Metamath Proof Explorer


Theorem tocyccntz

Description: All elements of a (finite) set of cycles commute if their orbits are disjoint. (Contributed by Thierry Arnoux, 27-Nov-2023)

Ref Expression
Hypotheses tocyccntz.s S = SymGrp D
tocyccntz.z Z = Cntz S
tocyccntz.m M = toCyc D
tocyccntz.1 φ D V
tocyccntz.2 φ Disj x A ran x
tocyccntz.a φ A dom M
Assertion tocyccntz φ M A Z M A

Proof

Step Hyp Ref Expression
1 tocyccntz.s S = SymGrp D
2 tocyccntz.z Z = Cntz S
3 tocyccntz.m M = toCyc D
4 tocyccntz.1 φ D V
5 tocyccntz.2 φ Disj x A ran x
6 tocyccntz.a φ A dom M
7 eqid Base S = Base S
8 3 1 7 tocycf D V M : c Word D | c : dom c 1-1 D Base S
9 fimass M : c Word D | c : dom c 1-1 D Base S M A Base S
10 4 8 9 3syl φ M A Base S
11 difss A . -1 0 1 A
12 disjss1 A . -1 0 1 A Disj x A ran x Disj x A . -1 0 1 ran x
13 11 5 12 mpsyl φ Disj x A . -1 0 1 ran x
14 4 adantr φ x A . -1 0 1 D V
15 6 adantr φ x A . -1 0 1 A dom M
16 simpr φ x A . -1 0 1 x A . -1 0 1
17 16 eldifad φ x A . -1 0 1 x A
18 15 17 sseldd φ x A . -1 0 1 x dom M
19 fdm M : c Word D | c : dom c 1-1 D Base S dom M = c Word D | c : dom c 1-1 D
20 14 8 19 3syl φ x A . -1 0 1 dom M = c Word D | c : dom c 1-1 D
21 18 20 eleqtrd φ x A . -1 0 1 x c Word D | c : dom c 1-1 D
22 id c = x c = x
23 dmeq c = x dom c = dom x
24 eqidd c = x D = D
25 22 23 24 f1eq123d c = x c : dom c 1-1 D x : dom x 1-1 D
26 25 elrab x c Word D | c : dom c 1-1 D x Word D x : dom x 1-1 D
27 21 26 sylib φ x A . -1 0 1 x Word D x : dom x 1-1 D
28 27 simpld φ x A . -1 0 1 x Word D
29 27 simprd φ x A . -1 0 1 x : dom x 1-1 D
30 16 eldifbd φ x A . -1 0 1 ¬ x . -1 0 1
31 hashgt1 x V ¬ x . -1 0 1 1 < x
32 31 elv ¬ x . -1 0 1 1 < x
33 30 32 sylib φ x A . -1 0 1 1 < x
34 3 14 28 29 33 cycpmrn φ x A . -1 0 1 ran x = dom M x I
35 16 fvresd φ x A . -1 0 1 M A . -1 0 1 x = M x
36 35 difeq1d φ x A . -1 0 1 M A . -1 0 1 x I = M x I
37 36 dmeqd φ x A . -1 0 1 dom M A . -1 0 1 x I = dom M x I
38 34 37 eqtr4d φ x A . -1 0 1 ran x = dom M A . -1 0 1 x I
39 38 disjeq2dv φ Disj x A . -1 0 1 ran x Disj x A . -1 0 1 dom M A . -1 0 1 x I
40 13 39 mpbid φ Disj x A . -1 0 1 dom M A . -1 0 1 x I
41 4 8 syl φ M : c Word D | c : dom c 1-1 D Base S
42 41 ffdmd φ M : dom M Base S
43 6 ssdifssd φ A . -1 0 1 dom M
44 42 43 fssresd φ M A . -1 0 1 : A . -1 0 1 Base S
45 41 6 fssdmd φ A c Word D | c : dom c 1-1 D
46 45 ad4antr φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x ¬ s = x A c Word D | c : dom c 1-1 D
47 simp-4r φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x ¬ s = x s A . -1 0 1
48 47 eldifad φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x ¬ s = x s A
49 46 48 sseldd φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x ¬ s = x s c Word D | c : dom c 1-1 D
50 id c = s c = s
51 dmeq c = s dom c = dom s
52 eqidd c = s D = D
53 50 51 52 f1eq123d c = s c : dom c 1-1 D s : dom s 1-1 D
54 53 elrab s c Word D | c : dom c 1-1 D s Word D s : dom s 1-1 D
55 49 54 sylib φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x ¬ s = x s Word D s : dom s 1-1 D
56 55 simpld φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x ¬ s = x s Word D
57 wrdf s Word D s : 0 ..^ s D
58 frel s : 0 ..^ s D Rel s
59 56 57 58 3syl φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x ¬ s = x Rel s
60 simplr φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x ¬ s = x M A . -1 0 1 s = M A . -1 0 1 x
61 47 fvresd φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x ¬ s = x M A . -1 0 1 s = M s
62 16 ad5ant13 φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x ¬ s = x x A . -1 0 1
63 62 fvresd φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x ¬ s = x M A . -1 0 1 x = M x
64 60 61 63 3eqtr3rd φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x ¬ s = x M x = M s
65 64 difeq1d φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x ¬ s = x M x I = M s I
66 65 dmeqd φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x ¬ s = x dom M x I = dom M s I
67 4 ad4antr φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x ¬ s = x D V
68 17 ad5ant13 φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x ¬ s = x x A
69 46 68 sseldd φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x ¬ s = x x c Word D | c : dom c 1-1 D
70 69 26 sylib φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x ¬ s = x x Word D x : dom x 1-1 D
71 70 simpld φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x ¬ s = x x Word D
72 70 simprd φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x ¬ s = x x : dom x 1-1 D
73 33 ad5ant13 φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x ¬ s = x 1 < x
74 3 67 71 72 73 cycpmrn φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x ¬ s = x ran x = dom M x I
75 55 simprd φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x ¬ s = x s : dom s 1-1 D
76 6 ssdifd φ A . -1 0 1 dom M . -1 0 1
77 76 sselda φ s A . -1 0 1 s dom M . -1 0 1
78 77 ad3antrrr φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x ¬ s = x s dom M . -1 0 1
79 78 eldifbd φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x ¬ s = x ¬ s . -1 0 1
80 hashgt1 s A ¬ s . -1 0 1 1 < s
81 80 biimpa s A ¬ s . -1 0 1 1 < s
82 48 79 81 syl2anc φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x ¬ s = x 1 < s
83 3 67 56 75 82 cycpmrn φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x ¬ s = x ran s = dom M s I
84 66 74 83 3eqtr4rd φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x ¬ s = x ran s = ran x
85 84 ineq2d φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x ¬ s = x ran x ran s = ran x ran x
86 inidm ran x ran x = ran x
87 85 86 eqtrdi φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x ¬ s = x ran x ran s = ran x
88 rneq x = y ran x = ran y
89 88 cbvdisjv Disj x A ran x Disj y A ran y
90 5 89 sylib φ Disj y A ran y
91 90 ad4antr φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x ¬ s = x Disj y A ran y
92 simpr φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x ¬ s = x ¬ s = x
93 92 neqned φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x ¬ s = x s x
94 93 necomd φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x ¬ s = x x s
95 rneq y = x ran y = ran x
96 rneq y = s ran y = ran s
97 95 96 disji2 Disj y A ran y x A s A x s ran x ran s =
98 91 68 48 94 97 syl121anc φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x ¬ s = x ran x ran s =
99 87 98 eqtr3d φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x ¬ s = x ran x =
100 84 99 eqtrd φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x ¬ s = x ran s =
101 relrn0 Rel s s = ran s =
102 101 biimpar Rel s ran s = s =
103 59 100 102 syl2anc φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x ¬ s = x s =
104 wrdf x Word D x : 0 ..^ x D
105 frel x : 0 ..^ x D Rel x
106 71 104 105 3syl φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x ¬ s = x Rel x
107 relrn0 Rel x x = ran x =
108 107 biimpar Rel x ran x = x =
109 106 99 108 syl2anc φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x ¬ s = x x =
110 103 109 eqtr4d φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x ¬ s = x s = x
111 110 pm2.18da φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x s = x
112 111 ex φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x s = x
113 112 anasss φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x s = x
114 113 ralrimivva φ s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x s = x
115 dff13 M A . -1 0 1 : A . -1 0 1 1-1 Base S M A . -1 0 1 : A . -1 0 1 Base S s A . -1 0 1 x A . -1 0 1 M A . -1 0 1 s = M A . -1 0 1 x s = x
116 44 114 115 sylanbrc φ M A . -1 0 1 : A . -1 0 1 1-1 Base S
117 f1f1orn M A . -1 0 1 : A . -1 0 1 1-1 Base S M A . -1 0 1 : A . -1 0 1 1-1 onto ran M A . -1 0 1
118 116 117 syl φ M A . -1 0 1 : A . -1 0 1 1-1 onto ran M A . -1 0 1
119 df-ima M A . -1 0 1 = ran M A . -1 0 1
120 119 a1i φ M A . -1 0 1 = ran M A . -1 0 1
121 120 f1oeq3d φ M A . -1 0 1 : A . -1 0 1 1-1 onto M A . -1 0 1 M A . -1 0 1 : A . -1 0 1 1-1 onto ran M A . -1 0 1
122 118 121 mpbird φ M A . -1 0 1 : A . -1 0 1 1-1 onto M A . -1 0 1
123 simpr φ c = M A . -1 0 1 x c = M A . -1 0 1 x
124 123 difeq1d φ c = M A . -1 0 1 x c I = M A . -1 0 1 x I
125 124 dmeqd φ c = M A . -1 0 1 x dom c I = dom M A . -1 0 1 x I
126 122 125 disjrdx φ Disj x A . -1 0 1 dom M A . -1 0 1 x I Disj c M A . -1 0 1 dom c I
127 40 126 mpbid φ Disj c M A . -1 0 1 dom c I
128 simpr φ c M A . -1 0 1 x A . -1 0 1 M x = c M x = c
129 4 ad3antrrr φ c M A . -1 0 1 x A . -1 0 1 M x = c D V
130 6 ssrind φ A . -1 0 1 dom M . -1 0 1
131 130 ad3antrrr φ c M A . -1 0 1 x A . -1 0 1 M x = c A . -1 0 1 dom M . -1 0 1
132 simplr φ c M A . -1 0 1 x A . -1 0 1 M x = c x A . -1 0 1
133 131 132 sseldd φ c M A . -1 0 1 x A . -1 0 1 M x = c x dom M . -1 0 1
134 3 tocyc01 D V x dom M . -1 0 1 M x = I D
135 129 133 134 syl2anc φ c M A . -1 0 1 x A . -1 0 1 M x = c M x = I D
136 128 135 eqtr3d φ c M A . -1 0 1 x A . -1 0 1 M x = c c = I D
137 136 difeq1d φ c M A . -1 0 1 x A . -1 0 1 M x = c c I = I D I
138 137 dmeqd φ c M A . -1 0 1 x A . -1 0 1 M x = c dom c I = dom I D I
139 resdifcom I D I = I I D
140 difid I I =
141 140 reseq1i I I D = D
142 0res D =
143 139 141 142 3eqtri I D I =
144 143 dmeqi dom I D I = dom
145 dm0 dom =
146 144 145 eqtri dom I D I =
147 138 146 eqtrdi φ c M A . -1 0 1 x A . -1 0 1 M x = c dom c I =
148 41 ffund φ Fun M
149 fvelima Fun M c M A . -1 0 1 x A . -1 0 1 M x = c
150 148 149 sylan φ c M A . -1 0 1 x A . -1 0 1 M x = c
151 147 150 r19.29a φ c M A . -1 0 1 dom c I =
152 151 disjxun0 φ Disj c M A . -1 0 1 M A . -1 0 1 dom c I Disj c M A . -1 0 1 dom c I
153 127 152 mpbird φ Disj c M A . -1 0 1 M A . -1 0 1 dom c I
154 uncom M A . -1 0 1 M A . -1 0 1 = M A . -1 0 1 M A . -1 0 1
155 imaundi M A . -1 0 1 A . -1 0 1 = M A . -1 0 1 M A . -1 0 1
156 inundif A . -1 0 1 A . -1 0 1 = A
157 156 imaeq2i M A . -1 0 1 A . -1 0 1 = M A
158 154 155 157 3eqtr2i M A . -1 0 1 M A . -1 0 1 = M A
159 158 a1i φ M A . -1 0 1 M A . -1 0 1 = M A
160 159 disjeq1d φ Disj c M A . -1 0 1 M A . -1 0 1 dom c I Disj c M A dom c I
161 153 160 mpbid φ Disj c M A dom c I
162 1 7 2 10 161 symgcntz φ M A Z M A