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> x =/= ( x + 1 ) ) |
27 |
|
f1veqaeq |
|- ( ( W : dom W -1-1-> D /\ ( x e. dom W /\ ( x + 1 ) e. dom W ) ) -> ( ( W ` x ) = ( W ` ( x + 1 ) ) -> x = ( x + 1 ) ) ) |
28 |
27
|
necon3d |
|- ( ( W : dom W -1-1-> D /\ ( x e. dom W /\ ( x + 1 ) e. dom W ) ) -> ( x =/= ( x + 1 ) -> ( W ` x ) =/= ( W ` ( x + 1 ) ) ) ) |
29 |
28
|
anassrs |
|- ( ( ( W : dom W -1-1-> D /\ x e. dom W ) /\ ( x + 1 ) e. dom W ) -> ( x =/= ( x + 1 ) -> ( W ` x ) =/= ( W ` ( x + 1 ) ) ) ) |
30 |
29
|
imp |
|- ( ( ( ( W : dom W -1-1-> D /\ x e. dom W ) /\ ( x + 1 ) e. dom W ) /\ x =/= ( x + 1 ) ) -> ( W ` x ) =/= ( W ` ( x + 1 ) ) ) |
31 |
6 7 21 26 30
|
syl1111anc |
|- ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> ( W ` x ) =/= ( W ` ( x + 1 ) ) ) |
32 |
2
|
ad4antr |
|- ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> D e. V ) |
33 |
1 32 18 6 9
|
cycpmfv1 |
|- ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> ( ( M ` W ) ` ( W ` x ) ) = ( W ` ( x + 1 ) ) ) |
34 |
31 33
|
neeqtrrd |
|- ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> ( W ` x ) =/= ( ( M ` W ) ` ( W ` x ) ) ) |
35 |
34
|
necomd |
|- ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> ( ( M ` W ) ` ( W ` x ) ) =/= ( W ` x ) ) |
36 |
|
simplr |
|- ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> y = ( W ` x ) ) |
37 |
36
|
fveq2d |
|- ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> ( ( M ` W ) ` y ) = ( ( M ` W ) ` ( W ` x ) ) ) |
38 |
35 37 36
|
3netr4d |
|- ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> ( ( M ` W ) ` y ) =/= y ) |
39 |
4
|
ad4antr |
|- ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x = ( ( # ` W ) - 1 ) ) -> W : dom W -1-1-> D ) |
40 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) -> W e. Word D ) |
41 |
|
eldmne0 |
|- ( x e. dom W -> W =/= (/) ) |
42 |
41
|
ad2antlr |
|- ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) -> W =/= (/) ) |
43 |
|
lennncl |
|- ( ( W e. Word D /\ W =/= (/) ) -> ( # ` W ) e. NN ) |
44 |
40 42 43
|
syl2anc |
|- ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) -> ( # ` W ) e. NN ) |
45 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ ( # ` W ) ) <-> ( # ` W ) e. NN ) |
46 |
44 45
|
sylibr |
|- ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) -> 0 e. ( 0 ..^ ( # ` W ) ) ) |
47 |
40 19
|
syl |
|- ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) -> dom W = ( 0 ..^ ( # ` W ) ) ) |
48 |
46 47
|
eleqtrrd |
|- ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) -> 0 e. dom W ) |
49 |
48
|
adantr |
|- ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x = ( ( # ` W ) - 1 ) ) -> 0 e. dom W ) |
50 |
|
simpllr |
|- ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x = ( ( # ` W ) - 1 ) ) -> x e. dom W ) |
51 |
|
0red |
|- ( ph -> 0 e. RR ) |
52 |
|
1red |
|- ( ph -> 1 e. RR ) |
53 |
11
|
nn0red |
|- ( ph -> ( # ` W ) e. RR ) |
54 |
52 53
|
posdifd |
|- ( ph -> ( 1 < ( # ` W ) <-> 0 < ( ( # ` W ) - 1 ) ) ) |
55 |
5 54
|
mpbid |
|- ( ph -> 0 < ( ( # ` W ) - 1 ) ) |
56 |
51 55
|
ltned |
|- ( ph -> 0 =/= ( ( # ` W ) - 1 ) ) |
57 |
56
|
ad4antr |
|- ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x = ( ( # ` W ) - 1 ) ) -> 0 =/= ( ( # ` W ) - 1 ) ) |
58 |
|
simpr |
|- ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x = ( ( # ` W ) - 1 ) ) -> x = ( ( # ` W ) - 1 ) ) |
59 |
57 58
|
neeqtrrd |
|- ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x = ( ( # ` W ) - 1 ) ) -> 0 =/= x ) |
60 |
|
f1veqaeq |
|- ( ( W : dom W -1-1-> D /\ ( 0 e. dom W /\ x e. dom W ) ) -> ( ( W ` 0 ) = ( W ` x ) -> 0 = x ) ) |
61 |
60
|
necon3d |
|- ( ( W : dom W -1-1-> D /\ ( 0 e. dom W /\ x e. dom W ) ) -> ( 0 =/= x -> ( W ` 0 ) =/= ( W ` x ) ) ) |
62 |
61
|
anassrs |
|- ( ( ( W : dom W -1-1-> D /\ 0 e. dom W ) /\ x e. dom W ) -> ( 0 =/= x -> ( W ` 0 ) =/= ( W ` x ) ) ) |
63 |
62
|
imp |
|- ( ( ( ( W : dom W -1-1-> D /\ 0 e. dom W ) /\ x e. dom W ) /\ 0 =/= x ) -> ( W ` 0 ) =/= ( W ` x ) ) |
64 |
39 49 50 59 63
|
syl1111anc |
|- ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x = ( ( # ` W ) - 1 ) ) -> ( W ` 0 ) =/= ( W ` x ) ) |
65 |
|
simplr |
|- ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x = ( ( # ` W ) - 1 ) ) -> y = ( W ` x ) ) |
66 |
65
|
fveq2d |
|- ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x = ( ( # ` W ) - 1 ) ) -> ( ( M ` W ) ` y ) = ( ( M ` W ) ` ( W ` x ) ) ) |
67 |
2
|
ad4antr |
|- ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x = ( ( # ` W ) - 1 ) ) -> D e. V ) |
68 |
3
|
ad4antr |
|- ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x = ( ( # ` W ) - 1 ) ) -> W e. Word D ) |
69 |
44
|
nngt0d |
|- ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) -> 0 < ( # ` W ) ) |
70 |
69
|
adantr |
|- ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x = ( ( # ` W ) - 1 ) ) -> 0 < ( # ` W ) ) |
71 |
1 67 68 39 70 58
|
cycpmfv2 |
|- ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x = ( ( # ` W ) - 1 ) ) -> ( ( M ` W ) ` ( W ` x ) ) = ( W ` 0 ) ) |
72 |
66 71
|
eqtrd |
|- ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x = ( ( # ` W ) - 1 ) ) -> ( ( M ` W ) ` y ) = ( W ` 0 ) ) |
73 |
64 72 65
|
3netr4d |
|- ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x = ( ( # ` W ) - 1 ) ) -> ( ( M ` W ) ` y ) =/= y ) |
74 |
|
simplr |
|- ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) -> x e. dom W ) |
75 |
74 47
|
eleqtrd |
|- ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) -> x e. ( 0 ..^ ( # ` W ) ) ) |
76 |
|
0z |
|- 0 e. ZZ |
77 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
78 |
77
|
fveq2i |
|- ( ZZ>= ` ( 0 + 1 ) ) = ( ZZ>= ` 1 ) |
79 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
80 |
78 79
|
eqtr4i |
|- ( ZZ>= ` ( 0 + 1 ) ) = NN |
81 |
44 80
|
eleqtrrdi |
|- ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) -> ( # ` W ) e. ( ZZ>= ` ( 0 + 1 ) ) ) |
82 |
|
fzosplitsnm1 |
|- ( ( 0 e. ZZ /\ ( # ` W ) e. ( ZZ>= ` ( 0 + 1 ) ) ) -> ( 0 ..^ ( # ` W ) ) = ( ( 0 ..^ ( ( # ` W ) - 1 ) ) u. { ( ( # ` W ) - 1 ) } ) ) |
83 |
76 81 82
|
sylancr |
|- ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) -> ( 0 ..^ ( # ` W ) ) = ( ( 0 ..^ ( ( # ` W ) - 1 ) ) u. { ( ( # ` W ) - 1 ) } ) ) |
84 |
75 83
|
eleqtrd |
|- ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) -> x e. ( ( 0 ..^ ( ( # ` W ) - 1 ) ) u. { ( ( # ` W ) - 1 ) } ) ) |
85 |
|
elun |
|- ( x e. ( ( 0 ..^ ( ( # ` W ) - 1 ) ) u. { ( ( # ` W ) - 1 ) } ) <-> ( x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) \/ x e. { ( ( # ` W ) - 1 ) } ) ) |
86 |
84 85
|
sylib |
|- ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) -> ( x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) \/ x e. { ( ( # ` W ) - 1 ) } ) ) |
87 |
|
velsn |
|- ( x e. { ( ( # ` W ) - 1 ) } <-> x = ( ( # ` W ) - 1 ) ) |
88 |
87
|
orbi2i |
|- ( ( x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) \/ x e. { ( ( # ` W ) - 1 ) } ) <-> ( x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) \/ x = ( ( # ` W ) - 1 ) ) ) |
89 |
86 88
|
sylib |
|- ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) -> ( x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) \/ x = ( ( # ` W ) - 1 ) ) ) |
90 |
38 73 89
|
mpjaodan |
|- ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) -> ( ( M ` W ) ` y ) =/= y ) |
91 |
|
f1fun |
|- ( W : dom W -1-1-> D -> Fun W ) |
92 |
|
elrnrexdmb |
|- ( Fun W -> ( y e. ran W <-> E. x e. dom W y = ( W ` x ) ) ) |
93 |
4 91 92
|
3syl |
|- ( ph -> ( y e. ran W <-> E. x e. dom W y = ( W ` x ) ) ) |
94 |
93
|
biimpa |
|- ( ( ph /\ y e. ran W ) -> E. x e. dom W y = ( W ` x ) ) |
95 |
90 94
|
r19.29a |
|- ( ( ph /\ y e. ran W ) -> ( ( M ` W ) ` y ) =/= y ) |
96 |
|
eqid |
|- ( SymGrp ` D ) = ( SymGrp ` D ) |
97 |
1 2 3 4 96
|
cycpmcl |
|- ( ph -> ( M ` W ) e. ( Base ` ( SymGrp ` D ) ) ) |
98 |
|
eqid |
|- ( Base ` ( SymGrp ` D ) ) = ( Base ` ( SymGrp ` D ) ) |
99 |
96 98
|
elsymgbas |
|- ( D e. V -> ( ( M ` W ) e. ( Base ` ( SymGrp ` D ) ) <-> ( M ` W ) : D -1-1-onto-> D ) ) |
100 |
2 99
|
syl |
|- ( ph -> ( ( M ` W ) e. ( Base ` ( SymGrp ` D ) ) <-> ( M ` W ) : D -1-1-onto-> D ) ) |
101 |
97 100
|
mpbid |
|- ( ph -> ( M ` W ) : D -1-1-onto-> D ) |
102 |
|
f1ofn |
|- ( ( M ` W ) : D -1-1-onto-> D -> ( M ` W ) Fn D ) |
103 |
101 102
|
syl |
|- ( ph -> ( M ` W ) Fn D ) |
104 |
103
|
adantr |
|- ( ( ph /\ y e. ran W ) -> ( M ` W ) Fn D ) |
105 |
|
wrdf |
|- ( W e. Word D -> W : ( 0 ..^ ( # ` W ) ) --> D ) |
106 |
|
frn |
|- ( W : ( 0 ..^ ( # ` W ) ) --> D -> ran W C_ D ) |
107 |
3 105 106
|
3syl |
|- ( ph -> ran W C_ D ) |
108 |
107
|
sselda |
|- ( ( ph /\ y e. ran W ) -> y e. D ) |
109 |
|
fnelnfp |
|- ( ( ( M ` W ) Fn D /\ y e. D ) -> ( y e. dom ( ( M ` W ) \ _I ) <-> ( ( M ` W ) ` y ) =/= y ) ) |
110 |
104 108 109
|
syl2anc |
|- ( ( ph /\ y e. ran W ) -> ( y e. dom ( ( M ` W ) \ _I ) <-> ( ( M ` W ) ` y ) =/= y ) ) |
111 |
95 110
|
mpbird |
|- ( ( ph /\ y e. ran W ) -> y e. dom ( ( M ` W ) \ _I ) ) |
112 |
111
|
ex |
|- ( ph -> ( y e. ran W -> y e. dom ( ( M ` W ) \ _I ) ) ) |
113 |
112
|
ssrdv |
|- ( ph -> ran W C_ dom ( ( M ` W ) \ _I ) ) |
114 |
1 2 3 4
|
tocycfv |
|- ( ph -> ( M ` W ) = ( ( _I |` ( D \ ran W ) ) u. ( ( W cyclShift 1 ) o. `' W ) ) ) |
115 |
114
|
difeq1d |
|- ( ph -> ( ( M ` W ) \ _I ) = ( ( ( _I |` ( D \ ran W ) ) u. ( ( W cyclShift 1 ) o. `' W ) ) \ _I ) ) |
116 |
115
|
dmeqd |
|- ( ph -> dom ( ( M ` W ) \ _I ) = dom ( ( ( _I |` ( D \ ran W ) ) u. ( ( W cyclShift 1 ) o. `' W ) ) \ _I ) ) |
117 |
|
difundir |
|- ( ( ( _I |` ( D \ ran W ) ) u. ( ( W cyclShift 1 ) o. `' W ) ) \ _I ) = ( ( ( _I |` ( D \ ran W ) ) \ _I ) u. ( ( ( W cyclShift 1 ) o. `' W ) \ _I ) ) |
118 |
|
resdifcom |
|- ( ( _I |` ( D \ ran W ) ) \ _I ) = ( ( _I \ _I ) |` ( D \ ran W ) ) |
119 |
|
difid |
|- ( _I \ _I ) = (/) |
120 |
119
|
reseq1i |
|- ( ( _I \ _I ) |` ( D \ ran W ) ) = ( (/) |` ( D \ ran W ) ) |
121 |
|
0res |
|- ( (/) |` ( D \ ran W ) ) = (/) |
122 |
118 120 121
|
3eqtri |
|- ( ( _I |` ( D \ ran W ) ) \ _I ) = (/) |
123 |
122
|
uneq1i |
|- ( ( ( _I |` ( D \ ran W ) ) \ _I ) u. ( ( ( W cyclShift 1 ) o. `' W ) \ _I ) ) = ( (/) u. ( ( ( W cyclShift 1 ) o. `' W ) \ _I ) ) |
124 |
|
0un |
|- ( (/) u. ( ( ( W cyclShift 1 ) o. `' W ) \ _I ) ) = ( ( ( W cyclShift 1 ) o. `' W ) \ _I ) |
125 |
117 123 124
|
3eqtri |
|- ( ( ( _I |` ( D \ ran W ) ) u. ( ( W cyclShift 1 ) o. `' W ) ) \ _I ) = ( ( ( W cyclShift 1 ) o. `' W ) \ _I ) |
126 |
125
|
dmeqi |
|- dom ( ( ( _I |` ( D \ ran W ) ) u. ( ( W cyclShift 1 ) o. `' W ) ) \ _I ) = dom ( ( ( W cyclShift 1 ) o. `' W ) \ _I ) |
127 |
|
difss |
|- ( ( ( W cyclShift 1 ) o. `' W ) \ _I ) C_ ( ( W cyclShift 1 ) o. `' W ) |
128 |
|
dmss |
|- ( ( ( ( W cyclShift 1 ) o. `' W ) \ _I ) C_ ( ( W cyclShift 1 ) o. `' W ) -> dom ( ( ( W cyclShift 1 ) o. `' W ) \ _I ) C_ dom ( ( W cyclShift 1 ) o. `' W ) ) |
129 |
127 128
|
ax-mp |
|- dom ( ( ( W cyclShift 1 ) o. `' W ) \ _I ) C_ dom ( ( W cyclShift 1 ) o. `' W ) |
130 |
|
dmcoss |
|- dom ( ( W cyclShift 1 ) o. `' W ) C_ dom `' W |
131 |
|
df-rn |
|- ran W = dom `' W |
132 |
130 131
|
sseqtrri |
|- dom ( ( W cyclShift 1 ) o. `' W ) C_ ran W |
133 |
129 132
|
sstri |
|- dom ( ( ( W cyclShift 1 ) o. `' W ) \ _I ) C_ ran W |
134 |
126 133
|
eqsstri |
|- dom ( ( ( _I |` ( D \ ran W ) ) u. ( ( W cyclShift 1 ) o. `' W ) ) \ _I ) C_ ran W |
135 |
116 134
|
eqsstrdi |
|- ( ph -> dom ( ( M ` W ) \ _I ) C_ ran W ) |
136 |
113 135
|
eqssd |
|- ( ph -> ran W = dom ( ( M ` W ) \ _I ) ) |