Step |
Hyp |
Ref |
Expression |
1 |
|
symgcom.g |
|- G = ( SymGrp ` A ) |
2 |
|
symgcom.b |
|- B = ( Base ` G ) |
3 |
|
symgcom.x |
|- ( ph -> X e. B ) |
4 |
|
symgcom.y |
|- ( ph -> Y e. B ) |
5 |
|
symgcom2.1 |
|- ( ph -> ( dom ( X \ _I ) i^i dom ( Y \ _I ) ) = (/) ) |
6 |
1 2
|
symgbasf |
|- ( X e. B -> X : A --> A ) |
7 |
3 6
|
syl |
|- ( ph -> X : A --> A ) |
8 |
7
|
ffnd |
|- ( ph -> X Fn A ) |
9 |
|
fnresi |
|- ( _I |` A ) Fn A |
10 |
9
|
a1i |
|- ( ph -> ( _I |` A ) Fn A ) |
11 |
|
difssd |
|- ( ph -> ( A \ dom ( X \ _I ) ) C_ A ) |
12 |
|
ssidd |
|- ( ph -> ( A \ dom ( X \ _I ) ) C_ ( A \ dom ( X \ _I ) ) ) |
13 |
|
nfpconfp |
|- ( X Fn A -> ( A \ dom ( X \ _I ) ) = dom ( X i^i _I ) ) |
14 |
8 13
|
syl |
|- ( ph -> ( A \ dom ( X \ _I ) ) = dom ( X i^i _I ) ) |
15 |
|
inres |
|- ( X i^i ( _I |` A ) ) = ( ( X i^i _I ) |` A ) |
16 |
|
reli |
|- Rel _I |
17 |
|
relin2 |
|- ( Rel _I -> Rel ( X i^i _I ) ) |
18 |
16 17
|
ax-mp |
|- Rel ( X i^i _I ) |
19 |
14 11
|
eqsstrrd |
|- ( ph -> dom ( X i^i _I ) C_ A ) |
20 |
|
relssres |
|- ( ( Rel ( X i^i _I ) /\ dom ( X i^i _I ) C_ A ) -> ( ( X i^i _I ) |` A ) = ( X i^i _I ) ) |
21 |
18 19 20
|
sylancr |
|- ( ph -> ( ( X i^i _I ) |` A ) = ( X i^i _I ) ) |
22 |
15 21
|
syl5eq |
|- ( ph -> ( X i^i ( _I |` A ) ) = ( X i^i _I ) ) |
23 |
22
|
dmeqd |
|- ( ph -> dom ( X i^i ( _I |` A ) ) = dom ( X i^i _I ) ) |
24 |
14 23
|
eqtr4d |
|- ( ph -> ( A \ dom ( X \ _I ) ) = dom ( X i^i ( _I |` A ) ) ) |
25 |
12 24
|
sseqtrd |
|- ( ph -> ( A \ dom ( X \ _I ) ) C_ dom ( X i^i ( _I |` A ) ) ) |
26 |
|
fnreseql |
|- ( ( X Fn A /\ ( _I |` A ) Fn A /\ ( A \ dom ( X \ _I ) ) C_ A ) -> ( ( X |` ( A \ dom ( X \ _I ) ) ) = ( ( _I |` A ) |` ( A \ dom ( X \ _I ) ) ) <-> ( A \ dom ( X \ _I ) ) C_ dom ( X i^i ( _I |` A ) ) ) ) |
27 |
26
|
biimpar |
|- ( ( ( X Fn A /\ ( _I |` A ) Fn A /\ ( A \ dom ( X \ _I ) ) C_ A ) /\ ( A \ dom ( X \ _I ) ) C_ dom ( X i^i ( _I |` A ) ) ) -> ( X |` ( A \ dom ( X \ _I ) ) ) = ( ( _I |` A ) |` ( A \ dom ( X \ _I ) ) ) ) |
28 |
8 10 11 25 27
|
syl31anc |
|- ( ph -> ( X |` ( A \ dom ( X \ _I ) ) ) = ( ( _I |` A ) |` ( A \ dom ( X \ _I ) ) ) ) |
29 |
11
|
resabs1d |
|- ( ph -> ( ( _I |` A ) |` ( A \ dom ( X \ _I ) ) ) = ( _I |` ( A \ dom ( X \ _I ) ) ) ) |
30 |
28 29
|
eqtrd |
|- ( ph -> ( X |` ( A \ dom ( X \ _I ) ) ) = ( _I |` ( A \ dom ( X \ _I ) ) ) ) |
31 |
1 2
|
symgbasf |
|- ( Y e. B -> Y : A --> A ) |
32 |
4 31
|
syl |
|- ( ph -> Y : A --> A ) |
33 |
32
|
ffnd |
|- ( ph -> Y Fn A ) |
34 |
|
difss |
|- ( X \ _I ) C_ X |
35 |
|
dmss |
|- ( ( X \ _I ) C_ X -> dom ( X \ _I ) C_ dom X ) |
36 |
34 35
|
ax-mp |
|- dom ( X \ _I ) C_ dom X |
37 |
|
fdm |
|- ( X : A --> A -> dom X = A ) |
38 |
3 6 37
|
3syl |
|- ( ph -> dom X = A ) |
39 |
36 38
|
sseqtrid |
|- ( ph -> dom ( X \ _I ) C_ A ) |
40 |
|
reldisj |
|- ( dom ( X \ _I ) C_ A -> ( ( dom ( X \ _I ) i^i dom ( Y \ _I ) ) = (/) <-> dom ( X \ _I ) C_ ( A \ dom ( Y \ _I ) ) ) ) |
41 |
39 40
|
syl |
|- ( ph -> ( ( dom ( X \ _I ) i^i dom ( Y \ _I ) ) = (/) <-> dom ( X \ _I ) C_ ( A \ dom ( Y \ _I ) ) ) ) |
42 |
5 41
|
mpbid |
|- ( ph -> dom ( X \ _I ) C_ ( A \ dom ( Y \ _I ) ) ) |
43 |
|
nfpconfp |
|- ( Y Fn A -> ( A \ dom ( Y \ _I ) ) = dom ( Y i^i _I ) ) |
44 |
33 43
|
syl |
|- ( ph -> ( A \ dom ( Y \ _I ) ) = dom ( Y i^i _I ) ) |
45 |
42 44
|
sseqtrd |
|- ( ph -> dom ( X \ _I ) C_ dom ( Y i^i _I ) ) |
46 |
|
inres |
|- ( Y i^i ( _I |` A ) ) = ( ( Y i^i _I ) |` A ) |
47 |
|
relin2 |
|- ( Rel _I -> Rel ( Y i^i _I ) ) |
48 |
16 47
|
ax-mp |
|- Rel ( Y i^i _I ) |
49 |
|
difssd |
|- ( ph -> ( A \ dom ( Y \ _I ) ) C_ A ) |
50 |
44 49
|
eqsstrrd |
|- ( ph -> dom ( Y i^i _I ) C_ A ) |
51 |
|
relssres |
|- ( ( Rel ( Y i^i _I ) /\ dom ( Y i^i _I ) C_ A ) -> ( ( Y i^i _I ) |` A ) = ( Y i^i _I ) ) |
52 |
48 50 51
|
sylancr |
|- ( ph -> ( ( Y i^i _I ) |` A ) = ( Y i^i _I ) ) |
53 |
46 52
|
syl5eq |
|- ( ph -> ( Y i^i ( _I |` A ) ) = ( Y i^i _I ) ) |
54 |
53
|
dmeqd |
|- ( ph -> dom ( Y i^i ( _I |` A ) ) = dom ( Y i^i _I ) ) |
55 |
45 54
|
sseqtrrd |
|- ( ph -> dom ( X \ _I ) C_ dom ( Y i^i ( _I |` A ) ) ) |
56 |
|
fnreseql |
|- ( ( Y Fn A /\ ( _I |` A ) Fn A /\ dom ( X \ _I ) C_ A ) -> ( ( Y |` dom ( X \ _I ) ) = ( ( _I |` A ) |` dom ( X \ _I ) ) <-> dom ( X \ _I ) C_ dom ( Y i^i ( _I |` A ) ) ) ) |
57 |
56
|
biimpar |
|- ( ( ( Y Fn A /\ ( _I |` A ) Fn A /\ dom ( X \ _I ) C_ A ) /\ dom ( X \ _I ) C_ dom ( Y i^i ( _I |` A ) ) ) -> ( Y |` dom ( X \ _I ) ) = ( ( _I |` A ) |` dom ( X \ _I ) ) ) |
58 |
33 10 39 55 57
|
syl31anc |
|- ( ph -> ( Y |` dom ( X \ _I ) ) = ( ( _I |` A ) |` dom ( X \ _I ) ) ) |
59 |
39
|
resabs1d |
|- ( ph -> ( ( _I |` A ) |` dom ( X \ _I ) ) = ( _I |` dom ( X \ _I ) ) ) |
60 |
58 59
|
eqtrd |
|- ( ph -> ( Y |` dom ( X \ _I ) ) = ( _I |` dom ( X \ _I ) ) ) |
61 |
|
difin2 |
|- ( dom ( X \ _I ) C_ A -> ( dom ( X \ _I ) \ dom ( X \ _I ) ) = ( ( A \ dom ( X \ _I ) ) i^i dom ( X \ _I ) ) ) |
62 |
39 61
|
syl |
|- ( ph -> ( dom ( X \ _I ) \ dom ( X \ _I ) ) = ( ( A \ dom ( X \ _I ) ) i^i dom ( X \ _I ) ) ) |
63 |
|
difid |
|- ( dom ( X \ _I ) \ dom ( X \ _I ) ) = (/) |
64 |
62 63
|
eqtr3di |
|- ( ph -> ( ( A \ dom ( X \ _I ) ) i^i dom ( X \ _I ) ) = (/) ) |
65 |
|
undif1 |
|- ( ( A \ dom ( X \ _I ) ) u. dom ( X \ _I ) ) = ( A u. dom ( X \ _I ) ) |
66 |
|
ssequn2 |
|- ( dom ( X \ _I ) C_ A <-> ( A u. dom ( X \ _I ) ) = A ) |
67 |
39 66
|
sylib |
|- ( ph -> ( A u. dom ( X \ _I ) ) = A ) |
68 |
65 67
|
syl5eq |
|- ( ph -> ( ( A \ dom ( X \ _I ) ) u. dom ( X \ _I ) ) = A ) |
69 |
1 2 3 4 30 60 64 68
|
symgcom |
|- ( ph -> ( X o. Y ) = ( Y o. X ) ) |