| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odpmco.s | ⊢ 𝑆  =  ( SymGrp ‘ 𝐷 ) | 
						
							| 2 |  | odpmco.b | ⊢ 𝐵  =  ( Base ‘ 𝑆 ) | 
						
							| 3 |  | odpmco.a | ⊢ 𝐴  =  ( pmEven ‘ 𝐷 ) | 
						
							| 4 |  | simp1 | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝑋  ∈  ( 𝐵  ∖  𝐴 )  ∧  𝑌  ∈  ( 𝐵  ∖  𝐴 ) )  →  𝐷  ∈  Fin ) | 
						
							| 5 |  | simp2 | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝑋  ∈  ( 𝐵  ∖  𝐴 )  ∧  𝑌  ∈  ( 𝐵  ∖  𝐴 ) )  →  𝑋  ∈  ( 𝐵  ∖  𝐴 ) ) | 
						
							| 6 | 5 | eldifad | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝑋  ∈  ( 𝐵  ∖  𝐴 )  ∧  𝑌  ∈  ( 𝐵  ∖  𝐴 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 7 |  | simp3 | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝑋  ∈  ( 𝐵  ∖  𝐴 )  ∧  𝑌  ∈  ( 𝐵  ∖  𝐴 ) )  →  𝑌  ∈  ( 𝐵  ∖  𝐴 ) ) | 
						
							| 8 | 7 | eldifad | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝑋  ∈  ( 𝐵  ∖  𝐴 )  ∧  𝑌  ∈  ( 𝐵  ∖  𝐴 ) )  →  𝑌  ∈  𝐵 ) | 
						
							| 9 |  | eqid | ⊢ ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑆 ) | 
						
							| 10 | 1 2 9 | symgov | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋 ( +g ‘ 𝑆 ) 𝑌 )  =  ( 𝑋  ∘  𝑌 ) ) | 
						
							| 11 | 6 8 10 | syl2anc | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝑋  ∈  ( 𝐵  ∖  𝐴 )  ∧  𝑌  ∈  ( 𝐵  ∖  𝐴 ) )  →  ( 𝑋 ( +g ‘ 𝑆 ) 𝑌 )  =  ( 𝑋  ∘  𝑌 ) ) | 
						
							| 12 | 1 2 9 | symgcl | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋 ( +g ‘ 𝑆 ) 𝑌 )  ∈  𝐵 ) | 
						
							| 13 | 6 8 12 | syl2anc | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝑋  ∈  ( 𝐵  ∖  𝐴 )  ∧  𝑌  ∈  ( 𝐵  ∖  𝐴 ) )  →  ( 𝑋 ( +g ‘ 𝑆 ) 𝑌 )  ∈  𝐵 ) | 
						
							| 14 | 11 13 | eqeltrrd | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝑋  ∈  ( 𝐵  ∖  𝐴 )  ∧  𝑌  ∈  ( 𝐵  ∖  𝐴 ) )  →  ( 𝑋  ∘  𝑌 )  ∈  𝐵 ) | 
						
							| 15 |  | eqid | ⊢ ( pmSgn ‘ 𝐷 )  =  ( pmSgn ‘ 𝐷 ) | 
						
							| 16 | 1 15 2 | psgnco | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( pmSgn ‘ 𝐷 ) ‘ ( 𝑋  ∘  𝑌 ) )  =  ( ( ( pmSgn ‘ 𝐷 ) ‘ 𝑋 )  ·  ( ( pmSgn ‘ 𝐷 ) ‘ 𝑌 ) ) ) | 
						
							| 17 | 4 6 8 16 | syl3anc | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝑋  ∈  ( 𝐵  ∖  𝐴 )  ∧  𝑌  ∈  ( 𝐵  ∖  𝐴 ) )  →  ( ( pmSgn ‘ 𝐷 ) ‘ ( 𝑋  ∘  𝑌 ) )  =  ( ( ( pmSgn ‘ 𝐷 ) ‘ 𝑋 )  ·  ( ( pmSgn ‘ 𝐷 ) ‘ 𝑌 ) ) ) | 
						
							| 18 | 3 | a1i | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝑋  ∈  ( 𝐵  ∖  𝐴 )  ∧  𝑌  ∈  ( 𝐵  ∖  𝐴 ) )  →  𝐴  =  ( pmEven ‘ 𝐷 ) ) | 
						
							| 19 | 18 | difeq2d | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝑋  ∈  ( 𝐵  ∖  𝐴 )  ∧  𝑌  ∈  ( 𝐵  ∖  𝐴 ) )  →  ( 𝐵  ∖  𝐴 )  =  ( 𝐵  ∖  ( pmEven ‘ 𝐷 ) ) ) | 
						
							| 20 | 5 19 | eleqtrd | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝑋  ∈  ( 𝐵  ∖  𝐴 )  ∧  𝑌  ∈  ( 𝐵  ∖  𝐴 ) )  →  𝑋  ∈  ( 𝐵  ∖  ( pmEven ‘ 𝐷 ) ) ) | 
						
							| 21 | 1 2 15 | psgnodpm | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝑋  ∈  ( 𝐵  ∖  ( pmEven ‘ 𝐷 ) ) )  →  ( ( pmSgn ‘ 𝐷 ) ‘ 𝑋 )  =  - 1 ) | 
						
							| 22 | 4 20 21 | syl2anc | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝑋  ∈  ( 𝐵  ∖  𝐴 )  ∧  𝑌  ∈  ( 𝐵  ∖  𝐴 ) )  →  ( ( pmSgn ‘ 𝐷 ) ‘ 𝑋 )  =  - 1 ) | 
						
							| 23 | 7 19 | eleqtrd | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝑋  ∈  ( 𝐵  ∖  𝐴 )  ∧  𝑌  ∈  ( 𝐵  ∖  𝐴 ) )  →  𝑌  ∈  ( 𝐵  ∖  ( pmEven ‘ 𝐷 ) ) ) | 
						
							| 24 | 1 2 15 | psgnodpm | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝑌  ∈  ( 𝐵  ∖  ( pmEven ‘ 𝐷 ) ) )  →  ( ( pmSgn ‘ 𝐷 ) ‘ 𝑌 )  =  - 1 ) | 
						
							| 25 | 4 23 24 | syl2anc | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝑋  ∈  ( 𝐵  ∖  𝐴 )  ∧  𝑌  ∈  ( 𝐵  ∖  𝐴 ) )  →  ( ( pmSgn ‘ 𝐷 ) ‘ 𝑌 )  =  - 1 ) | 
						
							| 26 | 22 25 | oveq12d | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝑋  ∈  ( 𝐵  ∖  𝐴 )  ∧  𝑌  ∈  ( 𝐵  ∖  𝐴 ) )  →  ( ( ( pmSgn ‘ 𝐷 ) ‘ 𝑋 )  ·  ( ( pmSgn ‘ 𝐷 ) ‘ 𝑌 ) )  =  ( - 1  ·  - 1 ) ) | 
						
							| 27 |  | neg1mulneg1e1 | ⊢ ( - 1  ·  - 1 )  =  1 | 
						
							| 28 | 26 27 | eqtrdi | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝑋  ∈  ( 𝐵  ∖  𝐴 )  ∧  𝑌  ∈  ( 𝐵  ∖  𝐴 ) )  →  ( ( ( pmSgn ‘ 𝐷 ) ‘ 𝑋 )  ·  ( ( pmSgn ‘ 𝐷 ) ‘ 𝑌 ) )  =  1 ) | 
						
							| 29 | 17 28 | eqtrd | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝑋  ∈  ( 𝐵  ∖  𝐴 )  ∧  𝑌  ∈  ( 𝐵  ∖  𝐴 ) )  →  ( ( pmSgn ‘ 𝐷 ) ‘ ( 𝑋  ∘  𝑌 ) )  =  1 ) | 
						
							| 30 | 1 2 15 | psgnevpmb | ⊢ ( 𝐷  ∈  Fin  →  ( ( 𝑋  ∘  𝑌 )  ∈  ( pmEven ‘ 𝐷 )  ↔  ( ( 𝑋  ∘  𝑌 )  ∈  𝐵  ∧  ( ( pmSgn ‘ 𝐷 ) ‘ ( 𝑋  ∘  𝑌 ) )  =  1 ) ) ) | 
						
							| 31 | 30 | biimpar | ⊢ ( ( 𝐷  ∈  Fin  ∧  ( ( 𝑋  ∘  𝑌 )  ∈  𝐵  ∧  ( ( pmSgn ‘ 𝐷 ) ‘ ( 𝑋  ∘  𝑌 ) )  =  1 ) )  →  ( 𝑋  ∘  𝑌 )  ∈  ( pmEven ‘ 𝐷 ) ) | 
						
							| 32 | 4 14 29 31 | syl12anc | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝑋  ∈  ( 𝐵  ∖  𝐴 )  ∧  𝑌  ∈  ( 𝐵  ∖  𝐴 ) )  →  ( 𝑋  ∘  𝑌 )  ∈  ( pmEven ‘ 𝐷 ) ) | 
						
							| 33 | 32 3 | eleqtrrdi | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝑋  ∈  ( 𝐵  ∖  𝐴 )  ∧  𝑌  ∈  ( 𝐵  ∖  𝐴 ) )  →  ( 𝑋  ∘  𝑌 )  ∈  𝐴 ) |