| Step | Hyp | Ref | Expression | 
						
							| 1 |  | symgsubg.g | ⊢ 𝐺  =  ( SymGrp ‘ 𝐴 ) | 
						
							| 2 |  | symgsubg.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 3 |  | symgsubg.m | ⊢  −   =  ( -g ‘ 𝐺 ) | 
						
							| 4 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 5 |  | eqid | ⊢ ( invg ‘ 𝐺 )  =  ( invg ‘ 𝐺 ) | 
						
							| 6 | 2 4 5 3 | grpsubval | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  −  𝑌 )  =  ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) | 
						
							| 7 | 1 2 5 | symginv | ⊢ ( 𝑌  ∈  𝐵  →  ( ( invg ‘ 𝐺 ) ‘ 𝑌 )  =  ◡ 𝑌 ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑌 )  =  ◡ 𝑌 ) | 
						
							| 9 | 8 | oveq2d | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) )  =  ( 𝑋 ( +g ‘ 𝐺 ) ◡ 𝑌 ) ) | 
						
							| 10 | 1 2 | elbasfv | ⊢ ( 𝑋  ∈  𝐵  →  𝐴  ∈  V ) | 
						
							| 11 | 1 | symggrp | ⊢ ( 𝐴  ∈  V  →  𝐺  ∈  Grp ) | 
						
							| 12 | 10 11 | syl | ⊢ ( 𝑋  ∈  𝐵  →  𝐺  ∈  Grp ) | 
						
							| 13 | 2 5 | grpinvcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑌  ∈  𝐵 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑌 )  ∈  𝐵 ) | 
						
							| 14 | 12 13 | sylan | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑌 )  ∈  𝐵 ) | 
						
							| 15 | 8 14 | eqeltrrd | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ◡ 𝑌  ∈  𝐵 ) | 
						
							| 16 | 1 2 4 | symgov | ⊢ ( ( 𝑋  ∈  𝐵  ∧  ◡ 𝑌  ∈  𝐵 )  →  ( 𝑋 ( +g ‘ 𝐺 ) ◡ 𝑌 )  =  ( 𝑋  ∘  ◡ 𝑌 ) ) | 
						
							| 17 | 15 16 | syldan | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋 ( +g ‘ 𝐺 ) ◡ 𝑌 )  =  ( 𝑋  ∘  ◡ 𝑌 ) ) | 
						
							| 18 | 6 9 17 | 3eqtrd | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  −  𝑌 )  =  ( 𝑋  ∘  ◡ 𝑌 ) ) |