Step |
Hyp |
Ref |
Expression |
1 |
|
symgcntz.s |
|- S = ( SymGrp ` D ) |
2 |
|
symgcntz.b |
|- B = ( Base ` S ) |
3 |
|
symgcntz.z |
|- Z = ( Cntz ` S ) |
4 |
|
symgcntz.a |
|- ( ph -> A C_ B ) |
5 |
|
symgcntz.1 |
|- ( ph -> Disj_ x e. A dom ( x \ _I ) ) |
6 |
|
simpr |
|- ( ( ( ph /\ ( c e. A /\ d e. A ) ) /\ c = d ) -> c = d ) |
7 |
6
|
oveq1d |
|- ( ( ( ph /\ ( c e. A /\ d e. A ) ) /\ c = d ) -> ( c ( +g ` S ) d ) = ( d ( +g ` S ) d ) ) |
8 |
6
|
oveq2d |
|- ( ( ( ph /\ ( c e. A /\ d e. A ) ) /\ c = d ) -> ( d ( +g ` S ) c ) = ( d ( +g ` S ) d ) ) |
9 |
7 8
|
eqtr4d |
|- ( ( ( ph /\ ( c e. A /\ d e. A ) ) /\ c = d ) -> ( c ( +g ` S ) d ) = ( d ( +g ` S ) c ) ) |
10 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( c e. A /\ d e. A ) ) /\ c =/= d ) -> A C_ B ) |
11 |
|
simplrl |
|- ( ( ( ph /\ ( c e. A /\ d e. A ) ) /\ c =/= d ) -> c e. A ) |
12 |
10 11
|
sseldd |
|- ( ( ( ph /\ ( c e. A /\ d e. A ) ) /\ c =/= d ) -> c e. B ) |
13 |
|
simplrr |
|- ( ( ( ph /\ ( c e. A /\ d e. A ) ) /\ c =/= d ) -> d e. A ) |
14 |
10 13
|
sseldd |
|- ( ( ( ph /\ ( c e. A /\ d e. A ) ) /\ c =/= d ) -> d e. B ) |
15 |
5
|
ad2antrr |
|- ( ( ( ph /\ ( c e. A /\ d e. A ) ) /\ c =/= d ) -> Disj_ x e. A dom ( x \ _I ) ) |
16 |
|
simpr |
|- ( ( ( ph /\ ( c e. A /\ d e. A ) ) /\ c =/= d ) -> c =/= d ) |
17 |
|
difeq1 |
|- ( x = c -> ( x \ _I ) = ( c \ _I ) ) |
18 |
17
|
dmeqd |
|- ( x = c -> dom ( x \ _I ) = dom ( c \ _I ) ) |
19 |
|
difeq1 |
|- ( x = d -> ( x \ _I ) = ( d \ _I ) ) |
20 |
19
|
dmeqd |
|- ( x = d -> dom ( x \ _I ) = dom ( d \ _I ) ) |
21 |
18 20
|
disji2 |
|- ( ( Disj_ x e. A dom ( x \ _I ) /\ ( c e. A /\ d e. A ) /\ c =/= d ) -> ( dom ( c \ _I ) i^i dom ( d \ _I ) ) = (/) ) |
22 |
15 11 13 16 21
|
syl121anc |
|- ( ( ( ph /\ ( c e. A /\ d e. A ) ) /\ c =/= d ) -> ( dom ( c \ _I ) i^i dom ( d \ _I ) ) = (/) ) |
23 |
1 2 12 14 22
|
symgcom2 |
|- ( ( ( ph /\ ( c e. A /\ d e. A ) ) /\ c =/= d ) -> ( c o. d ) = ( d o. c ) ) |
24 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
25 |
1 2 24
|
symgov |
|- ( ( c e. B /\ d e. B ) -> ( c ( +g ` S ) d ) = ( c o. d ) ) |
26 |
12 14 25
|
syl2anc |
|- ( ( ( ph /\ ( c e. A /\ d e. A ) ) /\ c =/= d ) -> ( c ( +g ` S ) d ) = ( c o. d ) ) |
27 |
1 2 24
|
symgov |
|- ( ( d e. B /\ c e. B ) -> ( d ( +g ` S ) c ) = ( d o. c ) ) |
28 |
14 12 27
|
syl2anc |
|- ( ( ( ph /\ ( c e. A /\ d e. A ) ) /\ c =/= d ) -> ( d ( +g ` S ) c ) = ( d o. c ) ) |
29 |
23 26 28
|
3eqtr4d |
|- ( ( ( ph /\ ( c e. A /\ d e. A ) ) /\ c =/= d ) -> ( c ( +g ` S ) d ) = ( d ( +g ` S ) c ) ) |
30 |
9 29
|
pm2.61dane |
|- ( ( ph /\ ( c e. A /\ d e. A ) ) -> ( c ( +g ` S ) d ) = ( d ( +g ` S ) c ) ) |
31 |
30
|
ralrimivva |
|- ( ph -> A. c e. A A. d e. A ( c ( +g ` S ) d ) = ( d ( +g ` S ) c ) ) |
32 |
2 24 3
|
sscntz |
|- ( ( A C_ B /\ A C_ B ) -> ( A C_ ( Z ` A ) <-> A. c e. A A. d e. A ( c ( +g ` S ) d ) = ( d ( +g ` S ) c ) ) ) |
33 |
4 4 32
|
syl2anc |
|- ( ph -> ( A C_ ( Z ` A ) <-> A. c e. A A. d e. A ( c ( +g ` S ) d ) = ( d ( +g ` S ) c ) ) ) |
34 |
31 33
|
mpbird |
|- ( ph -> A C_ ( Z ` A ) ) |