Step |
Hyp |
Ref |
Expression |
1 |
|
symgcom.g |
⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) |
2 |
|
symgcom.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
3 |
|
symgcom.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
4 |
|
symgcom.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
5 |
|
symgcom.1 |
⊢ ( 𝜑 → ( 𝑋 ↾ 𝐸 ) = ( I ↾ 𝐸 ) ) |
6 |
|
symgcom.2 |
⊢ ( 𝜑 → ( 𝑌 ↾ 𝐹 ) = ( I ↾ 𝐹 ) ) |
7 |
|
symgcom.3 |
⊢ ( 𝜑 → ( 𝐸 ∩ 𝐹 ) = ∅ ) |
8 |
|
symgcom.4 |
⊢ ( 𝜑 → ( 𝐸 ∪ 𝐹 ) = 𝐴 ) |
9 |
8
|
reseq2d |
⊢ ( 𝜑 → ( ( 𝑋 ∘ 𝑌 ) ↾ ( 𝐸 ∪ 𝐹 ) ) = ( ( 𝑋 ∘ 𝑌 ) ↾ 𝐴 ) ) |
10 |
|
resundi |
⊢ ( ( 𝑋 ∘ 𝑌 ) ↾ ( 𝐸 ∪ 𝐹 ) ) = ( ( ( 𝑋 ∘ 𝑌 ) ↾ 𝐸 ) ∪ ( ( 𝑋 ∘ 𝑌 ) ↾ 𝐹 ) ) |
11 |
|
resco |
⊢ ( ( 𝑋 ∘ 𝑌 ) ↾ 𝐸 ) = ( 𝑋 ∘ ( 𝑌 ↾ 𝐸 ) ) |
12 |
1 2
|
symgbasf1o |
⊢ ( 𝑌 ∈ 𝐵 → 𝑌 : 𝐴 –1-1-onto→ 𝐴 ) |
13 |
4 12
|
syl |
⊢ ( 𝜑 → 𝑌 : 𝐴 –1-1-onto→ 𝐴 ) |
14 |
|
f1ocnv |
⊢ ( 𝑌 : 𝐴 –1-1-onto→ 𝐴 → ◡ 𝑌 : 𝐴 –1-1-onto→ 𝐴 ) |
15 |
|
f1ofun |
⊢ ( ◡ 𝑌 : 𝐴 –1-1-onto→ 𝐴 → Fun ◡ 𝑌 ) |
16 |
13 14 15
|
3syl |
⊢ ( 𝜑 → Fun ◡ 𝑌 ) |
17 |
|
f1ofn |
⊢ ( 𝑌 : 𝐴 –1-1-onto→ 𝐴 → 𝑌 Fn 𝐴 ) |
18 |
|
fnresdm |
⊢ ( 𝑌 Fn 𝐴 → ( 𝑌 ↾ 𝐴 ) = 𝑌 ) |
19 |
13 17 18
|
3syl |
⊢ ( 𝜑 → ( 𝑌 ↾ 𝐴 ) = 𝑌 ) |
20 |
|
f1ofo |
⊢ ( 𝑌 : 𝐴 –1-1-onto→ 𝐴 → 𝑌 : 𝐴 –onto→ 𝐴 ) |
21 |
13 20
|
syl |
⊢ ( 𝜑 → 𝑌 : 𝐴 –onto→ 𝐴 ) |
22 |
|
foeq1 |
⊢ ( ( 𝑌 ↾ 𝐴 ) = 𝑌 → ( ( 𝑌 ↾ 𝐴 ) : 𝐴 –onto→ 𝐴 ↔ 𝑌 : 𝐴 –onto→ 𝐴 ) ) |
23 |
22
|
biimpar |
⊢ ( ( ( 𝑌 ↾ 𝐴 ) = 𝑌 ∧ 𝑌 : 𝐴 –onto→ 𝐴 ) → ( 𝑌 ↾ 𝐴 ) : 𝐴 –onto→ 𝐴 ) |
24 |
19 21 23
|
syl2anc |
⊢ ( 𝜑 → ( 𝑌 ↾ 𝐴 ) : 𝐴 –onto→ 𝐴 ) |
25 |
|
f1oi |
⊢ ( I ↾ 𝐹 ) : 𝐹 –1-1-onto→ 𝐹 |
26 |
|
f1ofo |
⊢ ( ( I ↾ 𝐹 ) : 𝐹 –1-1-onto→ 𝐹 → ( I ↾ 𝐹 ) : 𝐹 –onto→ 𝐹 ) |
27 |
25 26
|
mp1i |
⊢ ( 𝜑 → ( I ↾ 𝐹 ) : 𝐹 –onto→ 𝐹 ) |
28 |
|
foeq1 |
⊢ ( ( 𝑌 ↾ 𝐹 ) = ( I ↾ 𝐹 ) → ( ( 𝑌 ↾ 𝐹 ) : 𝐹 –onto→ 𝐹 ↔ ( I ↾ 𝐹 ) : 𝐹 –onto→ 𝐹 ) ) |
29 |
28
|
biimpar |
⊢ ( ( ( 𝑌 ↾ 𝐹 ) = ( I ↾ 𝐹 ) ∧ ( I ↾ 𝐹 ) : 𝐹 –onto→ 𝐹 ) → ( 𝑌 ↾ 𝐹 ) : 𝐹 –onto→ 𝐹 ) |
30 |
6 27 29
|
syl2anc |
⊢ ( 𝜑 → ( 𝑌 ↾ 𝐹 ) : 𝐹 –onto→ 𝐹 ) |
31 |
|
resdif |
⊢ ( ( Fun ◡ 𝑌 ∧ ( 𝑌 ↾ 𝐴 ) : 𝐴 –onto→ 𝐴 ∧ ( 𝑌 ↾ 𝐹 ) : 𝐹 –onto→ 𝐹 ) → ( 𝑌 ↾ ( 𝐴 ∖ 𝐹 ) ) : ( 𝐴 ∖ 𝐹 ) –1-1-onto→ ( 𝐴 ∖ 𝐹 ) ) |
32 |
16 24 30 31
|
syl3anc |
⊢ ( 𝜑 → ( 𝑌 ↾ ( 𝐴 ∖ 𝐹 ) ) : ( 𝐴 ∖ 𝐹 ) –1-1-onto→ ( 𝐴 ∖ 𝐹 ) ) |
33 |
|
ssun2 |
⊢ 𝐹 ⊆ ( 𝐸 ∪ 𝐹 ) |
34 |
33 8
|
sseqtrid |
⊢ ( 𝜑 → 𝐹 ⊆ 𝐴 ) |
35 |
|
incom |
⊢ ( 𝐸 ∩ 𝐹 ) = ( 𝐹 ∩ 𝐸 ) |
36 |
35 7
|
eqtr3id |
⊢ ( 𝜑 → ( 𝐹 ∩ 𝐸 ) = ∅ ) |
37 |
|
uncom |
⊢ ( 𝐸 ∪ 𝐹 ) = ( 𝐹 ∪ 𝐸 ) |
38 |
37 8
|
eqtr3id |
⊢ ( 𝜑 → ( 𝐹 ∪ 𝐸 ) = 𝐴 ) |
39 |
|
uneqdifeq |
⊢ ( ( 𝐹 ⊆ 𝐴 ∧ ( 𝐹 ∩ 𝐸 ) = ∅ ) → ( ( 𝐹 ∪ 𝐸 ) = 𝐴 ↔ ( 𝐴 ∖ 𝐹 ) = 𝐸 ) ) |
40 |
39
|
biimpa |
⊢ ( ( ( 𝐹 ⊆ 𝐴 ∧ ( 𝐹 ∩ 𝐸 ) = ∅ ) ∧ ( 𝐹 ∪ 𝐸 ) = 𝐴 ) → ( 𝐴 ∖ 𝐹 ) = 𝐸 ) |
41 |
34 36 38 40
|
syl21anc |
⊢ ( 𝜑 → ( 𝐴 ∖ 𝐹 ) = 𝐸 ) |
42 |
41
|
reseq2d |
⊢ ( 𝜑 → ( 𝑌 ↾ ( 𝐴 ∖ 𝐹 ) ) = ( 𝑌 ↾ 𝐸 ) ) |
43 |
42 41 41
|
f1oeq123d |
⊢ ( 𝜑 → ( ( 𝑌 ↾ ( 𝐴 ∖ 𝐹 ) ) : ( 𝐴 ∖ 𝐹 ) –1-1-onto→ ( 𝐴 ∖ 𝐹 ) ↔ ( 𝑌 ↾ 𝐸 ) : 𝐸 –1-1-onto→ 𝐸 ) ) |
44 |
32 43
|
mpbid |
⊢ ( 𝜑 → ( 𝑌 ↾ 𝐸 ) : 𝐸 –1-1-onto→ 𝐸 ) |
45 |
|
f1of |
⊢ ( ( 𝑌 ↾ 𝐸 ) : 𝐸 –1-1-onto→ 𝐸 → ( 𝑌 ↾ 𝐸 ) : 𝐸 ⟶ 𝐸 ) |
46 |
44 45
|
syl |
⊢ ( 𝜑 → ( 𝑌 ↾ 𝐸 ) : 𝐸 ⟶ 𝐸 ) |
47 |
46
|
frnd |
⊢ ( 𝜑 → ran ( 𝑌 ↾ 𝐸 ) ⊆ 𝐸 ) |
48 |
|
cores |
⊢ ( ran ( 𝑌 ↾ 𝐸 ) ⊆ 𝐸 → ( ( 𝑋 ↾ 𝐸 ) ∘ ( 𝑌 ↾ 𝐸 ) ) = ( 𝑋 ∘ ( 𝑌 ↾ 𝐸 ) ) ) |
49 |
47 48
|
syl |
⊢ ( 𝜑 → ( ( 𝑋 ↾ 𝐸 ) ∘ ( 𝑌 ↾ 𝐸 ) ) = ( 𝑋 ∘ ( 𝑌 ↾ 𝐸 ) ) ) |
50 |
11 49
|
eqtr4id |
⊢ ( 𝜑 → ( ( 𝑋 ∘ 𝑌 ) ↾ 𝐸 ) = ( ( 𝑋 ↾ 𝐸 ) ∘ ( 𝑌 ↾ 𝐸 ) ) ) |
51 |
5
|
coeq1d |
⊢ ( 𝜑 → ( ( 𝑋 ↾ 𝐸 ) ∘ ( 𝑌 ↾ 𝐸 ) ) = ( ( I ↾ 𝐸 ) ∘ ( 𝑌 ↾ 𝐸 ) ) ) |
52 |
|
fcoi2 |
⊢ ( ( 𝑌 ↾ 𝐸 ) : 𝐸 ⟶ 𝐸 → ( ( I ↾ 𝐸 ) ∘ ( 𝑌 ↾ 𝐸 ) ) = ( 𝑌 ↾ 𝐸 ) ) |
53 |
46 52
|
syl |
⊢ ( 𝜑 → ( ( I ↾ 𝐸 ) ∘ ( 𝑌 ↾ 𝐸 ) ) = ( 𝑌 ↾ 𝐸 ) ) |
54 |
50 51 53
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑋 ∘ 𝑌 ) ↾ 𝐸 ) = ( 𝑌 ↾ 𝐸 ) ) |
55 |
|
resco |
⊢ ( ( 𝑋 ∘ 𝑌 ) ↾ 𝐹 ) = ( 𝑋 ∘ ( 𝑌 ↾ 𝐹 ) ) |
56 |
6
|
coeq2d |
⊢ ( 𝜑 → ( 𝑋 ∘ ( 𝑌 ↾ 𝐹 ) ) = ( 𝑋 ∘ ( I ↾ 𝐹 ) ) ) |
57 |
|
coires1 |
⊢ ( 𝑋 ∘ ( I ↾ 𝐹 ) ) = ( 𝑋 ↾ 𝐹 ) |
58 |
56 57
|
eqtrdi |
⊢ ( 𝜑 → ( 𝑋 ∘ ( 𝑌 ↾ 𝐹 ) ) = ( 𝑋 ↾ 𝐹 ) ) |
59 |
55 58
|
syl5eq |
⊢ ( 𝜑 → ( ( 𝑋 ∘ 𝑌 ) ↾ 𝐹 ) = ( 𝑋 ↾ 𝐹 ) ) |
60 |
54 59
|
uneq12d |
⊢ ( 𝜑 → ( ( ( 𝑋 ∘ 𝑌 ) ↾ 𝐸 ) ∪ ( ( 𝑋 ∘ 𝑌 ) ↾ 𝐹 ) ) = ( ( 𝑌 ↾ 𝐸 ) ∪ ( 𝑋 ↾ 𝐹 ) ) ) |
61 |
10 60
|
syl5eq |
⊢ ( 𝜑 → ( ( 𝑋 ∘ 𝑌 ) ↾ ( 𝐸 ∪ 𝐹 ) ) = ( ( 𝑌 ↾ 𝐸 ) ∪ ( 𝑋 ↾ 𝐹 ) ) ) |
62 |
1 2
|
symgbasf1o |
⊢ ( 𝑋 ∈ 𝐵 → 𝑋 : 𝐴 –1-1-onto→ 𝐴 ) |
63 |
3 62
|
syl |
⊢ ( 𝜑 → 𝑋 : 𝐴 –1-1-onto→ 𝐴 ) |
64 |
|
f1oco |
⊢ ( ( 𝑋 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑌 : 𝐴 –1-1-onto→ 𝐴 ) → ( 𝑋 ∘ 𝑌 ) : 𝐴 –1-1-onto→ 𝐴 ) |
65 |
63 13 64
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 ∘ 𝑌 ) : 𝐴 –1-1-onto→ 𝐴 ) |
66 |
|
f1ofn |
⊢ ( ( 𝑋 ∘ 𝑌 ) : 𝐴 –1-1-onto→ 𝐴 → ( 𝑋 ∘ 𝑌 ) Fn 𝐴 ) |
67 |
|
fnresdm |
⊢ ( ( 𝑋 ∘ 𝑌 ) Fn 𝐴 → ( ( 𝑋 ∘ 𝑌 ) ↾ 𝐴 ) = ( 𝑋 ∘ 𝑌 ) ) |
68 |
65 66 67
|
3syl |
⊢ ( 𝜑 → ( ( 𝑋 ∘ 𝑌 ) ↾ 𝐴 ) = ( 𝑋 ∘ 𝑌 ) ) |
69 |
9 61 68
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝑌 ↾ 𝐸 ) ∪ ( 𝑋 ↾ 𝐹 ) ) = ( 𝑋 ∘ 𝑌 ) ) |
70 |
8
|
reseq2d |
⊢ ( 𝜑 → ( ( 𝑌 ∘ 𝑋 ) ↾ ( 𝐸 ∪ 𝐹 ) ) = ( ( 𝑌 ∘ 𝑋 ) ↾ 𝐴 ) ) |
71 |
|
resundi |
⊢ ( ( 𝑌 ∘ 𝑋 ) ↾ ( 𝐸 ∪ 𝐹 ) ) = ( ( ( 𝑌 ∘ 𝑋 ) ↾ 𝐸 ) ∪ ( ( 𝑌 ∘ 𝑋 ) ↾ 𝐹 ) ) |
72 |
|
resco |
⊢ ( ( 𝑌 ∘ 𝑋 ) ↾ 𝐸 ) = ( 𝑌 ∘ ( 𝑋 ↾ 𝐸 ) ) |
73 |
5
|
coeq2d |
⊢ ( 𝜑 → ( 𝑌 ∘ ( 𝑋 ↾ 𝐸 ) ) = ( 𝑌 ∘ ( I ↾ 𝐸 ) ) ) |
74 |
|
coires1 |
⊢ ( 𝑌 ∘ ( I ↾ 𝐸 ) ) = ( 𝑌 ↾ 𝐸 ) |
75 |
73 74
|
eqtrdi |
⊢ ( 𝜑 → ( 𝑌 ∘ ( 𝑋 ↾ 𝐸 ) ) = ( 𝑌 ↾ 𝐸 ) ) |
76 |
72 75
|
syl5eq |
⊢ ( 𝜑 → ( ( 𝑌 ∘ 𝑋 ) ↾ 𝐸 ) = ( 𝑌 ↾ 𝐸 ) ) |
77 |
|
resco |
⊢ ( ( 𝑌 ∘ 𝑋 ) ↾ 𝐹 ) = ( 𝑌 ∘ ( 𝑋 ↾ 𝐹 ) ) |
78 |
|
f1ocnv |
⊢ ( 𝑋 : 𝐴 –1-1-onto→ 𝐴 → ◡ 𝑋 : 𝐴 –1-1-onto→ 𝐴 ) |
79 |
|
f1ofun |
⊢ ( ◡ 𝑋 : 𝐴 –1-1-onto→ 𝐴 → Fun ◡ 𝑋 ) |
80 |
63 78 79
|
3syl |
⊢ ( 𝜑 → Fun ◡ 𝑋 ) |
81 |
|
f1ofn |
⊢ ( 𝑋 : 𝐴 –1-1-onto→ 𝐴 → 𝑋 Fn 𝐴 ) |
82 |
|
fnresdm |
⊢ ( 𝑋 Fn 𝐴 → ( 𝑋 ↾ 𝐴 ) = 𝑋 ) |
83 |
63 81 82
|
3syl |
⊢ ( 𝜑 → ( 𝑋 ↾ 𝐴 ) = 𝑋 ) |
84 |
|
f1ofo |
⊢ ( 𝑋 : 𝐴 –1-1-onto→ 𝐴 → 𝑋 : 𝐴 –onto→ 𝐴 ) |
85 |
63 84
|
syl |
⊢ ( 𝜑 → 𝑋 : 𝐴 –onto→ 𝐴 ) |
86 |
|
foeq1 |
⊢ ( ( 𝑋 ↾ 𝐴 ) = 𝑋 → ( ( 𝑋 ↾ 𝐴 ) : 𝐴 –onto→ 𝐴 ↔ 𝑋 : 𝐴 –onto→ 𝐴 ) ) |
87 |
86
|
biimpar |
⊢ ( ( ( 𝑋 ↾ 𝐴 ) = 𝑋 ∧ 𝑋 : 𝐴 –onto→ 𝐴 ) → ( 𝑋 ↾ 𝐴 ) : 𝐴 –onto→ 𝐴 ) |
88 |
83 85 87
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 ↾ 𝐴 ) : 𝐴 –onto→ 𝐴 ) |
89 |
|
f1oi |
⊢ ( I ↾ 𝐸 ) : 𝐸 –1-1-onto→ 𝐸 |
90 |
|
f1ofo |
⊢ ( ( I ↾ 𝐸 ) : 𝐸 –1-1-onto→ 𝐸 → ( I ↾ 𝐸 ) : 𝐸 –onto→ 𝐸 ) |
91 |
89 90
|
mp1i |
⊢ ( 𝜑 → ( I ↾ 𝐸 ) : 𝐸 –onto→ 𝐸 ) |
92 |
|
foeq1 |
⊢ ( ( 𝑋 ↾ 𝐸 ) = ( I ↾ 𝐸 ) → ( ( 𝑋 ↾ 𝐸 ) : 𝐸 –onto→ 𝐸 ↔ ( I ↾ 𝐸 ) : 𝐸 –onto→ 𝐸 ) ) |
93 |
92
|
biimpar |
⊢ ( ( ( 𝑋 ↾ 𝐸 ) = ( I ↾ 𝐸 ) ∧ ( I ↾ 𝐸 ) : 𝐸 –onto→ 𝐸 ) → ( 𝑋 ↾ 𝐸 ) : 𝐸 –onto→ 𝐸 ) |
94 |
5 91 93
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 ↾ 𝐸 ) : 𝐸 –onto→ 𝐸 ) |
95 |
|
resdif |
⊢ ( ( Fun ◡ 𝑋 ∧ ( 𝑋 ↾ 𝐴 ) : 𝐴 –onto→ 𝐴 ∧ ( 𝑋 ↾ 𝐸 ) : 𝐸 –onto→ 𝐸 ) → ( 𝑋 ↾ ( 𝐴 ∖ 𝐸 ) ) : ( 𝐴 ∖ 𝐸 ) –1-1-onto→ ( 𝐴 ∖ 𝐸 ) ) |
96 |
80 88 94 95
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 ↾ ( 𝐴 ∖ 𝐸 ) ) : ( 𝐴 ∖ 𝐸 ) –1-1-onto→ ( 𝐴 ∖ 𝐸 ) ) |
97 |
|
ssun1 |
⊢ 𝐸 ⊆ ( 𝐸 ∪ 𝐹 ) |
98 |
97 8
|
sseqtrid |
⊢ ( 𝜑 → 𝐸 ⊆ 𝐴 ) |
99 |
|
uneqdifeq |
⊢ ( ( 𝐸 ⊆ 𝐴 ∧ ( 𝐸 ∩ 𝐹 ) = ∅ ) → ( ( 𝐸 ∪ 𝐹 ) = 𝐴 ↔ ( 𝐴 ∖ 𝐸 ) = 𝐹 ) ) |
100 |
99
|
biimpa |
⊢ ( ( ( 𝐸 ⊆ 𝐴 ∧ ( 𝐸 ∩ 𝐹 ) = ∅ ) ∧ ( 𝐸 ∪ 𝐹 ) = 𝐴 ) → ( 𝐴 ∖ 𝐸 ) = 𝐹 ) |
101 |
98 7 8 100
|
syl21anc |
⊢ ( 𝜑 → ( 𝐴 ∖ 𝐸 ) = 𝐹 ) |
102 |
101
|
reseq2d |
⊢ ( 𝜑 → ( 𝑋 ↾ ( 𝐴 ∖ 𝐸 ) ) = ( 𝑋 ↾ 𝐹 ) ) |
103 |
102 101 101
|
f1oeq123d |
⊢ ( 𝜑 → ( ( 𝑋 ↾ ( 𝐴 ∖ 𝐸 ) ) : ( 𝐴 ∖ 𝐸 ) –1-1-onto→ ( 𝐴 ∖ 𝐸 ) ↔ ( 𝑋 ↾ 𝐹 ) : 𝐹 –1-1-onto→ 𝐹 ) ) |
104 |
96 103
|
mpbid |
⊢ ( 𝜑 → ( 𝑋 ↾ 𝐹 ) : 𝐹 –1-1-onto→ 𝐹 ) |
105 |
|
f1of |
⊢ ( ( 𝑋 ↾ 𝐹 ) : 𝐹 –1-1-onto→ 𝐹 → ( 𝑋 ↾ 𝐹 ) : 𝐹 ⟶ 𝐹 ) |
106 |
104 105
|
syl |
⊢ ( 𝜑 → ( 𝑋 ↾ 𝐹 ) : 𝐹 ⟶ 𝐹 ) |
107 |
106
|
frnd |
⊢ ( 𝜑 → ran ( 𝑋 ↾ 𝐹 ) ⊆ 𝐹 ) |
108 |
|
cores |
⊢ ( ran ( 𝑋 ↾ 𝐹 ) ⊆ 𝐹 → ( ( 𝑌 ↾ 𝐹 ) ∘ ( 𝑋 ↾ 𝐹 ) ) = ( 𝑌 ∘ ( 𝑋 ↾ 𝐹 ) ) ) |
109 |
107 108
|
syl |
⊢ ( 𝜑 → ( ( 𝑌 ↾ 𝐹 ) ∘ ( 𝑋 ↾ 𝐹 ) ) = ( 𝑌 ∘ ( 𝑋 ↾ 𝐹 ) ) ) |
110 |
77 109
|
eqtr4id |
⊢ ( 𝜑 → ( ( 𝑌 ∘ 𝑋 ) ↾ 𝐹 ) = ( ( 𝑌 ↾ 𝐹 ) ∘ ( 𝑋 ↾ 𝐹 ) ) ) |
111 |
6
|
coeq1d |
⊢ ( 𝜑 → ( ( 𝑌 ↾ 𝐹 ) ∘ ( 𝑋 ↾ 𝐹 ) ) = ( ( I ↾ 𝐹 ) ∘ ( 𝑋 ↾ 𝐹 ) ) ) |
112 |
|
fcoi2 |
⊢ ( ( 𝑋 ↾ 𝐹 ) : 𝐹 ⟶ 𝐹 → ( ( I ↾ 𝐹 ) ∘ ( 𝑋 ↾ 𝐹 ) ) = ( 𝑋 ↾ 𝐹 ) ) |
113 |
106 112
|
syl |
⊢ ( 𝜑 → ( ( I ↾ 𝐹 ) ∘ ( 𝑋 ↾ 𝐹 ) ) = ( 𝑋 ↾ 𝐹 ) ) |
114 |
110 111 113
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑌 ∘ 𝑋 ) ↾ 𝐹 ) = ( 𝑋 ↾ 𝐹 ) ) |
115 |
76 114
|
uneq12d |
⊢ ( 𝜑 → ( ( ( 𝑌 ∘ 𝑋 ) ↾ 𝐸 ) ∪ ( ( 𝑌 ∘ 𝑋 ) ↾ 𝐹 ) ) = ( ( 𝑌 ↾ 𝐸 ) ∪ ( 𝑋 ↾ 𝐹 ) ) ) |
116 |
71 115
|
syl5eq |
⊢ ( 𝜑 → ( ( 𝑌 ∘ 𝑋 ) ↾ ( 𝐸 ∪ 𝐹 ) ) = ( ( 𝑌 ↾ 𝐸 ) ∪ ( 𝑋 ↾ 𝐹 ) ) ) |
117 |
|
f1oco |
⊢ ( ( 𝑌 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑋 : 𝐴 –1-1-onto→ 𝐴 ) → ( 𝑌 ∘ 𝑋 ) : 𝐴 –1-1-onto→ 𝐴 ) |
118 |
13 63 117
|
syl2anc |
⊢ ( 𝜑 → ( 𝑌 ∘ 𝑋 ) : 𝐴 –1-1-onto→ 𝐴 ) |
119 |
|
f1ofn |
⊢ ( ( 𝑌 ∘ 𝑋 ) : 𝐴 –1-1-onto→ 𝐴 → ( 𝑌 ∘ 𝑋 ) Fn 𝐴 ) |
120 |
|
fnresdm |
⊢ ( ( 𝑌 ∘ 𝑋 ) Fn 𝐴 → ( ( 𝑌 ∘ 𝑋 ) ↾ 𝐴 ) = ( 𝑌 ∘ 𝑋 ) ) |
121 |
118 119 120
|
3syl |
⊢ ( 𝜑 → ( ( 𝑌 ∘ 𝑋 ) ↾ 𝐴 ) = ( 𝑌 ∘ 𝑋 ) ) |
122 |
70 116 121
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝑌 ↾ 𝐸 ) ∪ ( 𝑋 ↾ 𝐹 ) ) = ( 𝑌 ∘ 𝑋 ) ) |
123 |
69 122
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑋 ∘ 𝑌 ) = ( 𝑌 ∘ 𝑋 ) ) |