Step |
Hyp |
Ref |
Expression |
1 |
|
symgsubg.g |
⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) |
2 |
|
symgsubg.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
3 |
|
symgsubg.m |
⊢ − = ( -g ‘ 𝐺 ) |
4 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
5 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
6 |
2 4 5 3
|
grpsubval |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) |
7 |
1 2 5
|
symginv |
⊢ ( 𝑌 ∈ 𝐵 → ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) = ◡ 𝑌 ) |
8 |
7
|
adantl |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) = ◡ 𝑌 ) |
9 |
8
|
oveq2d |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) = ( 𝑋 ( +g ‘ 𝐺 ) ◡ 𝑌 ) ) |
10 |
1 2
|
elbasfv |
⊢ ( 𝑋 ∈ 𝐵 → 𝐴 ∈ V ) |
11 |
1
|
symggrp |
⊢ ( 𝐴 ∈ V → 𝐺 ∈ Grp ) |
12 |
10 11
|
syl |
⊢ ( 𝑋 ∈ 𝐵 → 𝐺 ∈ Grp ) |
13 |
2 5
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ∈ 𝐵 ) |
14 |
12 13
|
sylan |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ∈ 𝐵 ) |
15 |
8 14
|
eqeltrrd |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ◡ 𝑌 ∈ 𝐵 ) |
16 |
1 2 4
|
symgov |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ ◡ 𝑌 ∈ 𝐵 ) → ( 𝑋 ( +g ‘ 𝐺 ) ◡ 𝑌 ) = ( 𝑋 ∘ ◡ 𝑌 ) ) |
17 |
15 16
|
syldan |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ( +g ‘ 𝐺 ) ◡ 𝑌 ) = ( 𝑋 ∘ ◡ 𝑌 ) ) |
18 |
6 9 17
|
3eqtrd |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 ∘ ◡ 𝑌 ) ) |