| Step |
Hyp |
Ref |
Expression |
| 1 |
|
symgcom.g |
⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) |
| 2 |
|
symgcom.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 3 |
|
symgcom.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 4 |
|
symgcom.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 5 |
|
symgcom2.1 |
⊢ ( 𝜑 → ( dom ( 𝑋 ∖ I ) ∩ dom ( 𝑌 ∖ I ) ) = ∅ ) |
| 6 |
1 2
|
symgbasf |
⊢ ( 𝑋 ∈ 𝐵 → 𝑋 : 𝐴 ⟶ 𝐴 ) |
| 7 |
3 6
|
syl |
⊢ ( 𝜑 → 𝑋 : 𝐴 ⟶ 𝐴 ) |
| 8 |
7
|
ffnd |
⊢ ( 𝜑 → 𝑋 Fn 𝐴 ) |
| 9 |
|
fnresi |
⊢ ( I ↾ 𝐴 ) Fn 𝐴 |
| 10 |
9
|
a1i |
⊢ ( 𝜑 → ( I ↾ 𝐴 ) Fn 𝐴 ) |
| 11 |
|
difssd |
⊢ ( 𝜑 → ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ⊆ 𝐴 ) |
| 12 |
|
ssidd |
⊢ ( 𝜑 → ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ⊆ ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ) |
| 13 |
|
nfpconfp |
⊢ ( 𝑋 Fn 𝐴 → ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) = dom ( 𝑋 ∩ I ) ) |
| 14 |
8 13
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) = dom ( 𝑋 ∩ I ) ) |
| 15 |
|
inres |
⊢ ( 𝑋 ∩ ( I ↾ 𝐴 ) ) = ( ( 𝑋 ∩ I ) ↾ 𝐴 ) |
| 16 |
|
reli |
⊢ Rel I |
| 17 |
|
relin2 |
⊢ ( Rel I → Rel ( 𝑋 ∩ I ) ) |
| 18 |
16 17
|
ax-mp |
⊢ Rel ( 𝑋 ∩ I ) |
| 19 |
14 11
|
eqsstrrd |
⊢ ( 𝜑 → dom ( 𝑋 ∩ I ) ⊆ 𝐴 ) |
| 20 |
|
relssres |
⊢ ( ( Rel ( 𝑋 ∩ I ) ∧ dom ( 𝑋 ∩ I ) ⊆ 𝐴 ) → ( ( 𝑋 ∩ I ) ↾ 𝐴 ) = ( 𝑋 ∩ I ) ) |
| 21 |
18 19 20
|
sylancr |
⊢ ( 𝜑 → ( ( 𝑋 ∩ I ) ↾ 𝐴 ) = ( 𝑋 ∩ I ) ) |
| 22 |
15 21
|
eqtrid |
⊢ ( 𝜑 → ( 𝑋 ∩ ( I ↾ 𝐴 ) ) = ( 𝑋 ∩ I ) ) |
| 23 |
22
|
dmeqd |
⊢ ( 𝜑 → dom ( 𝑋 ∩ ( I ↾ 𝐴 ) ) = dom ( 𝑋 ∩ I ) ) |
| 24 |
14 23
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) = dom ( 𝑋 ∩ ( I ↾ 𝐴 ) ) ) |
| 25 |
12 24
|
sseqtrd |
⊢ ( 𝜑 → ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ⊆ dom ( 𝑋 ∩ ( I ↾ 𝐴 ) ) ) |
| 26 |
|
fnreseql |
⊢ ( ( 𝑋 Fn 𝐴 ∧ ( I ↾ 𝐴 ) Fn 𝐴 ∧ ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ⊆ 𝐴 ) → ( ( 𝑋 ↾ ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ) = ( ( I ↾ 𝐴 ) ↾ ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ) ↔ ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ⊆ dom ( 𝑋 ∩ ( I ↾ 𝐴 ) ) ) ) |
| 27 |
26
|
biimpar |
⊢ ( ( ( 𝑋 Fn 𝐴 ∧ ( I ↾ 𝐴 ) Fn 𝐴 ∧ ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ⊆ 𝐴 ) ∧ ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ⊆ dom ( 𝑋 ∩ ( I ↾ 𝐴 ) ) ) → ( 𝑋 ↾ ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ) = ( ( I ↾ 𝐴 ) ↾ ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ) ) |
| 28 |
8 10 11 25 27
|
syl31anc |
⊢ ( 𝜑 → ( 𝑋 ↾ ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ) = ( ( I ↾ 𝐴 ) ↾ ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ) ) |
| 29 |
11
|
resabs1d |
⊢ ( 𝜑 → ( ( I ↾ 𝐴 ) ↾ ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ) = ( I ↾ ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ) ) |
| 30 |
28 29
|
eqtrd |
⊢ ( 𝜑 → ( 𝑋 ↾ ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ) = ( I ↾ ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ) ) |
| 31 |
1 2
|
symgbasf |
⊢ ( 𝑌 ∈ 𝐵 → 𝑌 : 𝐴 ⟶ 𝐴 ) |
| 32 |
4 31
|
syl |
⊢ ( 𝜑 → 𝑌 : 𝐴 ⟶ 𝐴 ) |
| 33 |
32
|
ffnd |
⊢ ( 𝜑 → 𝑌 Fn 𝐴 ) |
| 34 |
|
difss |
⊢ ( 𝑋 ∖ I ) ⊆ 𝑋 |
| 35 |
|
dmss |
⊢ ( ( 𝑋 ∖ I ) ⊆ 𝑋 → dom ( 𝑋 ∖ I ) ⊆ dom 𝑋 ) |
| 36 |
34 35
|
ax-mp |
⊢ dom ( 𝑋 ∖ I ) ⊆ dom 𝑋 |
| 37 |
|
fdm |
⊢ ( 𝑋 : 𝐴 ⟶ 𝐴 → dom 𝑋 = 𝐴 ) |
| 38 |
3 6 37
|
3syl |
⊢ ( 𝜑 → dom 𝑋 = 𝐴 ) |
| 39 |
36 38
|
sseqtrid |
⊢ ( 𝜑 → dom ( 𝑋 ∖ I ) ⊆ 𝐴 ) |
| 40 |
|
reldisj |
⊢ ( dom ( 𝑋 ∖ I ) ⊆ 𝐴 → ( ( dom ( 𝑋 ∖ I ) ∩ dom ( 𝑌 ∖ I ) ) = ∅ ↔ dom ( 𝑋 ∖ I ) ⊆ ( 𝐴 ∖ dom ( 𝑌 ∖ I ) ) ) ) |
| 41 |
39 40
|
syl |
⊢ ( 𝜑 → ( ( dom ( 𝑋 ∖ I ) ∩ dom ( 𝑌 ∖ I ) ) = ∅ ↔ dom ( 𝑋 ∖ I ) ⊆ ( 𝐴 ∖ dom ( 𝑌 ∖ I ) ) ) ) |
| 42 |
5 41
|
mpbid |
⊢ ( 𝜑 → dom ( 𝑋 ∖ I ) ⊆ ( 𝐴 ∖ dom ( 𝑌 ∖ I ) ) ) |
| 43 |
|
nfpconfp |
⊢ ( 𝑌 Fn 𝐴 → ( 𝐴 ∖ dom ( 𝑌 ∖ I ) ) = dom ( 𝑌 ∩ I ) ) |
| 44 |
33 43
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∖ dom ( 𝑌 ∖ I ) ) = dom ( 𝑌 ∩ I ) ) |
| 45 |
42 44
|
sseqtrd |
⊢ ( 𝜑 → dom ( 𝑋 ∖ I ) ⊆ dom ( 𝑌 ∩ I ) ) |
| 46 |
|
inres |
⊢ ( 𝑌 ∩ ( I ↾ 𝐴 ) ) = ( ( 𝑌 ∩ I ) ↾ 𝐴 ) |
| 47 |
|
relin2 |
⊢ ( Rel I → Rel ( 𝑌 ∩ I ) ) |
| 48 |
16 47
|
ax-mp |
⊢ Rel ( 𝑌 ∩ I ) |
| 49 |
|
difssd |
⊢ ( 𝜑 → ( 𝐴 ∖ dom ( 𝑌 ∖ I ) ) ⊆ 𝐴 ) |
| 50 |
44 49
|
eqsstrrd |
⊢ ( 𝜑 → dom ( 𝑌 ∩ I ) ⊆ 𝐴 ) |
| 51 |
|
relssres |
⊢ ( ( Rel ( 𝑌 ∩ I ) ∧ dom ( 𝑌 ∩ I ) ⊆ 𝐴 ) → ( ( 𝑌 ∩ I ) ↾ 𝐴 ) = ( 𝑌 ∩ I ) ) |
| 52 |
48 50 51
|
sylancr |
⊢ ( 𝜑 → ( ( 𝑌 ∩ I ) ↾ 𝐴 ) = ( 𝑌 ∩ I ) ) |
| 53 |
46 52
|
eqtrid |
⊢ ( 𝜑 → ( 𝑌 ∩ ( I ↾ 𝐴 ) ) = ( 𝑌 ∩ I ) ) |
| 54 |
53
|
dmeqd |
⊢ ( 𝜑 → dom ( 𝑌 ∩ ( I ↾ 𝐴 ) ) = dom ( 𝑌 ∩ I ) ) |
| 55 |
45 54
|
sseqtrrd |
⊢ ( 𝜑 → dom ( 𝑋 ∖ I ) ⊆ dom ( 𝑌 ∩ ( I ↾ 𝐴 ) ) ) |
| 56 |
|
fnreseql |
⊢ ( ( 𝑌 Fn 𝐴 ∧ ( I ↾ 𝐴 ) Fn 𝐴 ∧ dom ( 𝑋 ∖ I ) ⊆ 𝐴 ) → ( ( 𝑌 ↾ dom ( 𝑋 ∖ I ) ) = ( ( I ↾ 𝐴 ) ↾ dom ( 𝑋 ∖ I ) ) ↔ dom ( 𝑋 ∖ I ) ⊆ dom ( 𝑌 ∩ ( I ↾ 𝐴 ) ) ) ) |
| 57 |
56
|
biimpar |
⊢ ( ( ( 𝑌 Fn 𝐴 ∧ ( I ↾ 𝐴 ) Fn 𝐴 ∧ dom ( 𝑋 ∖ I ) ⊆ 𝐴 ) ∧ dom ( 𝑋 ∖ I ) ⊆ dom ( 𝑌 ∩ ( I ↾ 𝐴 ) ) ) → ( 𝑌 ↾ dom ( 𝑋 ∖ I ) ) = ( ( I ↾ 𝐴 ) ↾ dom ( 𝑋 ∖ I ) ) ) |
| 58 |
33 10 39 55 57
|
syl31anc |
⊢ ( 𝜑 → ( 𝑌 ↾ dom ( 𝑋 ∖ I ) ) = ( ( I ↾ 𝐴 ) ↾ dom ( 𝑋 ∖ I ) ) ) |
| 59 |
39
|
resabs1d |
⊢ ( 𝜑 → ( ( I ↾ 𝐴 ) ↾ dom ( 𝑋 ∖ I ) ) = ( I ↾ dom ( 𝑋 ∖ I ) ) ) |
| 60 |
58 59
|
eqtrd |
⊢ ( 𝜑 → ( 𝑌 ↾ dom ( 𝑋 ∖ I ) ) = ( I ↾ dom ( 𝑋 ∖ I ) ) ) |
| 61 |
|
difin2 |
⊢ ( dom ( 𝑋 ∖ I ) ⊆ 𝐴 → ( dom ( 𝑋 ∖ I ) ∖ dom ( 𝑋 ∖ I ) ) = ( ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ∩ dom ( 𝑋 ∖ I ) ) ) |
| 62 |
39 61
|
syl |
⊢ ( 𝜑 → ( dom ( 𝑋 ∖ I ) ∖ dom ( 𝑋 ∖ I ) ) = ( ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ∩ dom ( 𝑋 ∖ I ) ) ) |
| 63 |
|
difid |
⊢ ( dom ( 𝑋 ∖ I ) ∖ dom ( 𝑋 ∖ I ) ) = ∅ |
| 64 |
62 63
|
eqtr3di |
⊢ ( 𝜑 → ( ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ∩ dom ( 𝑋 ∖ I ) ) = ∅ ) |
| 65 |
|
undif1 |
⊢ ( ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ∪ dom ( 𝑋 ∖ I ) ) = ( 𝐴 ∪ dom ( 𝑋 ∖ I ) ) |
| 66 |
|
ssequn2 |
⊢ ( dom ( 𝑋 ∖ I ) ⊆ 𝐴 ↔ ( 𝐴 ∪ dom ( 𝑋 ∖ I ) ) = 𝐴 ) |
| 67 |
39 66
|
sylib |
⊢ ( 𝜑 → ( 𝐴 ∪ dom ( 𝑋 ∖ I ) ) = 𝐴 ) |
| 68 |
65 67
|
eqtrid |
⊢ ( 𝜑 → ( ( 𝐴 ∖ dom ( 𝑋 ∖ I ) ) ∪ dom ( 𝑋 ∖ I ) ) = 𝐴 ) |
| 69 |
1 2 3 4 30 60 64 68
|
symgcom |
⊢ ( 𝜑 → ( 𝑋 ∘ 𝑌 ) = ( 𝑌 ∘ 𝑋 ) ) |