| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tocyccntz.s |
|
| 2 |
|
tocyccntz.z |
|
| 3 |
|
tocyccntz.m |
|
| 4 |
|
tocyccntz.1 |
|
| 5 |
|
tocyccntz.2 |
|
| 6 |
|
tocyccntz.a |
|
| 7 |
|
eqid |
|
| 8 |
3 1 7
|
tocycf |
|
| 9 |
|
fimass |
|
| 10 |
4 8 9
|
3syl |
|
| 11 |
|
difss |
|
| 12 |
|
disjss1 |
|
| 13 |
11 5 12
|
mpsyl |
|
| 14 |
4
|
adantr |
|
| 15 |
6
|
adantr |
|
| 16 |
|
simpr |
|
| 17 |
16
|
eldifad |
|
| 18 |
15 17
|
sseldd |
|
| 19 |
|
fdm |
|
| 20 |
14 8 19
|
3syl |
|
| 21 |
18 20
|
eleqtrd |
|
| 22 |
|
id |
|
| 23 |
|
dmeq |
|
| 24 |
|
eqidd |
|
| 25 |
22 23 24
|
f1eq123d |
|
| 26 |
25
|
elrab |
|
| 27 |
21 26
|
sylib |
|
| 28 |
27
|
simpld |
|
| 29 |
27
|
simprd |
|
| 30 |
16
|
eldifbd |
|
| 31 |
|
hashgt1 |
|
| 32 |
31
|
elv |
|
| 33 |
30 32
|
sylib |
|
| 34 |
3 14 28 29 33
|
cycpmrn |
|
| 35 |
16
|
fvresd |
|
| 36 |
35
|
difeq1d |
|
| 37 |
36
|
dmeqd |
|
| 38 |
34 37
|
eqtr4d |
|
| 39 |
38
|
disjeq2dv |
|
| 40 |
13 39
|
mpbid |
|
| 41 |
4 8
|
syl |
|
| 42 |
41
|
ffdmd |
|
| 43 |
6
|
ssdifssd |
|
| 44 |
42 43
|
fssresd |
|
| 45 |
41 6
|
fssdmd |
|
| 46 |
45
|
ad4antr |
|
| 47 |
|
simp-4r |
|
| 48 |
47
|
eldifad |
|
| 49 |
46 48
|
sseldd |
|
| 50 |
|
id |
|
| 51 |
|
dmeq |
|
| 52 |
|
eqidd |
|
| 53 |
50 51 52
|
f1eq123d |
|
| 54 |
53
|
elrab |
|
| 55 |
49 54
|
sylib |
|
| 56 |
55
|
simpld |
|
| 57 |
|
wrdf |
|
| 58 |
|
frel |
|
| 59 |
56 57 58
|
3syl |
|
| 60 |
|
simplr |
|
| 61 |
47
|
fvresd |
|
| 62 |
16
|
ad5ant13 |
|
| 63 |
62
|
fvresd |
|
| 64 |
60 61 63
|
3eqtr3rd |
|
| 65 |
64
|
difeq1d |
|
| 66 |
65
|
dmeqd |
|
| 67 |
4
|
ad4antr |
|
| 68 |
17
|
ad5ant13 |
|
| 69 |
46 68
|
sseldd |
|
| 70 |
69 26
|
sylib |
|
| 71 |
70
|
simpld |
|
| 72 |
70
|
simprd |
|
| 73 |
33
|
ad5ant13 |
|
| 74 |
3 67 71 72 73
|
cycpmrn |
|
| 75 |
55
|
simprd |
|
| 76 |
6
|
ssdifd |
|
| 77 |
76
|
sselda |
|
| 78 |
77
|
ad3antrrr |
|
| 79 |
78
|
eldifbd |
|
| 80 |
|
hashgt1 |
|
| 81 |
80
|
biimpa |
|
| 82 |
48 79 81
|
syl2anc |
|
| 83 |
3 67 56 75 82
|
cycpmrn |
|
| 84 |
66 74 83
|
3eqtr4rd |
|
| 85 |
84
|
ineq2d |
|
| 86 |
|
inidm |
|
| 87 |
85 86
|
eqtrdi |
|
| 88 |
|
rneq |
|
| 89 |
88
|
cbvdisjv |
|
| 90 |
5 89
|
sylib |
|
| 91 |
90
|
ad4antr |
|
| 92 |
|
simpr |
|
| 93 |
92
|
neqned |
|
| 94 |
93
|
necomd |
|
| 95 |
|
rneq |
|
| 96 |
|
rneq |
|
| 97 |
95 96
|
disji2 |
|
| 98 |
91 68 48 94 97
|
syl121anc |
|
| 99 |
87 98
|
eqtr3d |
|
| 100 |
84 99
|
eqtrd |
|
| 101 |
|
relrn0 |
|
| 102 |
101
|
biimpar |
|
| 103 |
59 100 102
|
syl2anc |
|
| 104 |
|
wrdf |
|
| 105 |
|
frel |
|
| 106 |
71 104 105
|
3syl |
|
| 107 |
|
relrn0 |
|
| 108 |
107
|
biimpar |
|
| 109 |
106 99 108
|
syl2anc |
|
| 110 |
103 109
|
eqtr4d |
|
| 111 |
110
|
pm2.18da |
|
| 112 |
111
|
ex |
|
| 113 |
112
|
anasss |
|
| 114 |
113
|
ralrimivva |
|
| 115 |
|
dff13 |
|
| 116 |
44 114 115
|
sylanbrc |
|
| 117 |
|
f1f1orn |
|
| 118 |
116 117
|
syl |
|
| 119 |
|
df-ima |
|
| 120 |
119
|
a1i |
|
| 121 |
120
|
f1oeq3d |
|
| 122 |
118 121
|
mpbird |
|
| 123 |
|
simpr |
|
| 124 |
123
|
difeq1d |
|
| 125 |
124
|
dmeqd |
|
| 126 |
122 125
|
disjrdx |
|
| 127 |
40 126
|
mpbid |
|
| 128 |
|
simpr |
|
| 129 |
4
|
ad3antrrr |
|
| 130 |
6
|
ssrind |
|
| 131 |
130
|
ad3antrrr |
|
| 132 |
|
simplr |
|
| 133 |
131 132
|
sseldd |
|
| 134 |
3
|
tocyc01 |
|
| 135 |
129 133 134
|
syl2anc |
|
| 136 |
128 135
|
eqtr3d |
|
| 137 |
136
|
difeq1d |
|
| 138 |
137
|
dmeqd |
|
| 139 |
|
resdifcom |
|
| 140 |
|
difid |
|
| 141 |
140
|
reseq1i |
|
| 142 |
|
0res |
|
| 143 |
139 141 142
|
3eqtri |
|
| 144 |
143
|
dmeqi |
|
| 145 |
|
dm0 |
|
| 146 |
144 145
|
eqtri |
|
| 147 |
138 146
|
eqtrdi |
|
| 148 |
41
|
ffund |
|
| 149 |
|
fvelima |
|
| 150 |
148 149
|
sylan |
|
| 151 |
147 150
|
r19.29a |
|
| 152 |
151
|
disjxun0 |
|
| 153 |
127 152
|
mpbird |
|
| 154 |
|
uncom |
|
| 155 |
|
imaundi |
|
| 156 |
|
inundif |
|
| 157 |
156
|
imaeq2i |
|
| 158 |
154 155 157
|
3eqtr2i |
|
| 159 |
158
|
a1i |
|
| 160 |
159
|
disjeq1d |
|
| 161 |
153 160
|
mpbid |
|
| 162 |
1 7 2 10 161
|
symgcntz |
|