Metamath Proof Explorer


Theorem symgcntz

Description: All elements of a (finite) set of permutations commute if their orbits are disjoint. (Contributed by Thierry Arnoux, 20-Nov-2023)

Ref Expression
Hypotheses symgcntz.s 𝑆 = ( SymGrp ‘ 𝐷 )
symgcntz.b 𝐵 = ( Base ‘ 𝑆 )
symgcntz.z 𝑍 = ( Cntz ‘ 𝑆 )
symgcntz.a ( 𝜑𝐴𝐵 )
symgcntz.1 ( 𝜑Disj 𝑥𝐴 dom ( 𝑥 ∖ I ) )
Assertion symgcntz ( 𝜑𝐴 ⊆ ( 𝑍𝐴 ) )

Proof

Step Hyp Ref Expression
1 symgcntz.s 𝑆 = ( SymGrp ‘ 𝐷 )
2 symgcntz.b 𝐵 = ( Base ‘ 𝑆 )
3 symgcntz.z 𝑍 = ( Cntz ‘ 𝑆 )
4 symgcntz.a ( 𝜑𝐴𝐵 )
5 symgcntz.1 ( 𝜑Disj 𝑥𝐴 dom ( 𝑥 ∖ I ) )
6 simpr ( ( ( 𝜑 ∧ ( 𝑐𝐴𝑑𝐴 ) ) ∧ 𝑐 = 𝑑 ) → 𝑐 = 𝑑 )
7 6 oveq1d ( ( ( 𝜑 ∧ ( 𝑐𝐴𝑑𝐴 ) ) ∧ 𝑐 = 𝑑 ) → ( 𝑐 ( +g𝑆 ) 𝑑 ) = ( 𝑑 ( +g𝑆 ) 𝑑 ) )
8 6 oveq2d ( ( ( 𝜑 ∧ ( 𝑐𝐴𝑑𝐴 ) ) ∧ 𝑐 = 𝑑 ) → ( 𝑑 ( +g𝑆 ) 𝑐 ) = ( 𝑑 ( +g𝑆 ) 𝑑 ) )
9 7 8 eqtr4d ( ( ( 𝜑 ∧ ( 𝑐𝐴𝑑𝐴 ) ) ∧ 𝑐 = 𝑑 ) → ( 𝑐 ( +g𝑆 ) 𝑑 ) = ( 𝑑 ( +g𝑆 ) 𝑐 ) )
10 4 ad2antrr ( ( ( 𝜑 ∧ ( 𝑐𝐴𝑑𝐴 ) ) ∧ 𝑐𝑑 ) → 𝐴𝐵 )
11 simplrl ( ( ( 𝜑 ∧ ( 𝑐𝐴𝑑𝐴 ) ) ∧ 𝑐𝑑 ) → 𝑐𝐴 )
12 10 11 sseldd ( ( ( 𝜑 ∧ ( 𝑐𝐴𝑑𝐴 ) ) ∧ 𝑐𝑑 ) → 𝑐𝐵 )
13 simplrr ( ( ( 𝜑 ∧ ( 𝑐𝐴𝑑𝐴 ) ) ∧ 𝑐𝑑 ) → 𝑑𝐴 )
14 10 13 sseldd ( ( ( 𝜑 ∧ ( 𝑐𝐴𝑑𝐴 ) ) ∧ 𝑐𝑑 ) → 𝑑𝐵 )
15 5 ad2antrr ( ( ( 𝜑 ∧ ( 𝑐𝐴𝑑𝐴 ) ) ∧ 𝑐𝑑 ) → Disj 𝑥𝐴 dom ( 𝑥 ∖ I ) )
16 simpr ( ( ( 𝜑 ∧ ( 𝑐𝐴𝑑𝐴 ) ) ∧ 𝑐𝑑 ) → 𝑐𝑑 )
17 difeq1 ( 𝑥 = 𝑐 → ( 𝑥 ∖ I ) = ( 𝑐 ∖ I ) )
18 17 dmeqd ( 𝑥 = 𝑐 → dom ( 𝑥 ∖ I ) = dom ( 𝑐 ∖ I ) )
19 difeq1 ( 𝑥 = 𝑑 → ( 𝑥 ∖ I ) = ( 𝑑 ∖ I ) )
20 19 dmeqd ( 𝑥 = 𝑑 → dom ( 𝑥 ∖ I ) = dom ( 𝑑 ∖ I ) )
21 18 20 disji2 ( ( Disj 𝑥𝐴 dom ( 𝑥 ∖ I ) ∧ ( 𝑐𝐴𝑑𝐴 ) ∧ 𝑐𝑑 ) → ( dom ( 𝑐 ∖ I ) ∩ dom ( 𝑑 ∖ I ) ) = ∅ )
22 15 11 13 16 21 syl121anc ( ( ( 𝜑 ∧ ( 𝑐𝐴𝑑𝐴 ) ) ∧ 𝑐𝑑 ) → ( dom ( 𝑐 ∖ I ) ∩ dom ( 𝑑 ∖ I ) ) = ∅ )
23 1 2 12 14 22 symgcom2 ( ( ( 𝜑 ∧ ( 𝑐𝐴𝑑𝐴 ) ) ∧ 𝑐𝑑 ) → ( 𝑐𝑑 ) = ( 𝑑𝑐 ) )
24 eqid ( +g𝑆 ) = ( +g𝑆 )
25 1 2 24 symgov ( ( 𝑐𝐵𝑑𝐵 ) → ( 𝑐 ( +g𝑆 ) 𝑑 ) = ( 𝑐𝑑 ) )
26 12 14 25 syl2anc ( ( ( 𝜑 ∧ ( 𝑐𝐴𝑑𝐴 ) ) ∧ 𝑐𝑑 ) → ( 𝑐 ( +g𝑆 ) 𝑑 ) = ( 𝑐𝑑 ) )
27 1 2 24 symgov ( ( 𝑑𝐵𝑐𝐵 ) → ( 𝑑 ( +g𝑆 ) 𝑐 ) = ( 𝑑𝑐 ) )
28 14 12 27 syl2anc ( ( ( 𝜑 ∧ ( 𝑐𝐴𝑑𝐴 ) ) ∧ 𝑐𝑑 ) → ( 𝑑 ( +g𝑆 ) 𝑐 ) = ( 𝑑𝑐 ) )
29 23 26 28 3eqtr4d ( ( ( 𝜑 ∧ ( 𝑐𝐴𝑑𝐴 ) ) ∧ 𝑐𝑑 ) → ( 𝑐 ( +g𝑆 ) 𝑑 ) = ( 𝑑 ( +g𝑆 ) 𝑐 ) )
30 9 29 pm2.61dane ( ( 𝜑 ∧ ( 𝑐𝐴𝑑𝐴 ) ) → ( 𝑐 ( +g𝑆 ) 𝑑 ) = ( 𝑑 ( +g𝑆 ) 𝑐 ) )
31 30 ralrimivva ( 𝜑 → ∀ 𝑐𝐴𝑑𝐴 ( 𝑐 ( +g𝑆 ) 𝑑 ) = ( 𝑑 ( +g𝑆 ) 𝑐 ) )
32 2 24 3 sscntz ( ( 𝐴𝐵𝐴𝐵 ) → ( 𝐴 ⊆ ( 𝑍𝐴 ) ↔ ∀ 𝑐𝐴𝑑𝐴 ( 𝑐 ( +g𝑆 ) 𝑑 ) = ( 𝑑 ( +g𝑆 ) 𝑐 ) ) )
33 4 4 32 syl2anc ( 𝜑 → ( 𝐴 ⊆ ( 𝑍𝐴 ) ↔ ∀ 𝑐𝐴𝑑𝐴 ( 𝑐 ( +g𝑆 ) 𝑑 ) = ( 𝑑 ( +g𝑆 ) 𝑐 ) ) )
34 31 33 mpbird ( 𝜑𝐴 ⊆ ( 𝑍𝐴 ) )