| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tocyccntz.s |
|- S = ( SymGrp ` D ) |
| 2 |
|
tocyccntz.z |
|- Z = ( Cntz ` S ) |
| 3 |
|
tocyccntz.m |
|- M = ( toCyc ` D ) |
| 4 |
|
tocyccntz.1 |
|- ( ph -> D e. V ) |
| 5 |
|
tocyccntz.2 |
|- ( ph -> Disj_ x e. A ran x ) |
| 6 |
|
tocyccntz.a |
|- ( ph -> A C_ dom M ) |
| 7 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 8 |
3 1 7
|
tocycf |
|- ( D e. V -> M : { c e. Word D | c : dom c -1-1-> D } --> ( Base ` S ) ) |
| 9 |
|
fimass |
|- ( M : { c e. Word D | c : dom c -1-1-> D } --> ( Base ` S ) -> ( M " A ) C_ ( Base ` S ) ) |
| 10 |
4 8 9
|
3syl |
|- ( ph -> ( M " A ) C_ ( Base ` S ) ) |
| 11 |
|
difss |
|- ( A \ ( `' # " { 0 , 1 } ) ) C_ A |
| 12 |
|
disjss1 |
|- ( ( A \ ( `' # " { 0 , 1 } ) ) C_ A -> ( Disj_ x e. A ran x -> Disj_ x e. ( A \ ( `' # " { 0 , 1 } ) ) ran x ) ) |
| 13 |
11 5 12
|
mpsyl |
|- ( ph -> Disj_ x e. ( A \ ( `' # " { 0 , 1 } ) ) ran x ) |
| 14 |
4
|
adantr |
|- ( ( ph /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) -> D e. V ) |
| 15 |
6
|
adantr |
|- ( ( ph /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) -> A C_ dom M ) |
| 16 |
|
simpr |
|- ( ( ph /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) -> x e. ( A \ ( `' # " { 0 , 1 } ) ) ) |
| 17 |
16
|
eldifad |
|- ( ( ph /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) -> x e. A ) |
| 18 |
15 17
|
sseldd |
|- ( ( ph /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) -> x e. dom M ) |
| 19 |
|
fdm |
|- ( M : { c e. Word D | c : dom c -1-1-> D } --> ( Base ` S ) -> dom M = { c e. Word D | c : dom c -1-1-> D } ) |
| 20 |
14 8 19
|
3syl |
|- ( ( ph /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) -> dom M = { c e. Word D | c : dom c -1-1-> D } ) |
| 21 |
18 20
|
eleqtrd |
|- ( ( ph /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) -> x e. { c e. Word D | c : dom c -1-1-> D } ) |
| 22 |
|
id |
|- ( c = x -> c = x ) |
| 23 |
|
dmeq |
|- ( c = x -> dom c = dom x ) |
| 24 |
|
eqidd |
|- ( c = x -> D = D ) |
| 25 |
22 23 24
|
f1eq123d |
|- ( c = x -> ( c : dom c -1-1-> D <-> x : dom x -1-1-> D ) ) |
| 26 |
25
|
elrab |
|- ( x e. { c e. Word D | c : dom c -1-1-> D } <-> ( x e. Word D /\ x : dom x -1-1-> D ) ) |
| 27 |
21 26
|
sylib |
|- ( ( ph /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) -> ( x e. Word D /\ x : dom x -1-1-> D ) ) |
| 28 |
27
|
simpld |
|- ( ( ph /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) -> x e. Word D ) |
| 29 |
27
|
simprd |
|- ( ( ph /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) -> x : dom x -1-1-> D ) |
| 30 |
16
|
eldifbd |
|- ( ( ph /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) -> -. x e. ( `' # " { 0 , 1 } ) ) |
| 31 |
|
hashgt1 |
|- ( x e. _V -> ( -. x e. ( `' # " { 0 , 1 } ) <-> 1 < ( # ` x ) ) ) |
| 32 |
31
|
elv |
|- ( -. x e. ( `' # " { 0 , 1 } ) <-> 1 < ( # ` x ) ) |
| 33 |
30 32
|
sylib |
|- ( ( ph /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) -> 1 < ( # ` x ) ) |
| 34 |
3 14 28 29 33
|
cycpmrn |
|- ( ( ph /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) -> ran x = dom ( ( M ` x ) \ _I ) ) |
| 35 |
16
|
fvresd |
|- ( ( ph /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) -> ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) = ( M ` x ) ) |
| 36 |
35
|
difeq1d |
|- ( ( ph /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) -> ( ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) \ _I ) = ( ( M ` x ) \ _I ) ) |
| 37 |
36
|
dmeqd |
|- ( ( ph /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) -> dom ( ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) \ _I ) = dom ( ( M ` x ) \ _I ) ) |
| 38 |
34 37
|
eqtr4d |
|- ( ( ph /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) -> ran x = dom ( ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) \ _I ) ) |
| 39 |
38
|
disjeq2dv |
|- ( ph -> ( Disj_ x e. ( A \ ( `' # " { 0 , 1 } ) ) ran x <-> Disj_ x e. ( A \ ( `' # " { 0 , 1 } ) ) dom ( ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) \ _I ) ) ) |
| 40 |
13 39
|
mpbid |
|- ( ph -> Disj_ x e. ( A \ ( `' # " { 0 , 1 } ) ) dom ( ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) \ _I ) ) |
| 41 |
4 8
|
syl |
|- ( ph -> M : { c e. Word D | c : dom c -1-1-> D } --> ( Base ` S ) ) |
| 42 |
41
|
ffdmd |
|- ( ph -> M : dom M --> ( Base ` S ) ) |
| 43 |
6
|
ssdifssd |
|- ( ph -> ( A \ ( `' # " { 0 , 1 } ) ) C_ dom M ) |
| 44 |
42 43
|
fssresd |
|- ( ph -> ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) : ( A \ ( `' # " { 0 , 1 } ) ) --> ( Base ` S ) ) |
| 45 |
41 6
|
fssdmd |
|- ( ph -> A C_ { c e. Word D | c : dom c -1-1-> D } ) |
| 46 |
45
|
ad4antr |
|- ( ( ( ( ( ph /\ s e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) /\ -. s = x ) -> A C_ { c e. Word D | c : dom c -1-1-> D } ) |
| 47 |
|
simp-4r |
|- ( ( ( ( ( ph /\ s e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) /\ -. s = x ) -> s e. ( A \ ( `' # " { 0 , 1 } ) ) ) |
| 48 |
47
|
eldifad |
|- ( ( ( ( ( ph /\ s e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) /\ -. s = x ) -> s e. A ) |
| 49 |
46 48
|
sseldd |
|- ( ( ( ( ( ph /\ s e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) /\ -. s = x ) -> s e. { c e. Word D | c : dom c -1-1-> D } ) |
| 50 |
|
id |
|- ( c = s -> c = s ) |
| 51 |
|
dmeq |
|- ( c = s -> dom c = dom s ) |
| 52 |
|
eqidd |
|- ( c = s -> D = D ) |
| 53 |
50 51 52
|
f1eq123d |
|- ( c = s -> ( c : dom c -1-1-> D <-> s : dom s -1-1-> D ) ) |
| 54 |
53
|
elrab |
|- ( s e. { c e. Word D | c : dom c -1-1-> D } <-> ( s e. Word D /\ s : dom s -1-1-> D ) ) |
| 55 |
49 54
|
sylib |
|- ( ( ( ( ( ph /\ s e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) /\ -. s = x ) -> ( s e. Word D /\ s : dom s -1-1-> D ) ) |
| 56 |
55
|
simpld |
|- ( ( ( ( ( ph /\ s e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) /\ -. s = x ) -> s e. Word D ) |
| 57 |
|
wrdf |
|- ( s e. Word D -> s : ( 0 ..^ ( # ` s ) ) --> D ) |
| 58 |
|
frel |
|- ( s : ( 0 ..^ ( # ` s ) ) --> D -> Rel s ) |
| 59 |
56 57 58
|
3syl |
|- ( ( ( ( ( ph /\ s e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) /\ -. s = x ) -> Rel s ) |
| 60 |
|
simplr |
|- ( ( ( ( ( ph /\ s e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) /\ -. s = x ) -> ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) |
| 61 |
47
|
fvresd |
|- ( ( ( ( ( ph /\ s e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) /\ -. s = x ) -> ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( M ` s ) ) |
| 62 |
16
|
ad5ant13 |
|- ( ( ( ( ( ph /\ s e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) /\ -. s = x ) -> x e. ( A \ ( `' # " { 0 , 1 } ) ) ) |
| 63 |
62
|
fvresd |
|- ( ( ( ( ( ph /\ s e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) /\ -. s = x ) -> ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) = ( M ` x ) ) |
| 64 |
60 61 63
|
3eqtr3rd |
|- ( ( ( ( ( ph /\ s e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) /\ -. s = x ) -> ( M ` x ) = ( M ` s ) ) |
| 65 |
64
|
difeq1d |
|- ( ( ( ( ( ph /\ s e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) /\ -. s = x ) -> ( ( M ` x ) \ _I ) = ( ( M ` s ) \ _I ) ) |
| 66 |
65
|
dmeqd |
|- ( ( ( ( ( ph /\ s e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) /\ -. s = x ) -> dom ( ( M ` x ) \ _I ) = dom ( ( M ` s ) \ _I ) ) |
| 67 |
4
|
ad4antr |
|- ( ( ( ( ( ph /\ s e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) /\ -. s = x ) -> D e. V ) |
| 68 |
17
|
ad5ant13 |
|- ( ( ( ( ( ph /\ s e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) /\ -. s = x ) -> x e. A ) |
| 69 |
46 68
|
sseldd |
|- ( ( ( ( ( ph /\ s e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) /\ -. s = x ) -> x e. { c e. Word D | c : dom c -1-1-> D } ) |
| 70 |
69 26
|
sylib |
|- ( ( ( ( ( ph /\ s e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) /\ -. s = x ) -> ( x e. Word D /\ x : dom x -1-1-> D ) ) |
| 71 |
70
|
simpld |
|- ( ( ( ( ( ph /\ s e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) /\ -. s = x ) -> x e. Word D ) |
| 72 |
70
|
simprd |
|- ( ( ( ( ( ph /\ s e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) /\ -. s = x ) -> x : dom x -1-1-> D ) |
| 73 |
33
|
ad5ant13 |
|- ( ( ( ( ( ph /\ s e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) /\ -. s = x ) -> 1 < ( # ` x ) ) |
| 74 |
3 67 71 72 73
|
cycpmrn |
|- ( ( ( ( ( ph /\ s e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) /\ -. s = x ) -> ran x = dom ( ( M ` x ) \ _I ) ) |
| 75 |
55
|
simprd |
|- ( ( ( ( ( ph /\ s e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) /\ -. s = x ) -> s : dom s -1-1-> D ) |
| 76 |
6
|
ssdifd |
|- ( ph -> ( A \ ( `' # " { 0 , 1 } ) ) C_ ( dom M \ ( `' # " { 0 , 1 } ) ) ) |
| 77 |
76
|
sselda |
|- ( ( ph /\ s e. ( A \ ( `' # " { 0 , 1 } ) ) ) -> s e. ( dom M \ ( `' # " { 0 , 1 } ) ) ) |
| 78 |
77
|
ad3antrrr |
|- ( ( ( ( ( ph /\ s e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) /\ -. s = x ) -> s e. ( dom M \ ( `' # " { 0 , 1 } ) ) ) |
| 79 |
78
|
eldifbd |
|- ( ( ( ( ( ph /\ s e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) /\ -. s = x ) -> -. s e. ( `' # " { 0 , 1 } ) ) |
| 80 |
|
hashgt1 |
|- ( s e. A -> ( -. s e. ( `' # " { 0 , 1 } ) <-> 1 < ( # ` s ) ) ) |
| 81 |
80
|
biimpa |
|- ( ( s e. A /\ -. s e. ( `' # " { 0 , 1 } ) ) -> 1 < ( # ` s ) ) |
| 82 |
48 79 81
|
syl2anc |
|- ( ( ( ( ( ph /\ s e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) /\ -. s = x ) -> 1 < ( # ` s ) ) |
| 83 |
3 67 56 75 82
|
cycpmrn |
|- ( ( ( ( ( ph /\ s e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) /\ -. s = x ) -> ran s = dom ( ( M ` s ) \ _I ) ) |
| 84 |
66 74 83
|
3eqtr4rd |
|- ( ( ( ( ( ph /\ s e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) /\ -. s = x ) -> ran s = ran x ) |
| 85 |
84
|
ineq2d |
|- ( ( ( ( ( ph /\ s e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) /\ -. s = x ) -> ( ran x i^i ran s ) = ( ran x i^i ran x ) ) |
| 86 |
|
inidm |
|- ( ran x i^i ran x ) = ran x |
| 87 |
85 86
|
eqtrdi |
|- ( ( ( ( ( ph /\ s e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) /\ -. s = x ) -> ( ran x i^i ran s ) = ran x ) |
| 88 |
|
rneq |
|- ( x = y -> ran x = ran y ) |
| 89 |
88
|
cbvdisjv |
|- ( Disj_ x e. A ran x <-> Disj_ y e. A ran y ) |
| 90 |
5 89
|
sylib |
|- ( ph -> Disj_ y e. A ran y ) |
| 91 |
90
|
ad4antr |
|- ( ( ( ( ( ph /\ s e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) /\ -. s = x ) -> Disj_ y e. A ran y ) |
| 92 |
|
simpr |
|- ( ( ( ( ( ph /\ s e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) /\ -. s = x ) -> -. s = x ) |
| 93 |
92
|
neqned |
|- ( ( ( ( ( ph /\ s e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) /\ -. s = x ) -> s =/= x ) |
| 94 |
93
|
necomd |
|- ( ( ( ( ( ph /\ s e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) /\ -. s = x ) -> x =/= s ) |
| 95 |
|
rneq |
|- ( y = x -> ran y = ran x ) |
| 96 |
|
rneq |
|- ( y = s -> ran y = ran s ) |
| 97 |
95 96
|
disji2 |
|- ( ( Disj_ y e. A ran y /\ ( x e. A /\ s e. A ) /\ x =/= s ) -> ( ran x i^i ran s ) = (/) ) |
| 98 |
91 68 48 94 97
|
syl121anc |
|- ( ( ( ( ( ph /\ s e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) /\ -. s = x ) -> ( ran x i^i ran s ) = (/) ) |
| 99 |
87 98
|
eqtr3d |
|- ( ( ( ( ( ph /\ s e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) /\ -. s = x ) -> ran x = (/) ) |
| 100 |
84 99
|
eqtrd |
|- ( ( ( ( ( ph /\ s e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) /\ -. s = x ) -> ran s = (/) ) |
| 101 |
|
relrn0 |
|- ( Rel s -> ( s = (/) <-> ran s = (/) ) ) |
| 102 |
101
|
biimpar |
|- ( ( Rel s /\ ran s = (/) ) -> s = (/) ) |
| 103 |
59 100 102
|
syl2anc |
|- ( ( ( ( ( ph /\ s e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) /\ -. s = x ) -> s = (/) ) |
| 104 |
|
wrdf |
|- ( x e. Word D -> x : ( 0 ..^ ( # ` x ) ) --> D ) |
| 105 |
|
frel |
|- ( x : ( 0 ..^ ( # ` x ) ) --> D -> Rel x ) |
| 106 |
71 104 105
|
3syl |
|- ( ( ( ( ( ph /\ s e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) /\ -. s = x ) -> Rel x ) |
| 107 |
|
relrn0 |
|- ( Rel x -> ( x = (/) <-> ran x = (/) ) ) |
| 108 |
107
|
biimpar |
|- ( ( Rel x /\ ran x = (/) ) -> x = (/) ) |
| 109 |
106 99 108
|
syl2anc |
|- ( ( ( ( ( ph /\ s e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) /\ -. s = x ) -> x = (/) ) |
| 110 |
103 109
|
eqtr4d |
|- ( ( ( ( ( ph /\ s e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) /\ -. s = x ) -> s = x ) |
| 111 |
110
|
pm2.18da |
|- ( ( ( ( ph /\ s e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) -> s = x ) |
| 112 |
111
|
ex |
|- ( ( ( ph /\ s e. ( A \ ( `' # " { 0 , 1 } ) ) ) /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) -> ( ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) -> s = x ) ) |
| 113 |
112
|
anasss |
|- ( ( ph /\ ( s e. ( A \ ( `' # " { 0 , 1 } ) ) /\ x e. ( A \ ( `' # " { 0 , 1 } ) ) ) ) -> ( ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) -> s = x ) ) |
| 114 |
113
|
ralrimivva |
|- ( ph -> A. s e. ( A \ ( `' # " { 0 , 1 } ) ) A. x e. ( A \ ( `' # " { 0 , 1 } ) ) ( ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) -> s = x ) ) |
| 115 |
|
dff13 |
|- ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) : ( A \ ( `' # " { 0 , 1 } ) ) -1-1-> ( Base ` S ) <-> ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) : ( A \ ( `' # " { 0 , 1 } ) ) --> ( Base ` S ) /\ A. s e. ( A \ ( `' # " { 0 , 1 } ) ) A. x e. ( A \ ( `' # " { 0 , 1 } ) ) ( ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` s ) = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) -> s = x ) ) ) |
| 116 |
44 114 115
|
sylanbrc |
|- ( ph -> ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) : ( A \ ( `' # " { 0 , 1 } ) ) -1-1-> ( Base ` S ) ) |
| 117 |
|
f1f1orn |
|- ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) : ( A \ ( `' # " { 0 , 1 } ) ) -1-1-> ( Base ` S ) -> ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) : ( A \ ( `' # " { 0 , 1 } ) ) -1-1-onto-> ran ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ) |
| 118 |
116 117
|
syl |
|- ( ph -> ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) : ( A \ ( `' # " { 0 , 1 } ) ) -1-1-onto-> ran ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ) |
| 119 |
|
df-ima |
|- ( M " ( A \ ( `' # " { 0 , 1 } ) ) ) = ran ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) |
| 120 |
119
|
a1i |
|- ( ph -> ( M " ( A \ ( `' # " { 0 , 1 } ) ) ) = ran ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ) |
| 121 |
120
|
f1oeq3d |
|- ( ph -> ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) : ( A \ ( `' # " { 0 , 1 } ) ) -1-1-onto-> ( M " ( A \ ( `' # " { 0 , 1 } ) ) ) <-> ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) : ( A \ ( `' # " { 0 , 1 } ) ) -1-1-onto-> ran ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ) ) |
| 122 |
118 121
|
mpbird |
|- ( ph -> ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) : ( A \ ( `' # " { 0 , 1 } ) ) -1-1-onto-> ( M " ( A \ ( `' # " { 0 , 1 } ) ) ) ) |
| 123 |
|
simpr |
|- ( ( ph /\ c = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) -> c = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) |
| 124 |
123
|
difeq1d |
|- ( ( ph /\ c = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) -> ( c \ _I ) = ( ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) \ _I ) ) |
| 125 |
124
|
dmeqd |
|- ( ( ph /\ c = ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) ) -> dom ( c \ _I ) = dom ( ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) \ _I ) ) |
| 126 |
122 125
|
disjrdx |
|- ( ph -> ( Disj_ x e. ( A \ ( `' # " { 0 , 1 } ) ) dom ( ( ( M |` ( A \ ( `' # " { 0 , 1 } ) ) ) ` x ) \ _I ) <-> Disj_ c e. ( M " ( A \ ( `' # " { 0 , 1 } ) ) ) dom ( c \ _I ) ) ) |
| 127 |
40 126
|
mpbid |
|- ( ph -> Disj_ c e. ( M " ( A \ ( `' # " { 0 , 1 } ) ) ) dom ( c \ _I ) ) |
| 128 |
|
simpr |
|- ( ( ( ( ph /\ c e. ( M " ( A i^i ( `' # " { 0 , 1 } ) ) ) ) /\ x e. ( A i^i ( `' # " { 0 , 1 } ) ) ) /\ ( M ` x ) = c ) -> ( M ` x ) = c ) |
| 129 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ c e. ( M " ( A i^i ( `' # " { 0 , 1 } ) ) ) ) /\ x e. ( A i^i ( `' # " { 0 , 1 } ) ) ) /\ ( M ` x ) = c ) -> D e. V ) |
| 130 |
6
|
ssrind |
|- ( ph -> ( A i^i ( `' # " { 0 , 1 } ) ) C_ ( dom M i^i ( `' # " { 0 , 1 } ) ) ) |
| 131 |
130
|
ad3antrrr |
|- ( ( ( ( ph /\ c e. ( M " ( A i^i ( `' # " { 0 , 1 } ) ) ) ) /\ x e. ( A i^i ( `' # " { 0 , 1 } ) ) ) /\ ( M ` x ) = c ) -> ( A i^i ( `' # " { 0 , 1 } ) ) C_ ( dom M i^i ( `' # " { 0 , 1 } ) ) ) |
| 132 |
|
simplr |
|- ( ( ( ( ph /\ c e. ( M " ( A i^i ( `' # " { 0 , 1 } ) ) ) ) /\ x e. ( A i^i ( `' # " { 0 , 1 } ) ) ) /\ ( M ` x ) = c ) -> x e. ( A i^i ( `' # " { 0 , 1 } ) ) ) |
| 133 |
131 132
|
sseldd |
|- ( ( ( ( ph /\ c e. ( M " ( A i^i ( `' # " { 0 , 1 } ) ) ) ) /\ x e. ( A i^i ( `' # " { 0 , 1 } ) ) ) /\ ( M ` x ) = c ) -> x e. ( dom M i^i ( `' # " { 0 , 1 } ) ) ) |
| 134 |
3
|
tocyc01 |
|- ( ( D e. V /\ x e. ( dom M i^i ( `' # " { 0 , 1 } ) ) ) -> ( M ` x ) = ( _I |` D ) ) |
| 135 |
129 133 134
|
syl2anc |
|- ( ( ( ( ph /\ c e. ( M " ( A i^i ( `' # " { 0 , 1 } ) ) ) ) /\ x e. ( A i^i ( `' # " { 0 , 1 } ) ) ) /\ ( M ` x ) = c ) -> ( M ` x ) = ( _I |` D ) ) |
| 136 |
128 135
|
eqtr3d |
|- ( ( ( ( ph /\ c e. ( M " ( A i^i ( `' # " { 0 , 1 } ) ) ) ) /\ x e. ( A i^i ( `' # " { 0 , 1 } ) ) ) /\ ( M ` x ) = c ) -> c = ( _I |` D ) ) |
| 137 |
136
|
difeq1d |
|- ( ( ( ( ph /\ c e. ( M " ( A i^i ( `' # " { 0 , 1 } ) ) ) ) /\ x e. ( A i^i ( `' # " { 0 , 1 } ) ) ) /\ ( M ` x ) = c ) -> ( c \ _I ) = ( ( _I |` D ) \ _I ) ) |
| 138 |
137
|
dmeqd |
|- ( ( ( ( ph /\ c e. ( M " ( A i^i ( `' # " { 0 , 1 } ) ) ) ) /\ x e. ( A i^i ( `' # " { 0 , 1 } ) ) ) /\ ( M ` x ) = c ) -> dom ( c \ _I ) = dom ( ( _I |` D ) \ _I ) ) |
| 139 |
|
resdifcom |
|- ( ( _I |` D ) \ _I ) = ( ( _I \ _I ) |` D ) |
| 140 |
|
difid |
|- ( _I \ _I ) = (/) |
| 141 |
140
|
reseq1i |
|- ( ( _I \ _I ) |` D ) = ( (/) |` D ) |
| 142 |
|
0res |
|- ( (/) |` D ) = (/) |
| 143 |
139 141 142
|
3eqtri |
|- ( ( _I |` D ) \ _I ) = (/) |
| 144 |
143
|
dmeqi |
|- dom ( ( _I |` D ) \ _I ) = dom (/) |
| 145 |
|
dm0 |
|- dom (/) = (/) |
| 146 |
144 145
|
eqtri |
|- dom ( ( _I |` D ) \ _I ) = (/) |
| 147 |
138 146
|
eqtrdi |
|- ( ( ( ( ph /\ c e. ( M " ( A i^i ( `' # " { 0 , 1 } ) ) ) ) /\ x e. ( A i^i ( `' # " { 0 , 1 } ) ) ) /\ ( M ` x ) = c ) -> dom ( c \ _I ) = (/) ) |
| 148 |
41
|
ffund |
|- ( ph -> Fun M ) |
| 149 |
|
fvelima |
|- ( ( Fun M /\ c e. ( M " ( A i^i ( `' # " { 0 , 1 } ) ) ) ) -> E. x e. ( A i^i ( `' # " { 0 , 1 } ) ) ( M ` x ) = c ) |
| 150 |
148 149
|
sylan |
|- ( ( ph /\ c e. ( M " ( A i^i ( `' # " { 0 , 1 } ) ) ) ) -> E. x e. ( A i^i ( `' # " { 0 , 1 } ) ) ( M ` x ) = c ) |
| 151 |
147 150
|
r19.29a |
|- ( ( ph /\ c e. ( M " ( A i^i ( `' # " { 0 , 1 } ) ) ) ) -> dom ( c \ _I ) = (/) ) |
| 152 |
151
|
disjxun0 |
|- ( ph -> ( Disj_ c e. ( ( M " ( A \ ( `' # " { 0 , 1 } ) ) ) u. ( M " ( A i^i ( `' # " { 0 , 1 } ) ) ) ) dom ( c \ _I ) <-> Disj_ c e. ( M " ( A \ ( `' # " { 0 , 1 } ) ) ) dom ( c \ _I ) ) ) |
| 153 |
127 152
|
mpbird |
|- ( ph -> Disj_ c e. ( ( M " ( A \ ( `' # " { 0 , 1 } ) ) ) u. ( M " ( A i^i ( `' # " { 0 , 1 } ) ) ) ) dom ( c \ _I ) ) |
| 154 |
|
uncom |
|- ( ( M " ( A \ ( `' # " { 0 , 1 } ) ) ) u. ( M " ( A i^i ( `' # " { 0 , 1 } ) ) ) ) = ( ( M " ( A i^i ( `' # " { 0 , 1 } ) ) ) u. ( M " ( A \ ( `' # " { 0 , 1 } ) ) ) ) |
| 155 |
|
imaundi |
|- ( M " ( ( A i^i ( `' # " { 0 , 1 } ) ) u. ( A \ ( `' # " { 0 , 1 } ) ) ) ) = ( ( M " ( A i^i ( `' # " { 0 , 1 } ) ) ) u. ( M " ( A \ ( `' # " { 0 , 1 } ) ) ) ) |
| 156 |
|
inundif |
|- ( ( A i^i ( `' # " { 0 , 1 } ) ) u. ( A \ ( `' # " { 0 , 1 } ) ) ) = A |
| 157 |
156
|
imaeq2i |
|- ( M " ( ( A i^i ( `' # " { 0 , 1 } ) ) u. ( A \ ( `' # " { 0 , 1 } ) ) ) ) = ( M " A ) |
| 158 |
154 155 157
|
3eqtr2i |
|- ( ( M " ( A \ ( `' # " { 0 , 1 } ) ) ) u. ( M " ( A i^i ( `' # " { 0 , 1 } ) ) ) ) = ( M " A ) |
| 159 |
158
|
a1i |
|- ( ph -> ( ( M " ( A \ ( `' # " { 0 , 1 } ) ) ) u. ( M " ( A i^i ( `' # " { 0 , 1 } ) ) ) ) = ( M " A ) ) |
| 160 |
159
|
disjeq1d |
|- ( ph -> ( Disj_ c e. ( ( M " ( A \ ( `' # " { 0 , 1 } ) ) ) u. ( M " ( A i^i ( `' # " { 0 , 1 } ) ) ) ) dom ( c \ _I ) <-> Disj_ c e. ( M " A ) dom ( c \ _I ) ) ) |
| 161 |
153 160
|
mpbid |
|- ( ph -> Disj_ c e. ( M " A ) dom ( c \ _I ) ) |
| 162 |
1 7 2 10 161
|
symgcntz |
|- ( ph -> ( M " A ) C_ ( Z ` ( M " A ) ) ) |