| Step | Hyp | Ref | Expression | 
						
							| 1 |  | symgcom.g | ⊢ 𝐺  =  ( SymGrp ‘ 𝐴 ) | 
						
							| 2 |  | symgcom.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 3 |  | symgcom.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 4 |  | symgcom.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 5 |  | symgcom.1 | ⊢ ( 𝜑  →  ( 𝑋  ↾  𝐸 )  =  (  I   ↾  𝐸 ) ) | 
						
							| 6 |  | symgcom.2 | ⊢ ( 𝜑  →  ( 𝑌  ↾  𝐹 )  =  (  I   ↾  𝐹 ) ) | 
						
							| 7 |  | symgcom.3 | ⊢ ( 𝜑  →  ( 𝐸  ∩  𝐹 )  =  ∅ ) | 
						
							| 8 |  | symgcom.4 | ⊢ ( 𝜑  →  ( 𝐸  ∪  𝐹 )  =  𝐴 ) | 
						
							| 9 | 8 | reseq2d | ⊢ ( 𝜑  →  ( ( 𝑋  ∘  𝑌 )  ↾  ( 𝐸  ∪  𝐹 ) )  =  ( ( 𝑋  ∘  𝑌 )  ↾  𝐴 ) ) | 
						
							| 10 |  | resundi | ⊢ ( ( 𝑋  ∘  𝑌 )  ↾  ( 𝐸  ∪  𝐹 ) )  =  ( ( ( 𝑋  ∘  𝑌 )  ↾  𝐸 )  ∪  ( ( 𝑋  ∘  𝑌 )  ↾  𝐹 ) ) | 
						
							| 11 |  | resco | ⊢ ( ( 𝑋  ∘  𝑌 )  ↾  𝐸 )  =  ( 𝑋  ∘  ( 𝑌  ↾  𝐸 ) ) | 
						
							| 12 | 1 2 | symgbasf1o | ⊢ ( 𝑌  ∈  𝐵  →  𝑌 : 𝐴 –1-1-onto→ 𝐴 ) | 
						
							| 13 | 4 12 | syl | ⊢ ( 𝜑  →  𝑌 : 𝐴 –1-1-onto→ 𝐴 ) | 
						
							| 14 |  | f1ocnv | ⊢ ( 𝑌 : 𝐴 –1-1-onto→ 𝐴  →  ◡ 𝑌 : 𝐴 –1-1-onto→ 𝐴 ) | 
						
							| 15 |  | f1ofun | ⊢ ( ◡ 𝑌 : 𝐴 –1-1-onto→ 𝐴  →  Fun  ◡ 𝑌 ) | 
						
							| 16 | 13 14 15 | 3syl | ⊢ ( 𝜑  →  Fun  ◡ 𝑌 ) | 
						
							| 17 |  | f1ofn | ⊢ ( 𝑌 : 𝐴 –1-1-onto→ 𝐴  →  𝑌  Fn  𝐴 ) | 
						
							| 18 |  | fnresdm | ⊢ ( 𝑌  Fn  𝐴  →  ( 𝑌  ↾  𝐴 )  =  𝑌 ) | 
						
							| 19 | 13 17 18 | 3syl | ⊢ ( 𝜑  →  ( 𝑌  ↾  𝐴 )  =  𝑌 ) | 
						
							| 20 |  | f1ofo | ⊢ ( 𝑌 : 𝐴 –1-1-onto→ 𝐴  →  𝑌 : 𝐴 –onto→ 𝐴 ) | 
						
							| 21 | 13 20 | syl | ⊢ ( 𝜑  →  𝑌 : 𝐴 –onto→ 𝐴 ) | 
						
							| 22 |  | foeq1 | ⊢ ( ( 𝑌  ↾  𝐴 )  =  𝑌  →  ( ( 𝑌  ↾  𝐴 ) : 𝐴 –onto→ 𝐴  ↔  𝑌 : 𝐴 –onto→ 𝐴 ) ) | 
						
							| 23 | 22 | biimpar | ⊢ ( ( ( 𝑌  ↾  𝐴 )  =  𝑌  ∧  𝑌 : 𝐴 –onto→ 𝐴 )  →  ( 𝑌  ↾  𝐴 ) : 𝐴 –onto→ 𝐴 ) | 
						
							| 24 | 19 21 23 | syl2anc | ⊢ ( 𝜑  →  ( 𝑌  ↾  𝐴 ) : 𝐴 –onto→ 𝐴 ) | 
						
							| 25 |  | f1oi | ⊢ (  I   ↾  𝐹 ) : 𝐹 –1-1-onto→ 𝐹 | 
						
							| 26 |  | f1ofo | ⊢ ( (  I   ↾  𝐹 ) : 𝐹 –1-1-onto→ 𝐹  →  (  I   ↾  𝐹 ) : 𝐹 –onto→ 𝐹 ) | 
						
							| 27 | 25 26 | mp1i | ⊢ ( 𝜑  →  (  I   ↾  𝐹 ) : 𝐹 –onto→ 𝐹 ) | 
						
							| 28 |  | foeq1 | ⊢ ( ( 𝑌  ↾  𝐹 )  =  (  I   ↾  𝐹 )  →  ( ( 𝑌  ↾  𝐹 ) : 𝐹 –onto→ 𝐹  ↔  (  I   ↾  𝐹 ) : 𝐹 –onto→ 𝐹 ) ) | 
						
							| 29 | 28 | biimpar | ⊢ ( ( ( 𝑌  ↾  𝐹 )  =  (  I   ↾  𝐹 )  ∧  (  I   ↾  𝐹 ) : 𝐹 –onto→ 𝐹 )  →  ( 𝑌  ↾  𝐹 ) : 𝐹 –onto→ 𝐹 ) | 
						
							| 30 | 6 27 29 | syl2anc | ⊢ ( 𝜑  →  ( 𝑌  ↾  𝐹 ) : 𝐹 –onto→ 𝐹 ) | 
						
							| 31 |  | resdif | ⊢ ( ( Fun  ◡ 𝑌  ∧  ( 𝑌  ↾  𝐴 ) : 𝐴 –onto→ 𝐴  ∧  ( 𝑌  ↾  𝐹 ) : 𝐹 –onto→ 𝐹 )  →  ( 𝑌  ↾  ( 𝐴  ∖  𝐹 ) ) : ( 𝐴  ∖  𝐹 ) –1-1-onto→ ( 𝐴  ∖  𝐹 ) ) | 
						
							| 32 | 16 24 30 31 | syl3anc | ⊢ ( 𝜑  →  ( 𝑌  ↾  ( 𝐴  ∖  𝐹 ) ) : ( 𝐴  ∖  𝐹 ) –1-1-onto→ ( 𝐴  ∖  𝐹 ) ) | 
						
							| 33 |  | ssun2 | ⊢ 𝐹  ⊆  ( 𝐸  ∪  𝐹 ) | 
						
							| 34 | 33 8 | sseqtrid | ⊢ ( 𝜑  →  𝐹  ⊆  𝐴 ) | 
						
							| 35 |  | incom | ⊢ ( 𝐸  ∩  𝐹 )  =  ( 𝐹  ∩  𝐸 ) | 
						
							| 36 | 35 7 | eqtr3id | ⊢ ( 𝜑  →  ( 𝐹  ∩  𝐸 )  =  ∅ ) | 
						
							| 37 |  | uncom | ⊢ ( 𝐸  ∪  𝐹 )  =  ( 𝐹  ∪  𝐸 ) | 
						
							| 38 | 37 8 | eqtr3id | ⊢ ( 𝜑  →  ( 𝐹  ∪  𝐸 )  =  𝐴 ) | 
						
							| 39 |  | uneqdifeq | ⊢ ( ( 𝐹  ⊆  𝐴  ∧  ( 𝐹  ∩  𝐸 )  =  ∅ )  →  ( ( 𝐹  ∪  𝐸 )  =  𝐴  ↔  ( 𝐴  ∖  𝐹 )  =  𝐸 ) ) | 
						
							| 40 | 39 | biimpa | ⊢ ( ( ( 𝐹  ⊆  𝐴  ∧  ( 𝐹  ∩  𝐸 )  =  ∅ )  ∧  ( 𝐹  ∪  𝐸 )  =  𝐴 )  →  ( 𝐴  ∖  𝐹 )  =  𝐸 ) | 
						
							| 41 | 34 36 38 40 | syl21anc | ⊢ ( 𝜑  →  ( 𝐴  ∖  𝐹 )  =  𝐸 ) | 
						
							| 42 | 41 | reseq2d | ⊢ ( 𝜑  →  ( 𝑌  ↾  ( 𝐴  ∖  𝐹 ) )  =  ( 𝑌  ↾  𝐸 ) ) | 
						
							| 43 | 42 41 41 | f1oeq123d | ⊢ ( 𝜑  →  ( ( 𝑌  ↾  ( 𝐴  ∖  𝐹 ) ) : ( 𝐴  ∖  𝐹 ) –1-1-onto→ ( 𝐴  ∖  𝐹 )  ↔  ( 𝑌  ↾  𝐸 ) : 𝐸 –1-1-onto→ 𝐸 ) ) | 
						
							| 44 | 32 43 | mpbid | ⊢ ( 𝜑  →  ( 𝑌  ↾  𝐸 ) : 𝐸 –1-1-onto→ 𝐸 ) | 
						
							| 45 |  | f1of | ⊢ ( ( 𝑌  ↾  𝐸 ) : 𝐸 –1-1-onto→ 𝐸  →  ( 𝑌  ↾  𝐸 ) : 𝐸 ⟶ 𝐸 ) | 
						
							| 46 | 44 45 | syl | ⊢ ( 𝜑  →  ( 𝑌  ↾  𝐸 ) : 𝐸 ⟶ 𝐸 ) | 
						
							| 47 | 46 | frnd | ⊢ ( 𝜑  →  ran  ( 𝑌  ↾  𝐸 )  ⊆  𝐸 ) | 
						
							| 48 |  | cores | ⊢ ( ran  ( 𝑌  ↾  𝐸 )  ⊆  𝐸  →  ( ( 𝑋  ↾  𝐸 )  ∘  ( 𝑌  ↾  𝐸 ) )  =  ( 𝑋  ∘  ( 𝑌  ↾  𝐸 ) ) ) | 
						
							| 49 | 47 48 | syl | ⊢ ( 𝜑  →  ( ( 𝑋  ↾  𝐸 )  ∘  ( 𝑌  ↾  𝐸 ) )  =  ( 𝑋  ∘  ( 𝑌  ↾  𝐸 ) ) ) | 
						
							| 50 | 11 49 | eqtr4id | ⊢ ( 𝜑  →  ( ( 𝑋  ∘  𝑌 )  ↾  𝐸 )  =  ( ( 𝑋  ↾  𝐸 )  ∘  ( 𝑌  ↾  𝐸 ) ) ) | 
						
							| 51 | 5 | coeq1d | ⊢ ( 𝜑  →  ( ( 𝑋  ↾  𝐸 )  ∘  ( 𝑌  ↾  𝐸 ) )  =  ( (  I   ↾  𝐸 )  ∘  ( 𝑌  ↾  𝐸 ) ) ) | 
						
							| 52 |  | fcoi2 | ⊢ ( ( 𝑌  ↾  𝐸 ) : 𝐸 ⟶ 𝐸  →  ( (  I   ↾  𝐸 )  ∘  ( 𝑌  ↾  𝐸 ) )  =  ( 𝑌  ↾  𝐸 ) ) | 
						
							| 53 | 46 52 | syl | ⊢ ( 𝜑  →  ( (  I   ↾  𝐸 )  ∘  ( 𝑌  ↾  𝐸 ) )  =  ( 𝑌  ↾  𝐸 ) ) | 
						
							| 54 | 50 51 53 | 3eqtrd | ⊢ ( 𝜑  →  ( ( 𝑋  ∘  𝑌 )  ↾  𝐸 )  =  ( 𝑌  ↾  𝐸 ) ) | 
						
							| 55 |  | resco | ⊢ ( ( 𝑋  ∘  𝑌 )  ↾  𝐹 )  =  ( 𝑋  ∘  ( 𝑌  ↾  𝐹 ) ) | 
						
							| 56 | 6 | coeq2d | ⊢ ( 𝜑  →  ( 𝑋  ∘  ( 𝑌  ↾  𝐹 ) )  =  ( 𝑋  ∘  (  I   ↾  𝐹 ) ) ) | 
						
							| 57 |  | coires1 | ⊢ ( 𝑋  ∘  (  I   ↾  𝐹 ) )  =  ( 𝑋  ↾  𝐹 ) | 
						
							| 58 | 56 57 | eqtrdi | ⊢ ( 𝜑  →  ( 𝑋  ∘  ( 𝑌  ↾  𝐹 ) )  =  ( 𝑋  ↾  𝐹 ) ) | 
						
							| 59 | 55 58 | eqtrid | ⊢ ( 𝜑  →  ( ( 𝑋  ∘  𝑌 )  ↾  𝐹 )  =  ( 𝑋  ↾  𝐹 ) ) | 
						
							| 60 | 54 59 | uneq12d | ⊢ ( 𝜑  →  ( ( ( 𝑋  ∘  𝑌 )  ↾  𝐸 )  ∪  ( ( 𝑋  ∘  𝑌 )  ↾  𝐹 ) )  =  ( ( 𝑌  ↾  𝐸 )  ∪  ( 𝑋  ↾  𝐹 ) ) ) | 
						
							| 61 | 10 60 | eqtrid | ⊢ ( 𝜑  →  ( ( 𝑋  ∘  𝑌 )  ↾  ( 𝐸  ∪  𝐹 ) )  =  ( ( 𝑌  ↾  𝐸 )  ∪  ( 𝑋  ↾  𝐹 ) ) ) | 
						
							| 62 | 1 2 | symgbasf1o | ⊢ ( 𝑋  ∈  𝐵  →  𝑋 : 𝐴 –1-1-onto→ 𝐴 ) | 
						
							| 63 | 3 62 | syl | ⊢ ( 𝜑  →  𝑋 : 𝐴 –1-1-onto→ 𝐴 ) | 
						
							| 64 |  | f1oco | ⊢ ( ( 𝑋 : 𝐴 –1-1-onto→ 𝐴  ∧  𝑌 : 𝐴 –1-1-onto→ 𝐴 )  →  ( 𝑋  ∘  𝑌 ) : 𝐴 –1-1-onto→ 𝐴 ) | 
						
							| 65 | 63 13 64 | syl2anc | ⊢ ( 𝜑  →  ( 𝑋  ∘  𝑌 ) : 𝐴 –1-1-onto→ 𝐴 ) | 
						
							| 66 |  | f1ofn | ⊢ ( ( 𝑋  ∘  𝑌 ) : 𝐴 –1-1-onto→ 𝐴  →  ( 𝑋  ∘  𝑌 )  Fn  𝐴 ) | 
						
							| 67 |  | fnresdm | ⊢ ( ( 𝑋  ∘  𝑌 )  Fn  𝐴  →  ( ( 𝑋  ∘  𝑌 )  ↾  𝐴 )  =  ( 𝑋  ∘  𝑌 ) ) | 
						
							| 68 | 65 66 67 | 3syl | ⊢ ( 𝜑  →  ( ( 𝑋  ∘  𝑌 )  ↾  𝐴 )  =  ( 𝑋  ∘  𝑌 ) ) | 
						
							| 69 | 9 61 68 | 3eqtr3d | ⊢ ( 𝜑  →  ( ( 𝑌  ↾  𝐸 )  ∪  ( 𝑋  ↾  𝐹 ) )  =  ( 𝑋  ∘  𝑌 ) ) | 
						
							| 70 | 8 | reseq2d | ⊢ ( 𝜑  →  ( ( 𝑌  ∘  𝑋 )  ↾  ( 𝐸  ∪  𝐹 ) )  =  ( ( 𝑌  ∘  𝑋 )  ↾  𝐴 ) ) | 
						
							| 71 |  | resundi | ⊢ ( ( 𝑌  ∘  𝑋 )  ↾  ( 𝐸  ∪  𝐹 ) )  =  ( ( ( 𝑌  ∘  𝑋 )  ↾  𝐸 )  ∪  ( ( 𝑌  ∘  𝑋 )  ↾  𝐹 ) ) | 
						
							| 72 |  | resco | ⊢ ( ( 𝑌  ∘  𝑋 )  ↾  𝐸 )  =  ( 𝑌  ∘  ( 𝑋  ↾  𝐸 ) ) | 
						
							| 73 | 5 | coeq2d | ⊢ ( 𝜑  →  ( 𝑌  ∘  ( 𝑋  ↾  𝐸 ) )  =  ( 𝑌  ∘  (  I   ↾  𝐸 ) ) ) | 
						
							| 74 |  | coires1 | ⊢ ( 𝑌  ∘  (  I   ↾  𝐸 ) )  =  ( 𝑌  ↾  𝐸 ) | 
						
							| 75 | 73 74 | eqtrdi | ⊢ ( 𝜑  →  ( 𝑌  ∘  ( 𝑋  ↾  𝐸 ) )  =  ( 𝑌  ↾  𝐸 ) ) | 
						
							| 76 | 72 75 | eqtrid | ⊢ ( 𝜑  →  ( ( 𝑌  ∘  𝑋 )  ↾  𝐸 )  =  ( 𝑌  ↾  𝐸 ) ) | 
						
							| 77 |  | resco | ⊢ ( ( 𝑌  ∘  𝑋 )  ↾  𝐹 )  =  ( 𝑌  ∘  ( 𝑋  ↾  𝐹 ) ) | 
						
							| 78 |  | f1ocnv | ⊢ ( 𝑋 : 𝐴 –1-1-onto→ 𝐴  →  ◡ 𝑋 : 𝐴 –1-1-onto→ 𝐴 ) | 
						
							| 79 |  | f1ofun | ⊢ ( ◡ 𝑋 : 𝐴 –1-1-onto→ 𝐴  →  Fun  ◡ 𝑋 ) | 
						
							| 80 | 63 78 79 | 3syl | ⊢ ( 𝜑  →  Fun  ◡ 𝑋 ) | 
						
							| 81 |  | f1ofn | ⊢ ( 𝑋 : 𝐴 –1-1-onto→ 𝐴  →  𝑋  Fn  𝐴 ) | 
						
							| 82 |  | fnresdm | ⊢ ( 𝑋  Fn  𝐴  →  ( 𝑋  ↾  𝐴 )  =  𝑋 ) | 
						
							| 83 | 63 81 82 | 3syl | ⊢ ( 𝜑  →  ( 𝑋  ↾  𝐴 )  =  𝑋 ) | 
						
							| 84 |  | f1ofo | ⊢ ( 𝑋 : 𝐴 –1-1-onto→ 𝐴  →  𝑋 : 𝐴 –onto→ 𝐴 ) | 
						
							| 85 | 63 84 | syl | ⊢ ( 𝜑  →  𝑋 : 𝐴 –onto→ 𝐴 ) | 
						
							| 86 |  | foeq1 | ⊢ ( ( 𝑋  ↾  𝐴 )  =  𝑋  →  ( ( 𝑋  ↾  𝐴 ) : 𝐴 –onto→ 𝐴  ↔  𝑋 : 𝐴 –onto→ 𝐴 ) ) | 
						
							| 87 | 86 | biimpar | ⊢ ( ( ( 𝑋  ↾  𝐴 )  =  𝑋  ∧  𝑋 : 𝐴 –onto→ 𝐴 )  →  ( 𝑋  ↾  𝐴 ) : 𝐴 –onto→ 𝐴 ) | 
						
							| 88 | 83 85 87 | syl2anc | ⊢ ( 𝜑  →  ( 𝑋  ↾  𝐴 ) : 𝐴 –onto→ 𝐴 ) | 
						
							| 89 |  | f1oi | ⊢ (  I   ↾  𝐸 ) : 𝐸 –1-1-onto→ 𝐸 | 
						
							| 90 |  | f1ofo | ⊢ ( (  I   ↾  𝐸 ) : 𝐸 –1-1-onto→ 𝐸  →  (  I   ↾  𝐸 ) : 𝐸 –onto→ 𝐸 ) | 
						
							| 91 | 89 90 | mp1i | ⊢ ( 𝜑  →  (  I   ↾  𝐸 ) : 𝐸 –onto→ 𝐸 ) | 
						
							| 92 |  | foeq1 | ⊢ ( ( 𝑋  ↾  𝐸 )  =  (  I   ↾  𝐸 )  →  ( ( 𝑋  ↾  𝐸 ) : 𝐸 –onto→ 𝐸  ↔  (  I   ↾  𝐸 ) : 𝐸 –onto→ 𝐸 ) ) | 
						
							| 93 | 92 | biimpar | ⊢ ( ( ( 𝑋  ↾  𝐸 )  =  (  I   ↾  𝐸 )  ∧  (  I   ↾  𝐸 ) : 𝐸 –onto→ 𝐸 )  →  ( 𝑋  ↾  𝐸 ) : 𝐸 –onto→ 𝐸 ) | 
						
							| 94 | 5 91 93 | syl2anc | ⊢ ( 𝜑  →  ( 𝑋  ↾  𝐸 ) : 𝐸 –onto→ 𝐸 ) | 
						
							| 95 |  | resdif | ⊢ ( ( Fun  ◡ 𝑋  ∧  ( 𝑋  ↾  𝐴 ) : 𝐴 –onto→ 𝐴  ∧  ( 𝑋  ↾  𝐸 ) : 𝐸 –onto→ 𝐸 )  →  ( 𝑋  ↾  ( 𝐴  ∖  𝐸 ) ) : ( 𝐴  ∖  𝐸 ) –1-1-onto→ ( 𝐴  ∖  𝐸 ) ) | 
						
							| 96 | 80 88 94 95 | syl3anc | ⊢ ( 𝜑  →  ( 𝑋  ↾  ( 𝐴  ∖  𝐸 ) ) : ( 𝐴  ∖  𝐸 ) –1-1-onto→ ( 𝐴  ∖  𝐸 ) ) | 
						
							| 97 |  | ssun1 | ⊢ 𝐸  ⊆  ( 𝐸  ∪  𝐹 ) | 
						
							| 98 | 97 8 | sseqtrid | ⊢ ( 𝜑  →  𝐸  ⊆  𝐴 ) | 
						
							| 99 |  | uneqdifeq | ⊢ ( ( 𝐸  ⊆  𝐴  ∧  ( 𝐸  ∩  𝐹 )  =  ∅ )  →  ( ( 𝐸  ∪  𝐹 )  =  𝐴  ↔  ( 𝐴  ∖  𝐸 )  =  𝐹 ) ) | 
						
							| 100 | 99 | biimpa | ⊢ ( ( ( 𝐸  ⊆  𝐴  ∧  ( 𝐸  ∩  𝐹 )  =  ∅ )  ∧  ( 𝐸  ∪  𝐹 )  =  𝐴 )  →  ( 𝐴  ∖  𝐸 )  =  𝐹 ) | 
						
							| 101 | 98 7 8 100 | syl21anc | ⊢ ( 𝜑  →  ( 𝐴  ∖  𝐸 )  =  𝐹 ) | 
						
							| 102 | 101 | reseq2d | ⊢ ( 𝜑  →  ( 𝑋  ↾  ( 𝐴  ∖  𝐸 ) )  =  ( 𝑋  ↾  𝐹 ) ) | 
						
							| 103 | 102 101 101 | f1oeq123d | ⊢ ( 𝜑  →  ( ( 𝑋  ↾  ( 𝐴  ∖  𝐸 ) ) : ( 𝐴  ∖  𝐸 ) –1-1-onto→ ( 𝐴  ∖  𝐸 )  ↔  ( 𝑋  ↾  𝐹 ) : 𝐹 –1-1-onto→ 𝐹 ) ) | 
						
							| 104 | 96 103 | mpbid | ⊢ ( 𝜑  →  ( 𝑋  ↾  𝐹 ) : 𝐹 –1-1-onto→ 𝐹 ) | 
						
							| 105 |  | f1of | ⊢ ( ( 𝑋  ↾  𝐹 ) : 𝐹 –1-1-onto→ 𝐹  →  ( 𝑋  ↾  𝐹 ) : 𝐹 ⟶ 𝐹 ) | 
						
							| 106 | 104 105 | syl | ⊢ ( 𝜑  →  ( 𝑋  ↾  𝐹 ) : 𝐹 ⟶ 𝐹 ) | 
						
							| 107 | 106 | frnd | ⊢ ( 𝜑  →  ran  ( 𝑋  ↾  𝐹 )  ⊆  𝐹 ) | 
						
							| 108 |  | cores | ⊢ ( ran  ( 𝑋  ↾  𝐹 )  ⊆  𝐹  →  ( ( 𝑌  ↾  𝐹 )  ∘  ( 𝑋  ↾  𝐹 ) )  =  ( 𝑌  ∘  ( 𝑋  ↾  𝐹 ) ) ) | 
						
							| 109 | 107 108 | syl | ⊢ ( 𝜑  →  ( ( 𝑌  ↾  𝐹 )  ∘  ( 𝑋  ↾  𝐹 ) )  =  ( 𝑌  ∘  ( 𝑋  ↾  𝐹 ) ) ) | 
						
							| 110 | 77 109 | eqtr4id | ⊢ ( 𝜑  →  ( ( 𝑌  ∘  𝑋 )  ↾  𝐹 )  =  ( ( 𝑌  ↾  𝐹 )  ∘  ( 𝑋  ↾  𝐹 ) ) ) | 
						
							| 111 | 6 | coeq1d | ⊢ ( 𝜑  →  ( ( 𝑌  ↾  𝐹 )  ∘  ( 𝑋  ↾  𝐹 ) )  =  ( (  I   ↾  𝐹 )  ∘  ( 𝑋  ↾  𝐹 ) ) ) | 
						
							| 112 |  | fcoi2 | ⊢ ( ( 𝑋  ↾  𝐹 ) : 𝐹 ⟶ 𝐹  →  ( (  I   ↾  𝐹 )  ∘  ( 𝑋  ↾  𝐹 ) )  =  ( 𝑋  ↾  𝐹 ) ) | 
						
							| 113 | 106 112 | syl | ⊢ ( 𝜑  →  ( (  I   ↾  𝐹 )  ∘  ( 𝑋  ↾  𝐹 ) )  =  ( 𝑋  ↾  𝐹 ) ) | 
						
							| 114 | 110 111 113 | 3eqtrd | ⊢ ( 𝜑  →  ( ( 𝑌  ∘  𝑋 )  ↾  𝐹 )  =  ( 𝑋  ↾  𝐹 ) ) | 
						
							| 115 | 76 114 | uneq12d | ⊢ ( 𝜑  →  ( ( ( 𝑌  ∘  𝑋 )  ↾  𝐸 )  ∪  ( ( 𝑌  ∘  𝑋 )  ↾  𝐹 ) )  =  ( ( 𝑌  ↾  𝐸 )  ∪  ( 𝑋  ↾  𝐹 ) ) ) | 
						
							| 116 | 71 115 | eqtrid | ⊢ ( 𝜑  →  ( ( 𝑌  ∘  𝑋 )  ↾  ( 𝐸  ∪  𝐹 ) )  =  ( ( 𝑌  ↾  𝐸 )  ∪  ( 𝑋  ↾  𝐹 ) ) ) | 
						
							| 117 |  | f1oco | ⊢ ( ( 𝑌 : 𝐴 –1-1-onto→ 𝐴  ∧  𝑋 : 𝐴 –1-1-onto→ 𝐴 )  →  ( 𝑌  ∘  𝑋 ) : 𝐴 –1-1-onto→ 𝐴 ) | 
						
							| 118 | 13 63 117 | syl2anc | ⊢ ( 𝜑  →  ( 𝑌  ∘  𝑋 ) : 𝐴 –1-1-onto→ 𝐴 ) | 
						
							| 119 |  | f1ofn | ⊢ ( ( 𝑌  ∘  𝑋 ) : 𝐴 –1-1-onto→ 𝐴  →  ( 𝑌  ∘  𝑋 )  Fn  𝐴 ) | 
						
							| 120 |  | fnresdm | ⊢ ( ( 𝑌  ∘  𝑋 )  Fn  𝐴  →  ( ( 𝑌  ∘  𝑋 )  ↾  𝐴 )  =  ( 𝑌  ∘  𝑋 ) ) | 
						
							| 121 | 118 119 120 | 3syl | ⊢ ( 𝜑  →  ( ( 𝑌  ∘  𝑋 )  ↾  𝐴 )  =  ( 𝑌  ∘  𝑋 ) ) | 
						
							| 122 | 70 116 121 | 3eqtr3d | ⊢ ( 𝜑  →  ( ( 𝑌  ↾  𝐸 )  ∪  ( 𝑋  ↾  𝐹 ) )  =  ( 𝑌  ∘  𝑋 ) ) | 
						
							| 123 | 69 122 | eqtr3d | ⊢ ( 𝜑  →  ( 𝑋  ∘  𝑌 )  =  ( 𝑌  ∘  𝑋 ) ) |