Step |
Hyp |
Ref |
Expression |
1 |
|
symgcntz.s |
⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) |
2 |
|
symgcntz.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
3 |
|
symgcntz.z |
⊢ 𝑍 = ( Cntz ‘ 𝑆 ) |
4 |
|
symgcntz.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
5 |
|
symgcntz.1 |
⊢ ( 𝜑 → Disj 𝑥 ∈ 𝐴 dom ( 𝑥 ∖ I ) ) |
6 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) ∧ 𝑐 = 𝑑 ) → 𝑐 = 𝑑 ) |
7 |
6
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) ∧ 𝑐 = 𝑑 ) → ( 𝑐 ( +g ‘ 𝑆 ) 𝑑 ) = ( 𝑑 ( +g ‘ 𝑆 ) 𝑑 ) ) |
8 |
6
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) ∧ 𝑐 = 𝑑 ) → ( 𝑑 ( +g ‘ 𝑆 ) 𝑐 ) = ( 𝑑 ( +g ‘ 𝑆 ) 𝑑 ) ) |
9 |
7 8
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) ∧ 𝑐 = 𝑑 ) → ( 𝑐 ( +g ‘ 𝑆 ) 𝑑 ) = ( 𝑑 ( +g ‘ 𝑆 ) 𝑐 ) ) |
10 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) ∧ 𝑐 ≠ 𝑑 ) → 𝐴 ⊆ 𝐵 ) |
11 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) ∧ 𝑐 ≠ 𝑑 ) → 𝑐 ∈ 𝐴 ) |
12 |
10 11
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) ∧ 𝑐 ≠ 𝑑 ) → 𝑐 ∈ 𝐵 ) |
13 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) ∧ 𝑐 ≠ 𝑑 ) → 𝑑 ∈ 𝐴 ) |
14 |
10 13
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) ∧ 𝑐 ≠ 𝑑 ) → 𝑑 ∈ 𝐵 ) |
15 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) ∧ 𝑐 ≠ 𝑑 ) → Disj 𝑥 ∈ 𝐴 dom ( 𝑥 ∖ I ) ) |
16 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) ∧ 𝑐 ≠ 𝑑 ) → 𝑐 ≠ 𝑑 ) |
17 |
|
difeq1 |
⊢ ( 𝑥 = 𝑐 → ( 𝑥 ∖ I ) = ( 𝑐 ∖ I ) ) |
18 |
17
|
dmeqd |
⊢ ( 𝑥 = 𝑐 → dom ( 𝑥 ∖ I ) = dom ( 𝑐 ∖ I ) ) |
19 |
|
difeq1 |
⊢ ( 𝑥 = 𝑑 → ( 𝑥 ∖ I ) = ( 𝑑 ∖ I ) ) |
20 |
19
|
dmeqd |
⊢ ( 𝑥 = 𝑑 → dom ( 𝑥 ∖ I ) = dom ( 𝑑 ∖ I ) ) |
21 |
18 20
|
disji2 |
⊢ ( ( Disj 𝑥 ∈ 𝐴 dom ( 𝑥 ∖ I ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 ≠ 𝑑 ) → ( dom ( 𝑐 ∖ I ) ∩ dom ( 𝑑 ∖ I ) ) = ∅ ) |
22 |
15 11 13 16 21
|
syl121anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) ∧ 𝑐 ≠ 𝑑 ) → ( dom ( 𝑐 ∖ I ) ∩ dom ( 𝑑 ∖ I ) ) = ∅ ) |
23 |
1 2 12 14 22
|
symgcom2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) ∧ 𝑐 ≠ 𝑑 ) → ( 𝑐 ∘ 𝑑 ) = ( 𝑑 ∘ 𝑐 ) ) |
24 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
25 |
1 2 24
|
symgov |
⊢ ( ( 𝑐 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑐 ( +g ‘ 𝑆 ) 𝑑 ) = ( 𝑐 ∘ 𝑑 ) ) |
26 |
12 14 25
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) ∧ 𝑐 ≠ 𝑑 ) → ( 𝑐 ( +g ‘ 𝑆 ) 𝑑 ) = ( 𝑐 ∘ 𝑑 ) ) |
27 |
1 2 24
|
symgov |
⊢ ( ( 𝑑 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) → ( 𝑑 ( +g ‘ 𝑆 ) 𝑐 ) = ( 𝑑 ∘ 𝑐 ) ) |
28 |
14 12 27
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) ∧ 𝑐 ≠ 𝑑 ) → ( 𝑑 ( +g ‘ 𝑆 ) 𝑐 ) = ( 𝑑 ∘ 𝑐 ) ) |
29 |
23 26 28
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) ∧ 𝑐 ≠ 𝑑 ) → ( 𝑐 ( +g ‘ 𝑆 ) 𝑑 ) = ( 𝑑 ( +g ‘ 𝑆 ) 𝑐 ) ) |
30 |
9 29
|
pm2.61dane |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) → ( 𝑐 ( +g ‘ 𝑆 ) 𝑑 ) = ( 𝑑 ( +g ‘ 𝑆 ) 𝑐 ) ) |
31 |
30
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑐 ∈ 𝐴 ∀ 𝑑 ∈ 𝐴 ( 𝑐 ( +g ‘ 𝑆 ) 𝑑 ) = ( 𝑑 ( +g ‘ 𝑆 ) 𝑐 ) ) |
32 |
2 24 3
|
sscntz |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 ⊆ ( 𝑍 ‘ 𝐴 ) ↔ ∀ 𝑐 ∈ 𝐴 ∀ 𝑑 ∈ 𝐴 ( 𝑐 ( +g ‘ 𝑆 ) 𝑑 ) = ( 𝑑 ( +g ‘ 𝑆 ) 𝑐 ) ) ) |
33 |
4 4 32
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ⊆ ( 𝑍 ‘ 𝐴 ) ↔ ∀ 𝑐 ∈ 𝐴 ∀ 𝑑 ∈ 𝐴 ( 𝑐 ( +g ‘ 𝑆 ) 𝑑 ) = ( 𝑑 ( +g ‘ 𝑆 ) 𝑐 ) ) ) |
34 |
31 33
|
mpbird |
⊢ ( 𝜑 → 𝐴 ⊆ ( 𝑍 ‘ 𝐴 ) ) |