Metamath Proof Explorer


Theorem symgcntz

Description: All elements of a (finite) set of permutations commute if their orbits are disjoint. (Contributed by Thierry Arnoux, 20-Nov-2023)

Ref Expression
Hypotheses symgcntz.s S = SymGrp D
symgcntz.b B = Base S
symgcntz.z Z = Cntz S
symgcntz.a φ A B
symgcntz.1 φ Disj x A dom x I
Assertion symgcntz φ A Z A

Proof

Step Hyp Ref Expression
1 symgcntz.s S = SymGrp D
2 symgcntz.b B = Base S
3 symgcntz.z Z = Cntz S
4 symgcntz.a φ A B
5 symgcntz.1 φ Disj x A dom x I
6 simpr φ c A d A c = d c = d
7 6 oveq1d φ c A d A c = d c + S d = d + S d
8 6 oveq2d φ c A d A c = d d + S c = d + S d
9 7 8 eqtr4d φ c A d A c = d c + S d = d + S c
10 4 ad2antrr φ c A d A c d A B
11 simplrl φ c A d A c d c A
12 10 11 sseldd φ c A d A c d c B
13 simplrr φ c A d A c d d A
14 10 13 sseldd φ c A d A c d d B
15 5 ad2antrr φ c A d A c d Disj x A dom x I
16 simpr φ c A d A c d c d
17 difeq1 x = c x I = c I
18 17 dmeqd x = c dom x I = dom c I
19 difeq1 x = d x I = d I
20 19 dmeqd x = d dom x I = dom d I
21 18 20 disji2 Disj x A dom x I c A d A c d dom c I dom d I =
22 15 11 13 16 21 syl121anc φ c A d A c d dom c I dom d I =
23 1 2 12 14 22 symgcom2 φ c A d A c d c d = d c
24 eqid + S = + S
25 1 2 24 symgov c B d B c + S d = c d
26 12 14 25 syl2anc φ c A d A c d c + S d = c d
27 1 2 24 symgov d B c B d + S c = d c
28 14 12 27 syl2anc φ c A d A c d d + S c = d c
29 23 26 28 3eqtr4d φ c A d A c d c + S d = d + S c
30 9 29 pm2.61dane φ c A d A c + S d = d + S c
31 30 ralrimivva φ c A d A c + S d = d + S c
32 2 24 3 sscntz A B A B A Z A c A d A c + S d = d + S c
33 4 4 32 syl2anc φ A Z A c A d A c + S d = d + S c
34 31 33 mpbird φ A Z A