| Step | Hyp | Ref | Expression | 
						
							| 1 |  | symgcom.g | ⊢ 𝐺  =  ( SymGrp ‘ 𝐴 ) | 
						
							| 2 |  | symgcom.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 3 |  | symgcom.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 4 |  | symgcom.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 5 |  | symgcom2.1 | ⊢ ( 𝜑  →  ( dom  ( 𝑋  ∖   I  )  ∩  dom  ( 𝑌  ∖   I  ) )  =  ∅ ) | 
						
							| 6 | 1 2 | symgbasf | ⊢ ( 𝑋  ∈  𝐵  →  𝑋 : 𝐴 ⟶ 𝐴 ) | 
						
							| 7 | 3 6 | syl | ⊢ ( 𝜑  →  𝑋 : 𝐴 ⟶ 𝐴 ) | 
						
							| 8 | 7 | ffnd | ⊢ ( 𝜑  →  𝑋  Fn  𝐴 ) | 
						
							| 9 |  | fnresi | ⊢ (  I   ↾  𝐴 )  Fn  𝐴 | 
						
							| 10 | 9 | a1i | ⊢ ( 𝜑  →  (  I   ↾  𝐴 )  Fn  𝐴 ) | 
						
							| 11 |  | difssd | ⊢ ( 𝜑  →  ( 𝐴  ∖  dom  ( 𝑋  ∖   I  ) )  ⊆  𝐴 ) | 
						
							| 12 |  | ssidd | ⊢ ( 𝜑  →  ( 𝐴  ∖  dom  ( 𝑋  ∖   I  ) )  ⊆  ( 𝐴  ∖  dom  ( 𝑋  ∖   I  ) ) ) | 
						
							| 13 |  | nfpconfp | ⊢ ( 𝑋  Fn  𝐴  →  ( 𝐴  ∖  dom  ( 𝑋  ∖   I  ) )  =  dom  ( 𝑋  ∩   I  ) ) | 
						
							| 14 | 8 13 | syl | ⊢ ( 𝜑  →  ( 𝐴  ∖  dom  ( 𝑋  ∖   I  ) )  =  dom  ( 𝑋  ∩   I  ) ) | 
						
							| 15 |  | inres | ⊢ ( 𝑋  ∩  (  I   ↾  𝐴 ) )  =  ( ( 𝑋  ∩   I  )  ↾  𝐴 ) | 
						
							| 16 |  | reli | ⊢ Rel   I | 
						
							| 17 |  | relin2 | ⊢ ( Rel   I   →  Rel  ( 𝑋  ∩   I  ) ) | 
						
							| 18 | 16 17 | ax-mp | ⊢ Rel  ( 𝑋  ∩   I  ) | 
						
							| 19 | 14 11 | eqsstrrd | ⊢ ( 𝜑  →  dom  ( 𝑋  ∩   I  )  ⊆  𝐴 ) | 
						
							| 20 |  | relssres | ⊢ ( ( Rel  ( 𝑋  ∩   I  )  ∧  dom  ( 𝑋  ∩   I  )  ⊆  𝐴 )  →  ( ( 𝑋  ∩   I  )  ↾  𝐴 )  =  ( 𝑋  ∩   I  ) ) | 
						
							| 21 | 18 19 20 | sylancr | ⊢ ( 𝜑  →  ( ( 𝑋  ∩   I  )  ↾  𝐴 )  =  ( 𝑋  ∩   I  ) ) | 
						
							| 22 | 15 21 | eqtrid | ⊢ ( 𝜑  →  ( 𝑋  ∩  (  I   ↾  𝐴 ) )  =  ( 𝑋  ∩   I  ) ) | 
						
							| 23 | 22 | dmeqd | ⊢ ( 𝜑  →  dom  ( 𝑋  ∩  (  I   ↾  𝐴 ) )  =  dom  ( 𝑋  ∩   I  ) ) | 
						
							| 24 | 14 23 | eqtr4d | ⊢ ( 𝜑  →  ( 𝐴  ∖  dom  ( 𝑋  ∖   I  ) )  =  dom  ( 𝑋  ∩  (  I   ↾  𝐴 ) ) ) | 
						
							| 25 | 12 24 | sseqtrd | ⊢ ( 𝜑  →  ( 𝐴  ∖  dom  ( 𝑋  ∖   I  ) )  ⊆  dom  ( 𝑋  ∩  (  I   ↾  𝐴 ) ) ) | 
						
							| 26 |  | fnreseql | ⊢ ( ( 𝑋  Fn  𝐴  ∧  (  I   ↾  𝐴 )  Fn  𝐴  ∧  ( 𝐴  ∖  dom  ( 𝑋  ∖   I  ) )  ⊆  𝐴 )  →  ( ( 𝑋  ↾  ( 𝐴  ∖  dom  ( 𝑋  ∖   I  ) ) )  =  ( (  I   ↾  𝐴 )  ↾  ( 𝐴  ∖  dom  ( 𝑋  ∖   I  ) ) )  ↔  ( 𝐴  ∖  dom  ( 𝑋  ∖   I  ) )  ⊆  dom  ( 𝑋  ∩  (  I   ↾  𝐴 ) ) ) ) | 
						
							| 27 | 26 | biimpar | ⊢ ( ( ( 𝑋  Fn  𝐴  ∧  (  I   ↾  𝐴 )  Fn  𝐴  ∧  ( 𝐴  ∖  dom  ( 𝑋  ∖   I  ) )  ⊆  𝐴 )  ∧  ( 𝐴  ∖  dom  ( 𝑋  ∖   I  ) )  ⊆  dom  ( 𝑋  ∩  (  I   ↾  𝐴 ) ) )  →  ( 𝑋  ↾  ( 𝐴  ∖  dom  ( 𝑋  ∖   I  ) ) )  =  ( (  I   ↾  𝐴 )  ↾  ( 𝐴  ∖  dom  ( 𝑋  ∖   I  ) ) ) ) | 
						
							| 28 | 8 10 11 25 27 | syl31anc | ⊢ ( 𝜑  →  ( 𝑋  ↾  ( 𝐴  ∖  dom  ( 𝑋  ∖   I  ) ) )  =  ( (  I   ↾  𝐴 )  ↾  ( 𝐴  ∖  dom  ( 𝑋  ∖   I  ) ) ) ) | 
						
							| 29 | 11 | resabs1d | ⊢ ( 𝜑  →  ( (  I   ↾  𝐴 )  ↾  ( 𝐴  ∖  dom  ( 𝑋  ∖   I  ) ) )  =  (  I   ↾  ( 𝐴  ∖  dom  ( 𝑋  ∖   I  ) ) ) ) | 
						
							| 30 | 28 29 | eqtrd | ⊢ ( 𝜑  →  ( 𝑋  ↾  ( 𝐴  ∖  dom  ( 𝑋  ∖   I  ) ) )  =  (  I   ↾  ( 𝐴  ∖  dom  ( 𝑋  ∖   I  ) ) ) ) | 
						
							| 31 | 1 2 | symgbasf | ⊢ ( 𝑌  ∈  𝐵  →  𝑌 : 𝐴 ⟶ 𝐴 ) | 
						
							| 32 | 4 31 | syl | ⊢ ( 𝜑  →  𝑌 : 𝐴 ⟶ 𝐴 ) | 
						
							| 33 | 32 | ffnd | ⊢ ( 𝜑  →  𝑌  Fn  𝐴 ) | 
						
							| 34 |  | difss | ⊢ ( 𝑋  ∖   I  )  ⊆  𝑋 | 
						
							| 35 |  | dmss | ⊢ ( ( 𝑋  ∖   I  )  ⊆  𝑋  →  dom  ( 𝑋  ∖   I  )  ⊆  dom  𝑋 ) | 
						
							| 36 | 34 35 | ax-mp | ⊢ dom  ( 𝑋  ∖   I  )  ⊆  dom  𝑋 | 
						
							| 37 |  | fdm | ⊢ ( 𝑋 : 𝐴 ⟶ 𝐴  →  dom  𝑋  =  𝐴 ) | 
						
							| 38 | 3 6 37 | 3syl | ⊢ ( 𝜑  →  dom  𝑋  =  𝐴 ) | 
						
							| 39 | 36 38 | sseqtrid | ⊢ ( 𝜑  →  dom  ( 𝑋  ∖   I  )  ⊆  𝐴 ) | 
						
							| 40 |  | reldisj | ⊢ ( dom  ( 𝑋  ∖   I  )  ⊆  𝐴  →  ( ( dom  ( 𝑋  ∖   I  )  ∩  dom  ( 𝑌  ∖   I  ) )  =  ∅  ↔  dom  ( 𝑋  ∖   I  )  ⊆  ( 𝐴  ∖  dom  ( 𝑌  ∖   I  ) ) ) ) | 
						
							| 41 | 39 40 | syl | ⊢ ( 𝜑  →  ( ( dom  ( 𝑋  ∖   I  )  ∩  dom  ( 𝑌  ∖   I  ) )  =  ∅  ↔  dom  ( 𝑋  ∖   I  )  ⊆  ( 𝐴  ∖  dom  ( 𝑌  ∖   I  ) ) ) ) | 
						
							| 42 | 5 41 | mpbid | ⊢ ( 𝜑  →  dom  ( 𝑋  ∖   I  )  ⊆  ( 𝐴  ∖  dom  ( 𝑌  ∖   I  ) ) ) | 
						
							| 43 |  | nfpconfp | ⊢ ( 𝑌  Fn  𝐴  →  ( 𝐴  ∖  dom  ( 𝑌  ∖   I  ) )  =  dom  ( 𝑌  ∩   I  ) ) | 
						
							| 44 | 33 43 | syl | ⊢ ( 𝜑  →  ( 𝐴  ∖  dom  ( 𝑌  ∖   I  ) )  =  dom  ( 𝑌  ∩   I  ) ) | 
						
							| 45 | 42 44 | sseqtrd | ⊢ ( 𝜑  →  dom  ( 𝑋  ∖   I  )  ⊆  dom  ( 𝑌  ∩   I  ) ) | 
						
							| 46 |  | inres | ⊢ ( 𝑌  ∩  (  I   ↾  𝐴 ) )  =  ( ( 𝑌  ∩   I  )  ↾  𝐴 ) | 
						
							| 47 |  | relin2 | ⊢ ( Rel   I   →  Rel  ( 𝑌  ∩   I  ) ) | 
						
							| 48 | 16 47 | ax-mp | ⊢ Rel  ( 𝑌  ∩   I  ) | 
						
							| 49 |  | difssd | ⊢ ( 𝜑  →  ( 𝐴  ∖  dom  ( 𝑌  ∖   I  ) )  ⊆  𝐴 ) | 
						
							| 50 | 44 49 | eqsstrrd | ⊢ ( 𝜑  →  dom  ( 𝑌  ∩   I  )  ⊆  𝐴 ) | 
						
							| 51 |  | relssres | ⊢ ( ( Rel  ( 𝑌  ∩   I  )  ∧  dom  ( 𝑌  ∩   I  )  ⊆  𝐴 )  →  ( ( 𝑌  ∩   I  )  ↾  𝐴 )  =  ( 𝑌  ∩   I  ) ) | 
						
							| 52 | 48 50 51 | sylancr | ⊢ ( 𝜑  →  ( ( 𝑌  ∩   I  )  ↾  𝐴 )  =  ( 𝑌  ∩   I  ) ) | 
						
							| 53 | 46 52 | eqtrid | ⊢ ( 𝜑  →  ( 𝑌  ∩  (  I   ↾  𝐴 ) )  =  ( 𝑌  ∩   I  ) ) | 
						
							| 54 | 53 | dmeqd | ⊢ ( 𝜑  →  dom  ( 𝑌  ∩  (  I   ↾  𝐴 ) )  =  dom  ( 𝑌  ∩   I  ) ) | 
						
							| 55 | 45 54 | sseqtrrd | ⊢ ( 𝜑  →  dom  ( 𝑋  ∖   I  )  ⊆  dom  ( 𝑌  ∩  (  I   ↾  𝐴 ) ) ) | 
						
							| 56 |  | fnreseql | ⊢ ( ( 𝑌  Fn  𝐴  ∧  (  I   ↾  𝐴 )  Fn  𝐴  ∧  dom  ( 𝑋  ∖   I  )  ⊆  𝐴 )  →  ( ( 𝑌  ↾  dom  ( 𝑋  ∖   I  ) )  =  ( (  I   ↾  𝐴 )  ↾  dom  ( 𝑋  ∖   I  ) )  ↔  dom  ( 𝑋  ∖   I  )  ⊆  dom  ( 𝑌  ∩  (  I   ↾  𝐴 ) ) ) ) | 
						
							| 57 | 56 | biimpar | ⊢ ( ( ( 𝑌  Fn  𝐴  ∧  (  I   ↾  𝐴 )  Fn  𝐴  ∧  dom  ( 𝑋  ∖   I  )  ⊆  𝐴 )  ∧  dom  ( 𝑋  ∖   I  )  ⊆  dom  ( 𝑌  ∩  (  I   ↾  𝐴 ) ) )  →  ( 𝑌  ↾  dom  ( 𝑋  ∖   I  ) )  =  ( (  I   ↾  𝐴 )  ↾  dom  ( 𝑋  ∖   I  ) ) ) | 
						
							| 58 | 33 10 39 55 57 | syl31anc | ⊢ ( 𝜑  →  ( 𝑌  ↾  dom  ( 𝑋  ∖   I  ) )  =  ( (  I   ↾  𝐴 )  ↾  dom  ( 𝑋  ∖   I  ) ) ) | 
						
							| 59 | 39 | resabs1d | ⊢ ( 𝜑  →  ( (  I   ↾  𝐴 )  ↾  dom  ( 𝑋  ∖   I  ) )  =  (  I   ↾  dom  ( 𝑋  ∖   I  ) ) ) | 
						
							| 60 | 58 59 | eqtrd | ⊢ ( 𝜑  →  ( 𝑌  ↾  dom  ( 𝑋  ∖   I  ) )  =  (  I   ↾  dom  ( 𝑋  ∖   I  ) ) ) | 
						
							| 61 |  | difin2 | ⊢ ( dom  ( 𝑋  ∖   I  )  ⊆  𝐴  →  ( dom  ( 𝑋  ∖   I  )  ∖  dom  ( 𝑋  ∖   I  ) )  =  ( ( 𝐴  ∖  dom  ( 𝑋  ∖   I  ) )  ∩  dom  ( 𝑋  ∖   I  ) ) ) | 
						
							| 62 | 39 61 | syl | ⊢ ( 𝜑  →  ( dom  ( 𝑋  ∖   I  )  ∖  dom  ( 𝑋  ∖   I  ) )  =  ( ( 𝐴  ∖  dom  ( 𝑋  ∖   I  ) )  ∩  dom  ( 𝑋  ∖   I  ) ) ) | 
						
							| 63 |  | difid | ⊢ ( dom  ( 𝑋  ∖   I  )  ∖  dom  ( 𝑋  ∖   I  ) )  =  ∅ | 
						
							| 64 | 62 63 | eqtr3di | ⊢ ( 𝜑  →  ( ( 𝐴  ∖  dom  ( 𝑋  ∖   I  ) )  ∩  dom  ( 𝑋  ∖   I  ) )  =  ∅ ) | 
						
							| 65 |  | undif1 | ⊢ ( ( 𝐴  ∖  dom  ( 𝑋  ∖   I  ) )  ∪  dom  ( 𝑋  ∖   I  ) )  =  ( 𝐴  ∪  dom  ( 𝑋  ∖   I  ) ) | 
						
							| 66 |  | ssequn2 | ⊢ ( dom  ( 𝑋  ∖   I  )  ⊆  𝐴  ↔  ( 𝐴  ∪  dom  ( 𝑋  ∖   I  ) )  =  𝐴 ) | 
						
							| 67 | 39 66 | sylib | ⊢ ( 𝜑  →  ( 𝐴  ∪  dom  ( 𝑋  ∖   I  ) )  =  𝐴 ) | 
						
							| 68 | 65 67 | eqtrid | ⊢ ( 𝜑  →  ( ( 𝐴  ∖  dom  ( 𝑋  ∖   I  ) )  ∪  dom  ( 𝑋  ∖   I  ) )  =  𝐴 ) | 
						
							| 69 | 1 2 3 4 30 60 64 68 | symgcom | ⊢ ( 𝜑  →  ( 𝑋  ∘  𝑌 )  =  ( 𝑌  ∘  𝑋 ) ) |