| Step | Hyp | Ref | Expression | 
						
							| 1 |  | symgcom.g |  |-  G = ( SymGrp ` A ) | 
						
							| 2 |  | symgcom.b |  |-  B = ( Base ` G ) | 
						
							| 3 |  | symgcom.x |  |-  ( ph -> X e. B ) | 
						
							| 4 |  | symgcom.y |  |-  ( ph -> Y e. B ) | 
						
							| 5 |  | symgcom2.1 |  |-  ( ph -> ( dom ( X \ _I ) i^i dom ( Y \ _I ) ) = (/) ) | 
						
							| 6 | 1 2 | symgbasf |  |-  ( X e. B -> X : A --> A ) | 
						
							| 7 | 3 6 | syl |  |-  ( ph -> X : A --> A ) | 
						
							| 8 | 7 | ffnd |  |-  ( ph -> X Fn A ) | 
						
							| 9 |  | fnresi |  |-  ( _I |` A ) Fn A | 
						
							| 10 | 9 | a1i |  |-  ( ph -> ( _I |` A ) Fn A ) | 
						
							| 11 |  | difssd |  |-  ( ph -> ( A \ dom ( X \ _I ) ) C_ A ) | 
						
							| 12 |  | ssidd |  |-  ( ph -> ( A \ dom ( X \ _I ) ) C_ ( A \ dom ( X \ _I ) ) ) | 
						
							| 13 |  | nfpconfp |  |-  ( X Fn A -> ( A \ dom ( X \ _I ) ) = dom ( X i^i _I ) ) | 
						
							| 14 | 8 13 | syl |  |-  ( ph -> ( A \ dom ( X \ _I ) ) = dom ( X i^i _I ) ) | 
						
							| 15 |  | inres |  |-  ( X i^i ( _I |` A ) ) = ( ( X i^i _I ) |` A ) | 
						
							| 16 |  | reli |  |-  Rel _I | 
						
							| 17 |  | relin2 |  |-  ( Rel _I -> Rel ( X i^i _I ) ) | 
						
							| 18 | 16 17 | ax-mp |  |-  Rel ( X i^i _I ) | 
						
							| 19 | 14 11 | eqsstrrd |  |-  ( ph -> dom ( X i^i _I ) C_ A ) | 
						
							| 20 |  | relssres |  |-  ( ( Rel ( X i^i _I ) /\ dom ( X i^i _I ) C_ A ) -> ( ( X i^i _I ) |` A ) = ( X i^i _I ) ) | 
						
							| 21 | 18 19 20 | sylancr |  |-  ( ph -> ( ( X i^i _I ) |` A ) = ( X i^i _I ) ) | 
						
							| 22 | 15 21 | eqtrid |  |-  ( ph -> ( X i^i ( _I |` A ) ) = ( X i^i _I ) ) | 
						
							| 23 | 22 | dmeqd |  |-  ( ph -> dom ( X i^i ( _I |` A ) ) = dom ( X i^i _I ) ) | 
						
							| 24 | 14 23 | eqtr4d |  |-  ( ph -> ( A \ dom ( X \ _I ) ) = dom ( X i^i ( _I |` A ) ) ) | 
						
							| 25 | 12 24 | sseqtrd |  |-  ( ph -> ( A \ dom ( X \ _I ) ) C_ dom ( X i^i ( _I |` A ) ) ) | 
						
							| 26 |  | fnreseql |  |-  ( ( X Fn A /\ ( _I |` A ) Fn A /\ ( A \ dom ( X \ _I ) ) C_ A ) -> ( ( X |` ( A \ dom ( X \ _I ) ) ) = ( ( _I |` A ) |` ( A \ dom ( X \ _I ) ) ) <-> ( A \ dom ( X \ _I ) ) C_ dom ( X i^i ( _I |` A ) ) ) ) | 
						
							| 27 | 26 | biimpar |  |-  ( ( ( X Fn A /\ ( _I |` A ) Fn A /\ ( A \ dom ( X \ _I ) ) C_ A ) /\ ( A \ dom ( X \ _I ) ) C_ dom ( X i^i ( _I |` A ) ) ) -> ( X |` ( A \ dom ( X \ _I ) ) ) = ( ( _I |` A ) |` ( A \ dom ( X \ _I ) ) ) ) | 
						
							| 28 | 8 10 11 25 27 | syl31anc |  |-  ( ph -> ( X |` ( A \ dom ( X \ _I ) ) ) = ( ( _I |` A ) |` ( A \ dom ( X \ _I ) ) ) ) | 
						
							| 29 | 11 | resabs1d |  |-  ( ph -> ( ( _I |` A ) |` ( A \ dom ( X \ _I ) ) ) = ( _I |` ( A \ dom ( X \ _I ) ) ) ) | 
						
							| 30 | 28 29 | eqtrd |  |-  ( ph -> ( X |` ( A \ dom ( X \ _I ) ) ) = ( _I |` ( A \ dom ( X \ _I ) ) ) ) | 
						
							| 31 | 1 2 | symgbasf |  |-  ( Y e. B -> Y : A --> A ) | 
						
							| 32 | 4 31 | syl |  |-  ( ph -> Y : A --> A ) | 
						
							| 33 | 32 | ffnd |  |-  ( ph -> Y Fn A ) | 
						
							| 34 |  | difss |  |-  ( X \ _I ) C_ X | 
						
							| 35 |  | dmss |  |-  ( ( X \ _I ) C_ X -> dom ( X \ _I ) C_ dom X ) | 
						
							| 36 | 34 35 | ax-mp |  |-  dom ( X \ _I ) C_ dom X | 
						
							| 37 |  | fdm |  |-  ( X : A --> A -> dom X = A ) | 
						
							| 38 | 3 6 37 | 3syl |  |-  ( ph -> dom X = A ) | 
						
							| 39 | 36 38 | sseqtrid |  |-  ( ph -> dom ( X \ _I ) C_ A ) | 
						
							| 40 |  | reldisj |  |-  ( dom ( X \ _I ) C_ A -> ( ( dom ( X \ _I ) i^i dom ( Y \ _I ) ) = (/) <-> dom ( X \ _I ) C_ ( A \ dom ( Y \ _I ) ) ) ) | 
						
							| 41 | 39 40 | syl |  |-  ( ph -> ( ( dom ( X \ _I ) i^i dom ( Y \ _I ) ) = (/) <-> dom ( X \ _I ) C_ ( A \ dom ( Y \ _I ) ) ) ) | 
						
							| 42 | 5 41 | mpbid |  |-  ( ph -> dom ( X \ _I ) C_ ( A \ dom ( Y \ _I ) ) ) | 
						
							| 43 |  | nfpconfp |  |-  ( Y Fn A -> ( A \ dom ( Y \ _I ) ) = dom ( Y i^i _I ) ) | 
						
							| 44 | 33 43 | syl |  |-  ( ph -> ( A \ dom ( Y \ _I ) ) = dom ( Y i^i _I ) ) | 
						
							| 45 | 42 44 | sseqtrd |  |-  ( ph -> dom ( X \ _I ) C_ dom ( Y i^i _I ) ) | 
						
							| 46 |  | inres |  |-  ( Y i^i ( _I |` A ) ) = ( ( Y i^i _I ) |` A ) | 
						
							| 47 |  | relin2 |  |-  ( Rel _I -> Rel ( Y i^i _I ) ) | 
						
							| 48 | 16 47 | ax-mp |  |-  Rel ( Y i^i _I ) | 
						
							| 49 |  | difssd |  |-  ( ph -> ( A \ dom ( Y \ _I ) ) C_ A ) | 
						
							| 50 | 44 49 | eqsstrrd |  |-  ( ph -> dom ( Y i^i _I ) C_ A ) | 
						
							| 51 |  | relssres |  |-  ( ( Rel ( Y i^i _I ) /\ dom ( Y i^i _I ) C_ A ) -> ( ( Y i^i _I ) |` A ) = ( Y i^i _I ) ) | 
						
							| 52 | 48 50 51 | sylancr |  |-  ( ph -> ( ( Y i^i _I ) |` A ) = ( Y i^i _I ) ) | 
						
							| 53 | 46 52 | eqtrid |  |-  ( ph -> ( Y i^i ( _I |` A ) ) = ( Y i^i _I ) ) | 
						
							| 54 | 53 | dmeqd |  |-  ( ph -> dom ( Y i^i ( _I |` A ) ) = dom ( Y i^i _I ) ) | 
						
							| 55 | 45 54 | sseqtrrd |  |-  ( ph -> dom ( X \ _I ) C_ dom ( Y i^i ( _I |` A ) ) ) | 
						
							| 56 |  | fnreseql |  |-  ( ( Y Fn A /\ ( _I |` A ) Fn A /\ dom ( X \ _I ) C_ A ) -> ( ( Y |` dom ( X \ _I ) ) = ( ( _I |` A ) |` dom ( X \ _I ) ) <-> dom ( X \ _I ) C_ dom ( Y i^i ( _I |` A ) ) ) ) | 
						
							| 57 | 56 | biimpar |  |-  ( ( ( Y Fn A /\ ( _I |` A ) Fn A /\ dom ( X \ _I ) C_ A ) /\ dom ( X \ _I ) C_ dom ( Y i^i ( _I |` A ) ) ) -> ( Y |` dom ( X \ _I ) ) = ( ( _I |` A ) |` dom ( X \ _I ) ) ) | 
						
							| 58 | 33 10 39 55 57 | syl31anc |  |-  ( ph -> ( Y |` dom ( X \ _I ) ) = ( ( _I |` A ) |` dom ( X \ _I ) ) ) | 
						
							| 59 | 39 | resabs1d |  |-  ( ph -> ( ( _I |` A ) |` dom ( X \ _I ) ) = ( _I |` dom ( X \ _I ) ) ) | 
						
							| 60 | 58 59 | eqtrd |  |-  ( ph -> ( Y |` dom ( X \ _I ) ) = ( _I |` dom ( X \ _I ) ) ) | 
						
							| 61 |  | difin2 |  |-  ( dom ( X \ _I ) C_ A -> ( dom ( X \ _I ) \ dom ( X \ _I ) ) = ( ( A \ dom ( X \ _I ) ) i^i dom ( X \ _I ) ) ) | 
						
							| 62 | 39 61 | syl |  |-  ( ph -> ( dom ( X \ _I ) \ dom ( X \ _I ) ) = ( ( A \ dom ( X \ _I ) ) i^i dom ( X \ _I ) ) ) | 
						
							| 63 |  | difid |  |-  ( dom ( X \ _I ) \ dom ( X \ _I ) ) = (/) | 
						
							| 64 | 62 63 | eqtr3di |  |-  ( ph -> ( ( A \ dom ( X \ _I ) ) i^i dom ( X \ _I ) ) = (/) ) | 
						
							| 65 |  | undif1 |  |-  ( ( A \ dom ( X \ _I ) ) u. dom ( X \ _I ) ) = ( A u. dom ( X \ _I ) ) | 
						
							| 66 |  | ssequn2 |  |-  ( dom ( X \ _I ) C_ A <-> ( A u. dom ( X \ _I ) ) = A ) | 
						
							| 67 | 39 66 | sylib |  |-  ( ph -> ( A u. dom ( X \ _I ) ) = A ) | 
						
							| 68 | 65 67 | eqtrid |  |-  ( ph -> ( ( A \ dom ( X \ _I ) ) u. dom ( X \ _I ) ) = A ) | 
						
							| 69 | 1 2 3 4 30 60 64 68 | symgcom |  |-  ( ph -> ( X o. Y ) = ( Y o. X ) ) |