Metamath Proof Explorer


Theorem cycpmrn

Description: The range of the word used to build a cycle is the cycle's orbit, i.e., the set of points it moves. (Contributed by Thierry Arnoux, 20-Nov-2023)

Ref Expression
Hypotheses cycpmrn.1
|- M = ( toCyc ` D )
cycpmrn.2
|- ( ph -> D e. V )
cycpmrn.3
|- ( ph -> W e. Word D )
cycpmrn.4
|- ( ph -> W : dom W -1-1-> D )
cycpmrn.5
|- ( ph -> 1 < ( # ` W ) )
Assertion cycpmrn
|- ( ph -> ran W = dom ( ( M ` W ) \ _I ) )

Proof

Step Hyp Ref Expression
1 cycpmrn.1
 |-  M = ( toCyc ` D )
2 cycpmrn.2
 |-  ( ph -> D e. V )
3 cycpmrn.3
 |-  ( ph -> W e. Word D )
4 cycpmrn.4
 |-  ( ph -> W : dom W -1-1-> D )
5 cycpmrn.5
 |-  ( ph -> 1 < ( # ` W ) )
6 4 ad4antr
 |-  ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> W : dom W -1-1-> D )
7 simpllr
 |-  ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> x e. dom W )
8 fzo0ss1
 |-  ( 1 ..^ ( # ` W ) ) C_ ( 0 ..^ ( # ` W ) )
9 simpr
 |-  ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) )
10 lencl
 |-  ( W e. Word D -> ( # ` W ) e. NN0 )
11 3 10 syl
 |-  ( ph -> ( # ` W ) e. NN0 )
12 11 ad4antr
 |-  ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> ( # ` W ) e. NN0 )
13 12 nn0zd
 |-  ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> ( # ` W ) e. ZZ )
14 1zzd
 |-  ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> 1 e. ZZ )
15 fzoaddel2
 |-  ( ( x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) /\ ( # ` W ) e. ZZ /\ 1 e. ZZ ) -> ( x + 1 ) e. ( 1 ..^ ( # ` W ) ) )
16 9 13 14 15 syl3anc
 |-  ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> ( x + 1 ) e. ( 1 ..^ ( # ` W ) ) )
17 8 16 sselid
 |-  ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> ( x + 1 ) e. ( 0 ..^ ( # ` W ) ) )
18 3 ad4antr
 |-  ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> W e. Word D )
19 wrddm
 |-  ( W e. Word D -> dom W = ( 0 ..^ ( # ` W ) ) )
20 18 19 syl
 |-  ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> dom W = ( 0 ..^ ( # ` W ) ) )
21 17 20 eleqtrrd
 |-  ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> ( x + 1 ) e. dom W )
22 fzossz
 |-  ( 0 ..^ ( ( # ` W ) - 1 ) ) C_ ZZ
23 22 9 sselid
 |-  ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> x e. ZZ )
24 23 zred
 |-  ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> x e. RR )
25 24 ltp1d
 |-  ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> x < ( x + 1 ) )
26 24 25 ltned
 |-  ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> x =/= ( x + 1 ) )
27 f1veqaeq
 |-  ( ( W : dom W -1-1-> D /\ ( x e. dom W /\ ( x + 1 ) e. dom W ) ) -> ( ( W ` x ) = ( W ` ( x + 1 ) ) -> x = ( x + 1 ) ) )
28 27 necon3d
 |-  ( ( W : dom W -1-1-> D /\ ( x e. dom W /\ ( x + 1 ) e. dom W ) ) -> ( x =/= ( x + 1 ) -> ( W ` x ) =/= ( W ` ( x + 1 ) ) ) )
29 28 anassrs
 |-  ( ( ( W : dom W -1-1-> D /\ x e. dom W ) /\ ( x + 1 ) e. dom W ) -> ( x =/= ( x + 1 ) -> ( W ` x ) =/= ( W ` ( x + 1 ) ) ) )
30 29 imp
 |-  ( ( ( ( W : dom W -1-1-> D /\ x e. dom W ) /\ ( x + 1 ) e. dom W ) /\ x =/= ( x + 1 ) ) -> ( W ` x ) =/= ( W ` ( x + 1 ) ) )
31 6 7 21 26 30 syl1111anc
 |-  ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> ( W ` x ) =/= ( W ` ( x + 1 ) ) )
32 2 ad4antr
 |-  ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> D e. V )
33 1 32 18 6 9 cycpmfv1
 |-  ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> ( ( M ` W ) ` ( W ` x ) ) = ( W ` ( x + 1 ) ) )
34 31 33 neeqtrrd
 |-  ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> ( W ` x ) =/= ( ( M ` W ) ` ( W ` x ) ) )
35 34 necomd
 |-  ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> ( ( M ` W ) ` ( W ` x ) ) =/= ( W ` x ) )
36 simplr
 |-  ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> y = ( W ` x ) )
37 36 fveq2d
 |-  ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> ( ( M ` W ) ` y ) = ( ( M ` W ) ` ( W ` x ) ) )
38 35 37 36 3netr4d
 |-  ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> ( ( M ` W ) ` y ) =/= y )
39 4 ad4antr
 |-  ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x = ( ( # ` W ) - 1 ) ) -> W : dom W -1-1-> D )
40 3 ad3antrrr
 |-  ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) -> W e. Word D )
41 eldmne0
 |-  ( x e. dom W -> W =/= (/) )
42 41 ad2antlr
 |-  ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) -> W =/= (/) )
43 lennncl
 |-  ( ( W e. Word D /\ W =/= (/) ) -> ( # ` W ) e. NN )
44 40 42 43 syl2anc
 |-  ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) -> ( # ` W ) e. NN )
45 lbfzo0
 |-  ( 0 e. ( 0 ..^ ( # ` W ) ) <-> ( # ` W ) e. NN )
46 44 45 sylibr
 |-  ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) -> 0 e. ( 0 ..^ ( # ` W ) ) )
47 40 19 syl
 |-  ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) -> dom W = ( 0 ..^ ( # ` W ) ) )
48 46 47 eleqtrrd
 |-  ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) -> 0 e. dom W )
49 48 adantr
 |-  ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x = ( ( # ` W ) - 1 ) ) -> 0 e. dom W )
50 simpllr
 |-  ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x = ( ( # ` W ) - 1 ) ) -> x e. dom W )
51 0red
 |-  ( ph -> 0 e. RR )
52 1red
 |-  ( ph -> 1 e. RR )
53 11 nn0red
 |-  ( ph -> ( # ` W ) e. RR )
54 52 53 posdifd
 |-  ( ph -> ( 1 < ( # ` W ) <-> 0 < ( ( # ` W ) - 1 ) ) )
55 5 54 mpbid
 |-  ( ph -> 0 < ( ( # ` W ) - 1 ) )
56 51 55 ltned
 |-  ( ph -> 0 =/= ( ( # ` W ) - 1 ) )
57 56 ad4antr
 |-  ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x = ( ( # ` W ) - 1 ) ) -> 0 =/= ( ( # ` W ) - 1 ) )
58 simpr
 |-  ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x = ( ( # ` W ) - 1 ) ) -> x = ( ( # ` W ) - 1 ) )
59 57 58 neeqtrrd
 |-  ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x = ( ( # ` W ) - 1 ) ) -> 0 =/= x )
60 f1veqaeq
 |-  ( ( W : dom W -1-1-> D /\ ( 0 e. dom W /\ x e. dom W ) ) -> ( ( W ` 0 ) = ( W ` x ) -> 0 = x ) )
61 60 necon3d
 |-  ( ( W : dom W -1-1-> D /\ ( 0 e. dom W /\ x e. dom W ) ) -> ( 0 =/= x -> ( W ` 0 ) =/= ( W ` x ) ) )
62 61 anassrs
 |-  ( ( ( W : dom W -1-1-> D /\ 0 e. dom W ) /\ x e. dom W ) -> ( 0 =/= x -> ( W ` 0 ) =/= ( W ` x ) ) )
63 62 imp
 |-  ( ( ( ( W : dom W -1-1-> D /\ 0 e. dom W ) /\ x e. dom W ) /\ 0 =/= x ) -> ( W ` 0 ) =/= ( W ` x ) )
64 39 49 50 59 63 syl1111anc
 |-  ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x = ( ( # ` W ) - 1 ) ) -> ( W ` 0 ) =/= ( W ` x ) )
65 simplr
 |-  ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x = ( ( # ` W ) - 1 ) ) -> y = ( W ` x ) )
66 65 fveq2d
 |-  ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x = ( ( # ` W ) - 1 ) ) -> ( ( M ` W ) ` y ) = ( ( M ` W ) ` ( W ` x ) ) )
67 2 ad4antr
 |-  ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x = ( ( # ` W ) - 1 ) ) -> D e. V )
68 3 ad4antr
 |-  ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x = ( ( # ` W ) - 1 ) ) -> W e. Word D )
69 44 nngt0d
 |-  ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) -> 0 < ( # ` W ) )
70 69 adantr
 |-  ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x = ( ( # ` W ) - 1 ) ) -> 0 < ( # ` W ) )
71 1 67 68 39 70 58 cycpmfv2
 |-  ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x = ( ( # ` W ) - 1 ) ) -> ( ( M ` W ) ` ( W ` x ) ) = ( W ` 0 ) )
72 66 71 eqtrd
 |-  ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x = ( ( # ` W ) - 1 ) ) -> ( ( M ` W ) ` y ) = ( W ` 0 ) )
73 64 72 65 3netr4d
 |-  ( ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) /\ x = ( ( # ` W ) - 1 ) ) -> ( ( M ` W ) ` y ) =/= y )
74 simplr
 |-  ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) -> x e. dom W )
75 74 47 eleqtrd
 |-  ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) -> x e. ( 0 ..^ ( # ` W ) ) )
76 0z
 |-  0 e. ZZ
77 0p1e1
 |-  ( 0 + 1 ) = 1
78 77 fveq2i
 |-  ( ZZ>= ` ( 0 + 1 ) ) = ( ZZ>= ` 1 )
79 nnuz
 |-  NN = ( ZZ>= ` 1 )
80 78 79 eqtr4i
 |-  ( ZZ>= ` ( 0 + 1 ) ) = NN
81 44 80 eleqtrrdi
 |-  ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) -> ( # ` W ) e. ( ZZ>= ` ( 0 + 1 ) ) )
82 fzosplitsnm1
 |-  ( ( 0 e. ZZ /\ ( # ` W ) e. ( ZZ>= ` ( 0 + 1 ) ) ) -> ( 0 ..^ ( # ` W ) ) = ( ( 0 ..^ ( ( # ` W ) - 1 ) ) u. { ( ( # ` W ) - 1 ) } ) )
83 76 81 82 sylancr
 |-  ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) -> ( 0 ..^ ( # ` W ) ) = ( ( 0 ..^ ( ( # ` W ) - 1 ) ) u. { ( ( # ` W ) - 1 ) } ) )
84 75 83 eleqtrd
 |-  ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) -> x e. ( ( 0 ..^ ( ( # ` W ) - 1 ) ) u. { ( ( # ` W ) - 1 ) } ) )
85 elun
 |-  ( x e. ( ( 0 ..^ ( ( # ` W ) - 1 ) ) u. { ( ( # ` W ) - 1 ) } ) <-> ( x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) \/ x e. { ( ( # ` W ) - 1 ) } ) )
86 84 85 sylib
 |-  ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) -> ( x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) \/ x e. { ( ( # ` W ) - 1 ) } ) )
87 velsn
 |-  ( x e. { ( ( # ` W ) - 1 ) } <-> x = ( ( # ` W ) - 1 ) )
88 87 orbi2i
 |-  ( ( x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) \/ x e. { ( ( # ` W ) - 1 ) } ) <-> ( x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) \/ x = ( ( # ` W ) - 1 ) ) )
89 86 88 sylib
 |-  ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) -> ( x e. ( 0 ..^ ( ( # ` W ) - 1 ) ) \/ x = ( ( # ` W ) - 1 ) ) )
90 38 73 89 mpjaodan
 |-  ( ( ( ( ph /\ y e. ran W ) /\ x e. dom W ) /\ y = ( W ` x ) ) -> ( ( M ` W ) ` y ) =/= y )
91 f1fun
 |-  ( W : dom W -1-1-> D -> Fun W )
92 elrnrexdmb
 |-  ( Fun W -> ( y e. ran W <-> E. x e. dom W y = ( W ` x ) ) )
93 4 91 92 3syl
 |-  ( ph -> ( y e. ran W <-> E. x e. dom W y = ( W ` x ) ) )
94 93 biimpa
 |-  ( ( ph /\ y e. ran W ) -> E. x e. dom W y = ( W ` x ) )
95 90 94 r19.29a
 |-  ( ( ph /\ y e. ran W ) -> ( ( M ` W ) ` y ) =/= y )
96 eqid
 |-  ( SymGrp ` D ) = ( SymGrp ` D )
97 1 2 3 4 96 cycpmcl
 |-  ( ph -> ( M ` W ) e. ( Base ` ( SymGrp ` D ) ) )
98 eqid
 |-  ( Base ` ( SymGrp ` D ) ) = ( Base ` ( SymGrp ` D ) )
99 96 98 elsymgbas
 |-  ( D e. V -> ( ( M ` W ) e. ( Base ` ( SymGrp ` D ) ) <-> ( M ` W ) : D -1-1-onto-> D ) )
100 2 99 syl
 |-  ( ph -> ( ( M ` W ) e. ( Base ` ( SymGrp ` D ) ) <-> ( M ` W ) : D -1-1-onto-> D ) )
101 97 100 mpbid
 |-  ( ph -> ( M ` W ) : D -1-1-onto-> D )
102 f1ofn
 |-  ( ( M ` W ) : D -1-1-onto-> D -> ( M ` W ) Fn D )
103 101 102 syl
 |-  ( ph -> ( M ` W ) Fn D )
104 103 adantr
 |-  ( ( ph /\ y e. ran W ) -> ( M ` W ) Fn D )
105 wrdf
 |-  ( W e. Word D -> W : ( 0 ..^ ( # ` W ) ) --> D )
106 frn
 |-  ( W : ( 0 ..^ ( # ` W ) ) --> D -> ran W C_ D )
107 3 105 106 3syl
 |-  ( ph -> ran W C_ D )
108 107 sselda
 |-  ( ( ph /\ y e. ran W ) -> y e. D )
109 fnelnfp
 |-  ( ( ( M ` W ) Fn D /\ y e. D ) -> ( y e. dom ( ( M ` W ) \ _I ) <-> ( ( M ` W ) ` y ) =/= y ) )
110 104 108 109 syl2anc
 |-  ( ( ph /\ y e. ran W ) -> ( y e. dom ( ( M ` W ) \ _I ) <-> ( ( M ` W ) ` y ) =/= y ) )
111 95 110 mpbird
 |-  ( ( ph /\ y e. ran W ) -> y e. dom ( ( M ` W ) \ _I ) )
112 111 ex
 |-  ( ph -> ( y e. ran W -> y e. dom ( ( M ` W ) \ _I ) ) )
113 112 ssrdv
 |-  ( ph -> ran W C_ dom ( ( M ` W ) \ _I ) )
114 1 2 3 4 tocycfv
 |-  ( ph -> ( M ` W ) = ( ( _I |` ( D \ ran W ) ) u. ( ( W cyclShift 1 ) o. `' W ) ) )
115 114 difeq1d
 |-  ( ph -> ( ( M ` W ) \ _I ) = ( ( ( _I |` ( D \ ran W ) ) u. ( ( W cyclShift 1 ) o. `' W ) ) \ _I ) )
116 115 dmeqd
 |-  ( ph -> dom ( ( M ` W ) \ _I ) = dom ( ( ( _I |` ( D \ ran W ) ) u. ( ( W cyclShift 1 ) o. `' W ) ) \ _I ) )
117 difundir
 |-  ( ( ( _I |` ( D \ ran W ) ) u. ( ( W cyclShift 1 ) o. `' W ) ) \ _I ) = ( ( ( _I |` ( D \ ran W ) ) \ _I ) u. ( ( ( W cyclShift 1 ) o. `' W ) \ _I ) )
118 resdifcom
 |-  ( ( _I |` ( D \ ran W ) ) \ _I ) = ( ( _I \ _I ) |` ( D \ ran W ) )
119 difid
 |-  ( _I \ _I ) = (/)
120 119 reseq1i
 |-  ( ( _I \ _I ) |` ( D \ ran W ) ) = ( (/) |` ( D \ ran W ) )
121 0res
 |-  ( (/) |` ( D \ ran W ) ) = (/)
122 118 120 121 3eqtri
 |-  ( ( _I |` ( D \ ran W ) ) \ _I ) = (/)
123 122 uneq1i
 |-  ( ( ( _I |` ( D \ ran W ) ) \ _I ) u. ( ( ( W cyclShift 1 ) o. `' W ) \ _I ) ) = ( (/) u. ( ( ( W cyclShift 1 ) o. `' W ) \ _I ) )
124 0un
 |-  ( (/) u. ( ( ( W cyclShift 1 ) o. `' W ) \ _I ) ) = ( ( ( W cyclShift 1 ) o. `' W ) \ _I )
125 117 123 124 3eqtri
 |-  ( ( ( _I |` ( D \ ran W ) ) u. ( ( W cyclShift 1 ) o. `' W ) ) \ _I ) = ( ( ( W cyclShift 1 ) o. `' W ) \ _I )
126 125 dmeqi
 |-  dom ( ( ( _I |` ( D \ ran W ) ) u. ( ( W cyclShift 1 ) o. `' W ) ) \ _I ) = dom ( ( ( W cyclShift 1 ) o. `' W ) \ _I )
127 difss
 |-  ( ( ( W cyclShift 1 ) o. `' W ) \ _I ) C_ ( ( W cyclShift 1 ) o. `' W )
128 dmss
 |-  ( ( ( ( W cyclShift 1 ) o. `' W ) \ _I ) C_ ( ( W cyclShift 1 ) o. `' W ) -> dom ( ( ( W cyclShift 1 ) o. `' W ) \ _I ) C_ dom ( ( W cyclShift 1 ) o. `' W ) )
129 127 128 ax-mp
 |-  dom ( ( ( W cyclShift 1 ) o. `' W ) \ _I ) C_ dom ( ( W cyclShift 1 ) o. `' W )
130 dmcoss
 |-  dom ( ( W cyclShift 1 ) o. `' W ) C_ dom `' W
131 df-rn
 |-  ran W = dom `' W
132 130 131 sseqtrri
 |-  dom ( ( W cyclShift 1 ) o. `' W ) C_ ran W
133 129 132 sstri
 |-  dom ( ( ( W cyclShift 1 ) o. `' W ) \ _I ) C_ ran W
134 126 133 eqsstri
 |-  dom ( ( ( _I |` ( D \ ran W ) ) u. ( ( W cyclShift 1 ) o. `' W ) ) \ _I ) C_ ran W
135 116 134 eqsstrdi
 |-  ( ph -> dom ( ( M ` W ) \ _I ) C_ ran W )
136 113 135 eqssd
 |-  ( ph -> ran W = dom ( ( M ` W ) \ _I ) )