Step |
Hyp |
Ref |
Expression |
1 |
|
odpmco.s |
⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) |
2 |
|
odpmco.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
3 |
|
odpmco.a |
⊢ 𝐴 = ( pmEven ‘ 𝐷 ) |
4 |
|
simp1 |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑋 ∈ ( 𝐵 ∖ 𝐴 ) ∧ 𝑌 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐷 ∈ Fin ) |
5 |
|
simp2 |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑋 ∈ ( 𝐵 ∖ 𝐴 ) ∧ 𝑌 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝑋 ∈ ( 𝐵 ∖ 𝐴 ) ) |
6 |
5
|
eldifad |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑋 ∈ ( 𝐵 ∖ 𝐴 ) ∧ 𝑌 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝑋 ∈ 𝐵 ) |
7 |
|
simp3 |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑋 ∈ ( 𝐵 ∖ 𝐴 ) ∧ 𝑌 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝑌 ∈ ( 𝐵 ∖ 𝐴 ) ) |
8 |
7
|
eldifad |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑋 ∈ ( 𝐵 ∖ 𝐴 ) ∧ 𝑌 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝑌 ∈ 𝐵 ) |
9 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
10 |
1 2 9
|
symgov |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ( +g ‘ 𝑆 ) 𝑌 ) = ( 𝑋 ∘ 𝑌 ) ) |
11 |
6 8 10
|
syl2anc |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑋 ∈ ( 𝐵 ∖ 𝐴 ) ∧ 𝑌 ∈ ( 𝐵 ∖ 𝐴 ) ) → ( 𝑋 ( +g ‘ 𝑆 ) 𝑌 ) = ( 𝑋 ∘ 𝑌 ) ) |
12 |
1 2 9
|
symgcl |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ( +g ‘ 𝑆 ) 𝑌 ) ∈ 𝐵 ) |
13 |
6 8 12
|
syl2anc |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑋 ∈ ( 𝐵 ∖ 𝐴 ) ∧ 𝑌 ∈ ( 𝐵 ∖ 𝐴 ) ) → ( 𝑋 ( +g ‘ 𝑆 ) 𝑌 ) ∈ 𝐵 ) |
14 |
11 13
|
eqeltrrd |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑋 ∈ ( 𝐵 ∖ 𝐴 ) ∧ 𝑌 ∈ ( 𝐵 ∖ 𝐴 ) ) → ( 𝑋 ∘ 𝑌 ) ∈ 𝐵 ) |
15 |
|
eqid |
⊢ ( pmSgn ‘ 𝐷 ) = ( pmSgn ‘ 𝐷 ) |
16 |
1 15 2
|
psgnco |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( pmSgn ‘ 𝐷 ) ‘ ( 𝑋 ∘ 𝑌 ) ) = ( ( ( pmSgn ‘ 𝐷 ) ‘ 𝑋 ) · ( ( pmSgn ‘ 𝐷 ) ‘ 𝑌 ) ) ) |
17 |
4 6 8 16
|
syl3anc |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑋 ∈ ( 𝐵 ∖ 𝐴 ) ∧ 𝑌 ∈ ( 𝐵 ∖ 𝐴 ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ ( 𝑋 ∘ 𝑌 ) ) = ( ( ( pmSgn ‘ 𝐷 ) ‘ 𝑋 ) · ( ( pmSgn ‘ 𝐷 ) ‘ 𝑌 ) ) ) |
18 |
3
|
a1i |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑋 ∈ ( 𝐵 ∖ 𝐴 ) ∧ 𝑌 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐴 = ( pmEven ‘ 𝐷 ) ) |
19 |
18
|
difeq2d |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑋 ∈ ( 𝐵 ∖ 𝐴 ) ∧ 𝑌 ∈ ( 𝐵 ∖ 𝐴 ) ) → ( 𝐵 ∖ 𝐴 ) = ( 𝐵 ∖ ( pmEven ‘ 𝐷 ) ) ) |
20 |
5 19
|
eleqtrd |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑋 ∈ ( 𝐵 ∖ 𝐴 ) ∧ 𝑌 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝑋 ∈ ( 𝐵 ∖ ( pmEven ‘ 𝐷 ) ) ) |
21 |
1 2 15
|
psgnodpm |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑋 ∈ ( 𝐵 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ 𝑋 ) = - 1 ) |
22 |
4 20 21
|
syl2anc |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑋 ∈ ( 𝐵 ∖ 𝐴 ) ∧ 𝑌 ∈ ( 𝐵 ∖ 𝐴 ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ 𝑋 ) = - 1 ) |
23 |
7 19
|
eleqtrd |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑋 ∈ ( 𝐵 ∖ 𝐴 ) ∧ 𝑌 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝑌 ∈ ( 𝐵 ∖ ( pmEven ‘ 𝐷 ) ) ) |
24 |
1 2 15
|
psgnodpm |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑌 ∈ ( 𝐵 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ 𝑌 ) = - 1 ) |
25 |
4 23 24
|
syl2anc |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑋 ∈ ( 𝐵 ∖ 𝐴 ) ∧ 𝑌 ∈ ( 𝐵 ∖ 𝐴 ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ 𝑌 ) = - 1 ) |
26 |
22 25
|
oveq12d |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑋 ∈ ( 𝐵 ∖ 𝐴 ) ∧ 𝑌 ∈ ( 𝐵 ∖ 𝐴 ) ) → ( ( ( pmSgn ‘ 𝐷 ) ‘ 𝑋 ) · ( ( pmSgn ‘ 𝐷 ) ‘ 𝑌 ) ) = ( - 1 · - 1 ) ) |
27 |
|
neg1mulneg1e1 |
⊢ ( - 1 · - 1 ) = 1 |
28 |
26 27
|
eqtrdi |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑋 ∈ ( 𝐵 ∖ 𝐴 ) ∧ 𝑌 ∈ ( 𝐵 ∖ 𝐴 ) ) → ( ( ( pmSgn ‘ 𝐷 ) ‘ 𝑋 ) · ( ( pmSgn ‘ 𝐷 ) ‘ 𝑌 ) ) = 1 ) |
29 |
17 28
|
eqtrd |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑋 ∈ ( 𝐵 ∖ 𝐴 ) ∧ 𝑌 ∈ ( 𝐵 ∖ 𝐴 ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ ( 𝑋 ∘ 𝑌 ) ) = 1 ) |
30 |
1 2 15
|
psgnevpmb |
⊢ ( 𝐷 ∈ Fin → ( ( 𝑋 ∘ 𝑌 ) ∈ ( pmEven ‘ 𝐷 ) ↔ ( ( 𝑋 ∘ 𝑌 ) ∈ 𝐵 ∧ ( ( pmSgn ‘ 𝐷 ) ‘ ( 𝑋 ∘ 𝑌 ) ) = 1 ) ) ) |
31 |
30
|
biimpar |
⊢ ( ( 𝐷 ∈ Fin ∧ ( ( 𝑋 ∘ 𝑌 ) ∈ 𝐵 ∧ ( ( pmSgn ‘ 𝐷 ) ‘ ( 𝑋 ∘ 𝑌 ) ) = 1 ) ) → ( 𝑋 ∘ 𝑌 ) ∈ ( pmEven ‘ 𝐷 ) ) |
32 |
4 14 29 31
|
syl12anc |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑋 ∈ ( 𝐵 ∖ 𝐴 ) ∧ 𝑌 ∈ ( 𝐵 ∖ 𝐴 ) ) → ( 𝑋 ∘ 𝑌 ) ∈ ( pmEven ‘ 𝐷 ) ) |
33 |
32 3
|
eleqtrrdi |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑋 ∈ ( 𝐵 ∖ 𝐴 ) ∧ 𝑌 ∈ ( 𝐵 ∖ 𝐴 ) ) → ( 𝑋 ∘ 𝑌 ) ∈ 𝐴 ) |