| Step |
Hyp |
Ref |
Expression |
| 1 |
|
symgcom.g |
|- G = ( SymGrp ` A ) |
| 2 |
|
symgcom.b |
|- B = ( Base ` G ) |
| 3 |
|
symgcom.x |
|- ( ph -> X e. B ) |
| 4 |
|
symgcom.y |
|- ( ph -> Y e. B ) |
| 5 |
|
symgcom2.1 |
|- ( ph -> ( dom ( X \ _I ) i^i dom ( Y \ _I ) ) = (/) ) |
| 6 |
1 2
|
symgbasf |
|- ( X e. B -> X : A --> A ) |
| 7 |
3 6
|
syl |
|- ( ph -> X : A --> A ) |
| 8 |
7
|
ffnd |
|- ( ph -> X Fn A ) |
| 9 |
|
fnresi |
|- ( _I |` A ) Fn A |
| 10 |
9
|
a1i |
|- ( ph -> ( _I |` A ) Fn A ) |
| 11 |
|
difssd |
|- ( ph -> ( A \ dom ( X \ _I ) ) C_ A ) |
| 12 |
|
ssidd |
|- ( ph -> ( A \ dom ( X \ _I ) ) C_ ( A \ dom ( X \ _I ) ) ) |
| 13 |
|
nfpconfp |
|- ( X Fn A -> ( A \ dom ( X \ _I ) ) = dom ( X i^i _I ) ) |
| 14 |
8 13
|
syl |
|- ( ph -> ( A \ dom ( X \ _I ) ) = dom ( X i^i _I ) ) |
| 15 |
|
inres |
|- ( X i^i ( _I |` A ) ) = ( ( X i^i _I ) |` A ) |
| 16 |
|
reli |
|- Rel _I |
| 17 |
|
relin2 |
|- ( Rel _I -> Rel ( X i^i _I ) ) |
| 18 |
16 17
|
ax-mp |
|- Rel ( X i^i _I ) |
| 19 |
14 11
|
eqsstrrd |
|- ( ph -> dom ( X i^i _I ) C_ A ) |
| 20 |
|
relssres |
|- ( ( Rel ( X i^i _I ) /\ dom ( X i^i _I ) C_ A ) -> ( ( X i^i _I ) |` A ) = ( X i^i _I ) ) |
| 21 |
18 19 20
|
sylancr |
|- ( ph -> ( ( X i^i _I ) |` A ) = ( X i^i _I ) ) |
| 22 |
15 21
|
eqtrid |
|- ( ph -> ( X i^i ( _I |` A ) ) = ( X i^i _I ) ) |
| 23 |
22
|
dmeqd |
|- ( ph -> dom ( X i^i ( _I |` A ) ) = dom ( X i^i _I ) ) |
| 24 |
14 23
|
eqtr4d |
|- ( ph -> ( A \ dom ( X \ _I ) ) = dom ( X i^i ( _I |` A ) ) ) |
| 25 |
12 24
|
sseqtrd |
|- ( ph -> ( A \ dom ( X \ _I ) ) C_ dom ( X i^i ( _I |` A ) ) ) |
| 26 |
|
fnreseql |
|- ( ( X Fn A /\ ( _I |` A ) Fn A /\ ( A \ dom ( X \ _I ) ) C_ A ) -> ( ( X |` ( A \ dom ( X \ _I ) ) ) = ( ( _I |` A ) |` ( A \ dom ( X \ _I ) ) ) <-> ( A \ dom ( X \ _I ) ) C_ dom ( X i^i ( _I |` A ) ) ) ) |
| 27 |
26
|
biimpar |
|- ( ( ( X Fn A /\ ( _I |` A ) Fn A /\ ( A \ dom ( X \ _I ) ) C_ A ) /\ ( A \ dom ( X \ _I ) ) C_ dom ( X i^i ( _I |` A ) ) ) -> ( X |` ( A \ dom ( X \ _I ) ) ) = ( ( _I |` A ) |` ( A \ dom ( X \ _I ) ) ) ) |
| 28 |
8 10 11 25 27
|
syl31anc |
|- ( ph -> ( X |` ( A \ dom ( X \ _I ) ) ) = ( ( _I |` A ) |` ( A \ dom ( X \ _I ) ) ) ) |
| 29 |
11
|
resabs1d |
|- ( ph -> ( ( _I |` A ) |` ( A \ dom ( X \ _I ) ) ) = ( _I |` ( A \ dom ( X \ _I ) ) ) ) |
| 30 |
28 29
|
eqtrd |
|- ( ph -> ( X |` ( A \ dom ( X \ _I ) ) ) = ( _I |` ( A \ dom ( X \ _I ) ) ) ) |
| 31 |
1 2
|
symgbasf |
|- ( Y e. B -> Y : A --> A ) |
| 32 |
4 31
|
syl |
|- ( ph -> Y : A --> A ) |
| 33 |
32
|
ffnd |
|- ( ph -> Y Fn A ) |
| 34 |
|
difss |
|- ( X \ _I ) C_ X |
| 35 |
|
dmss |
|- ( ( X \ _I ) C_ X -> dom ( X \ _I ) C_ dom X ) |
| 36 |
34 35
|
ax-mp |
|- dom ( X \ _I ) C_ dom X |
| 37 |
|
fdm |
|- ( X : A --> A -> dom X = A ) |
| 38 |
3 6 37
|
3syl |
|- ( ph -> dom X = A ) |
| 39 |
36 38
|
sseqtrid |
|- ( ph -> dom ( X \ _I ) C_ A ) |
| 40 |
|
reldisj |
|- ( dom ( X \ _I ) C_ A -> ( ( dom ( X \ _I ) i^i dom ( Y \ _I ) ) = (/) <-> dom ( X \ _I ) C_ ( A \ dom ( Y \ _I ) ) ) ) |
| 41 |
39 40
|
syl |
|- ( ph -> ( ( dom ( X \ _I ) i^i dom ( Y \ _I ) ) = (/) <-> dom ( X \ _I ) C_ ( A \ dom ( Y \ _I ) ) ) ) |
| 42 |
5 41
|
mpbid |
|- ( ph -> dom ( X \ _I ) C_ ( A \ dom ( Y \ _I ) ) ) |
| 43 |
|
nfpconfp |
|- ( Y Fn A -> ( A \ dom ( Y \ _I ) ) = dom ( Y i^i _I ) ) |
| 44 |
33 43
|
syl |
|- ( ph -> ( A \ dom ( Y \ _I ) ) = dom ( Y i^i _I ) ) |
| 45 |
42 44
|
sseqtrd |
|- ( ph -> dom ( X \ _I ) C_ dom ( Y i^i _I ) ) |
| 46 |
|
inres |
|- ( Y i^i ( _I |` A ) ) = ( ( Y i^i _I ) |` A ) |
| 47 |
|
relin2 |
|- ( Rel _I -> Rel ( Y i^i _I ) ) |
| 48 |
16 47
|
ax-mp |
|- Rel ( Y i^i _I ) |
| 49 |
|
difssd |
|- ( ph -> ( A \ dom ( Y \ _I ) ) C_ A ) |
| 50 |
44 49
|
eqsstrrd |
|- ( ph -> dom ( Y i^i _I ) C_ A ) |
| 51 |
|
relssres |
|- ( ( Rel ( Y i^i _I ) /\ dom ( Y i^i _I ) C_ A ) -> ( ( Y i^i _I ) |` A ) = ( Y i^i _I ) ) |
| 52 |
48 50 51
|
sylancr |
|- ( ph -> ( ( Y i^i _I ) |` A ) = ( Y i^i _I ) ) |
| 53 |
46 52
|
eqtrid |
|- ( ph -> ( Y i^i ( _I |` A ) ) = ( Y i^i _I ) ) |
| 54 |
53
|
dmeqd |
|- ( ph -> dom ( Y i^i ( _I |` A ) ) = dom ( Y i^i _I ) ) |
| 55 |
45 54
|
sseqtrrd |
|- ( ph -> dom ( X \ _I ) C_ dom ( Y i^i ( _I |` A ) ) ) |
| 56 |
|
fnreseql |
|- ( ( Y Fn A /\ ( _I |` A ) Fn A /\ dom ( X \ _I ) C_ A ) -> ( ( Y |` dom ( X \ _I ) ) = ( ( _I |` A ) |` dom ( X \ _I ) ) <-> dom ( X \ _I ) C_ dom ( Y i^i ( _I |` A ) ) ) ) |
| 57 |
56
|
biimpar |
|- ( ( ( Y Fn A /\ ( _I |` A ) Fn A /\ dom ( X \ _I ) C_ A ) /\ dom ( X \ _I ) C_ dom ( Y i^i ( _I |` A ) ) ) -> ( Y |` dom ( X \ _I ) ) = ( ( _I |` A ) |` dom ( X \ _I ) ) ) |
| 58 |
33 10 39 55 57
|
syl31anc |
|- ( ph -> ( Y |` dom ( X \ _I ) ) = ( ( _I |` A ) |` dom ( X \ _I ) ) ) |
| 59 |
39
|
resabs1d |
|- ( ph -> ( ( _I |` A ) |` dom ( X \ _I ) ) = ( _I |` dom ( X \ _I ) ) ) |
| 60 |
58 59
|
eqtrd |
|- ( ph -> ( Y |` dom ( X \ _I ) ) = ( _I |` dom ( X \ _I ) ) ) |
| 61 |
|
difin2 |
|- ( dom ( X \ _I ) C_ A -> ( dom ( X \ _I ) \ dom ( X \ _I ) ) = ( ( A \ dom ( X \ _I ) ) i^i dom ( X \ _I ) ) ) |
| 62 |
39 61
|
syl |
|- ( ph -> ( dom ( X \ _I ) \ dom ( X \ _I ) ) = ( ( A \ dom ( X \ _I ) ) i^i dom ( X \ _I ) ) ) |
| 63 |
|
difid |
|- ( dom ( X \ _I ) \ dom ( X \ _I ) ) = (/) |
| 64 |
62 63
|
eqtr3di |
|- ( ph -> ( ( A \ dom ( X \ _I ) ) i^i dom ( X \ _I ) ) = (/) ) |
| 65 |
|
undif1 |
|- ( ( A \ dom ( X \ _I ) ) u. dom ( X \ _I ) ) = ( A u. dom ( X \ _I ) ) |
| 66 |
|
ssequn2 |
|- ( dom ( X \ _I ) C_ A <-> ( A u. dom ( X \ _I ) ) = A ) |
| 67 |
39 66
|
sylib |
|- ( ph -> ( A u. dom ( X \ _I ) ) = A ) |
| 68 |
65 67
|
eqtrid |
|- ( ph -> ( ( A \ dom ( X \ _I ) ) u. dom ( X \ _I ) ) = A ) |
| 69 |
1 2 3 4 30 60 64 68
|
symgcom |
|- ( ph -> ( X o. Y ) = ( Y o. X ) ) |