Step |
Hyp |
Ref |
Expression |
1 |
|
symgcom.g |
⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) |
2 |
|
symgcom.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
3 |
|
symgcom.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
4 |
|
symgcom.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
5 |
|
symgcom2.1 |
⊢ ( 𝜑 → ( dom ( 𝑋 ∖ I ) ∩ dom ( 𝑌 ∖ I ) ) = ∅ ) |
6 |
1 2
|
symgbasf |
⊢ ( 𝑋 ∈ 𝐵 → 𝑋 : 𝐴 ⟶ 𝐴 ) |
7 |
3 6
|
syl |
⊢ ( 𝜑 → 𝑋 : 𝐴 ⟶ 𝐴 ) |
8 |
7
|
ffnd |
⊢ ( 𝜑 → 𝑋 Fn 𝐴 ) |
9 |
|
fnresi |
⊢ ( I ↾ 𝐴 ) Fn 𝐴 |
10 |
9
|
a1i |
⊢ ( 𝜑 → ( I ↾ 𝐴 ) Fn 𝐴 ) |
11 |
|
difssd |
⊢ ( 𝜑 → ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ⊆ 𝐴 ) |
12 |
|
ssidd |
⊢ ( 𝜑 → ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ⊆ ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ) |
13 |
|
nfpconfp |
⊢ ( 𝑋 Fn 𝐴 → ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) = dom ( 𝑋 ∩ I ) ) |
14 |
8 13
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) = dom ( 𝑋 ∩ I ) ) |
15 |
|
inres |
⊢ ( 𝑋 ∩ ( I ↾ 𝐴 ) ) = ( ( 𝑋 ∩ I ) ↾ 𝐴 ) |
16 |
|
reli |
⊢ Rel I |
17 |
|
relin2 |
⊢ ( Rel I → Rel ( 𝑋 ∩ I ) ) |
18 |
16 17
|
ax-mp |
⊢ Rel ( 𝑋 ∩ I ) |
19 |
14 11
|
eqsstrrd |
⊢ ( 𝜑 → dom ( 𝑋 ∩ I ) ⊆ 𝐴 ) |
20 |
|
relssres |
⊢ ( ( Rel ( 𝑋 ∩ I ) ∧ dom ( 𝑋 ∩ I ) ⊆ 𝐴 ) → ( ( 𝑋 ∩ I ) ↾ 𝐴 ) = ( 𝑋 ∩ I ) ) |
21 |
18 19 20
|
sylancr |
⊢ ( 𝜑 → ( ( 𝑋 ∩ I ) ↾ 𝐴 ) = ( 𝑋 ∩ I ) ) |
22 |
15 21
|
syl5eq |
⊢ ( 𝜑 → ( 𝑋 ∩ ( I ↾ 𝐴 ) ) = ( 𝑋 ∩ I ) ) |
23 |
22
|
dmeqd |
⊢ ( 𝜑 → dom ( 𝑋 ∩ ( I ↾ 𝐴 ) ) = dom ( 𝑋 ∩ I ) ) |
24 |
14 23
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) = dom ( 𝑋 ∩ ( I ↾ 𝐴 ) ) ) |
25 |
12 24
|
sseqtrd |
⊢ ( 𝜑 → ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ⊆ dom ( 𝑋 ∩ ( I ↾ 𝐴 ) ) ) |
26 |
|
fnreseql |
⊢ ( ( 𝑋 Fn 𝐴 ∧ ( I ↾ 𝐴 ) Fn 𝐴 ∧ ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ⊆ 𝐴 ) → ( ( 𝑋 ↾ ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ) = ( ( I ↾ 𝐴 ) ↾ ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ) ↔ ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ⊆ dom ( 𝑋 ∩ ( I ↾ 𝐴 ) ) ) ) |
27 |
26
|
biimpar |
⊢ ( ( ( 𝑋 Fn 𝐴 ∧ ( I ↾ 𝐴 ) Fn 𝐴 ∧ ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ⊆ 𝐴 ) ∧ ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ⊆ dom ( 𝑋 ∩ ( I ↾ 𝐴 ) ) ) → ( 𝑋 ↾ ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ) = ( ( I ↾ 𝐴 ) ↾ ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ) ) |
28 |
8 10 11 25 27
|
syl31anc |
⊢ ( 𝜑 → ( 𝑋 ↾ ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ) = ( ( I ↾ 𝐴 ) ↾ ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ) ) |
29 |
11
|
resabs1d |
⊢ ( 𝜑 → ( ( I ↾ 𝐴 ) ↾ ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ) = ( I ↾ ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ) ) |
30 |
28 29
|
eqtrd |
⊢ ( 𝜑 → ( 𝑋 ↾ ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ) = ( I ↾ ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ) ) |
31 |
1 2
|
symgbasf |
⊢ ( 𝑌 ∈ 𝐵 → 𝑌 : 𝐴 ⟶ 𝐴 ) |
32 |
4 31
|
syl |
⊢ ( 𝜑 → 𝑌 : 𝐴 ⟶ 𝐴 ) |
33 |
32
|
ffnd |
⊢ ( 𝜑 → 𝑌 Fn 𝐴 ) |
34 |
|
difss |
⊢ ( 𝑋 ∖ I ) ⊆ 𝑋 |
35 |
|
dmss |
⊢ ( ( 𝑋 ∖ I ) ⊆ 𝑋 → dom ( 𝑋 ∖ I ) ⊆ dom 𝑋 ) |
36 |
34 35
|
ax-mp |
⊢ dom ( 𝑋 ∖ I ) ⊆ dom 𝑋 |
37 |
|
fdm |
⊢ ( 𝑋 : 𝐴 ⟶ 𝐴 → dom 𝑋 = 𝐴 ) |
38 |
3 6 37
|
3syl |
⊢ ( 𝜑 → dom 𝑋 = 𝐴 ) |
39 |
36 38
|
sseqtrid |
⊢ ( 𝜑 → dom ( 𝑋 ∖ I ) ⊆ 𝐴 ) |
40 |
|
reldisj |
⊢ ( dom ( 𝑋 ∖ I ) ⊆ 𝐴 → ( ( dom ( 𝑋 ∖ I ) ∩ dom ( 𝑌 ∖ I ) ) = ∅ ↔ dom ( 𝑋 ∖ I ) ⊆ ( 𝐴 ∖ dom ( 𝑌 ∖ I ) ) ) ) |
41 |
39 40
|
syl |
⊢ ( 𝜑 → ( ( dom ( 𝑋 ∖ I ) ∩ dom ( 𝑌 ∖ I ) ) = ∅ ↔ dom ( 𝑋 ∖ I ) ⊆ ( 𝐴 ∖ dom ( 𝑌 ∖ I ) ) ) ) |
42 |
5 41
|
mpbid |
⊢ ( 𝜑 → dom ( 𝑋 ∖ I ) ⊆ ( 𝐴 ∖ dom ( 𝑌 ∖ I ) ) ) |
43 |
|
nfpconfp |
⊢ ( 𝑌 Fn 𝐴 → ( 𝐴 ∖ dom ( 𝑌 ∖ I ) ) = dom ( 𝑌 ∩ I ) ) |
44 |
33 43
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∖ dom ( 𝑌 ∖ I ) ) = dom ( 𝑌 ∩ I ) ) |
45 |
42 44
|
sseqtrd |
⊢ ( 𝜑 → dom ( 𝑋 ∖ I ) ⊆ dom ( 𝑌 ∩ I ) ) |
46 |
|
inres |
⊢ ( 𝑌 ∩ ( I ↾ 𝐴 ) ) = ( ( 𝑌 ∩ I ) ↾ 𝐴 ) |
47 |
|
relin2 |
⊢ ( Rel I → Rel ( 𝑌 ∩ I ) ) |
48 |
16 47
|
ax-mp |
⊢ Rel ( 𝑌 ∩ I ) |
49 |
|
difssd |
⊢ ( 𝜑 → ( 𝐴 ∖ dom ( 𝑌 ∖ I ) ) ⊆ 𝐴 ) |
50 |
44 49
|
eqsstrrd |
⊢ ( 𝜑 → dom ( 𝑌 ∩ I ) ⊆ 𝐴 ) |
51 |
|
relssres |
⊢ ( ( Rel ( 𝑌 ∩ I ) ∧ dom ( 𝑌 ∩ I ) ⊆ 𝐴 ) → ( ( 𝑌 ∩ I ) ↾ 𝐴 ) = ( 𝑌 ∩ I ) ) |
52 |
48 50 51
|
sylancr |
⊢ ( 𝜑 → ( ( 𝑌 ∩ I ) ↾ 𝐴 ) = ( 𝑌 ∩ I ) ) |
53 |
46 52
|
syl5eq |
⊢ ( 𝜑 → ( 𝑌 ∩ ( I ↾ 𝐴 ) ) = ( 𝑌 ∩ I ) ) |
54 |
53
|
dmeqd |
⊢ ( 𝜑 → dom ( 𝑌 ∩ ( I ↾ 𝐴 ) ) = dom ( 𝑌 ∩ I ) ) |
55 |
45 54
|
sseqtrrd |
⊢ ( 𝜑 → dom ( 𝑋 ∖ I ) ⊆ dom ( 𝑌 ∩ ( I ↾ 𝐴 ) ) ) |
56 |
|
fnreseql |
⊢ ( ( 𝑌 Fn 𝐴 ∧ ( I ↾ 𝐴 ) Fn 𝐴 ∧ dom ( 𝑋 ∖ I ) ⊆ 𝐴 ) → ( ( 𝑌 ↾ dom ( 𝑋 ∖ I ) ) = ( ( I ↾ 𝐴 ) ↾ dom ( 𝑋 ∖ I ) ) ↔ dom ( 𝑋 ∖ I ) ⊆ dom ( 𝑌 ∩ ( I ↾ 𝐴 ) ) ) ) |
57 |
56
|
biimpar |
⊢ ( ( ( 𝑌 Fn 𝐴 ∧ ( I ↾ 𝐴 ) Fn 𝐴 ∧ dom ( 𝑋 ∖ I ) ⊆ 𝐴 ) ∧ dom ( 𝑋 ∖ I ) ⊆ dom ( 𝑌 ∩ ( I ↾ 𝐴 ) ) ) → ( 𝑌 ↾ dom ( 𝑋 ∖ I ) ) = ( ( I ↾ 𝐴 ) ↾ dom ( 𝑋 ∖ I ) ) ) |
58 |
33 10 39 55 57
|
syl31anc |
⊢ ( 𝜑 → ( 𝑌 ↾ dom ( 𝑋 ∖ I ) ) = ( ( I ↾ 𝐴 ) ↾ dom ( 𝑋 ∖ I ) ) ) |
59 |
39
|
resabs1d |
⊢ ( 𝜑 → ( ( I ↾ 𝐴 ) ↾ dom ( 𝑋 ∖ I ) ) = ( I ↾ dom ( 𝑋 ∖ I ) ) ) |
60 |
58 59
|
eqtrd |
⊢ ( 𝜑 → ( 𝑌 ↾ dom ( 𝑋 ∖ I ) ) = ( I ↾ dom ( 𝑋 ∖ I ) ) ) |
61 |
|
difin2 |
⊢ ( dom ( 𝑋 ∖ I ) ⊆ 𝐴 → ( dom ( 𝑋 ∖ I ) ∖ dom ( 𝑋 ∖ I ) ) = ( ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ∩ dom ( 𝑋 ∖ I ) ) ) |
62 |
39 61
|
syl |
⊢ ( 𝜑 → ( dom ( 𝑋 ∖ I ) ∖ dom ( 𝑋 ∖ I ) ) = ( ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ∩ dom ( 𝑋 ∖ I ) ) ) |
63 |
|
difid |
⊢ ( dom ( 𝑋 ∖ I ) ∖ dom ( 𝑋 ∖ I ) ) = ∅ |
64 |
62 63
|
eqtr3di |
⊢ ( 𝜑 → ( ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ∩ dom ( 𝑋 ∖ I ) ) = ∅ ) |
65 |
|
undif1 |
⊢ ( ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ∪ dom ( 𝑋 ∖ I ) ) = ( 𝐴 ∪ dom ( 𝑋 ∖ I ) ) |
66 |
|
ssequn2 |
⊢ ( dom ( 𝑋 ∖ I ) ⊆ 𝐴 ↔ ( 𝐴 ∪ dom ( 𝑋 ∖ I ) ) = 𝐴 ) |
67 |
39 66
|
sylib |
⊢ ( 𝜑 → ( 𝐴 ∪ dom ( 𝑋 ∖ I ) ) = 𝐴 ) |
68 |
65 67
|
syl5eq |
⊢ ( 𝜑 → ( ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ∪ dom ( 𝑋 ∖ I ) ) = 𝐴 ) |
69 |
1 2 3 4 30 60 64 68
|
symgcom |
⊢ ( 𝜑 → ( 𝑋 ∘ 𝑌 ) = ( 𝑌 ∘ 𝑋 ) ) |