Metamath Proof Explorer


Theorem symgsubg

Description: The value of the group subtraction operation of the symmetric group. (Contributed by Thierry Arnoux, 15-Oct-2023)

Ref Expression
Hypotheses symgsubg.g 𝐺 = ( SymGrp ‘ 𝐴 )
symgsubg.b 𝐵 = ( Base ‘ 𝐺 )
symgsubg.m = ( -g𝐺 )
Assertion symgsubg ( ( 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) = ( 𝑋 𝑌 ) )

Proof

Step Hyp Ref Expression
1 symgsubg.g 𝐺 = ( SymGrp ‘ 𝐴 )
2 symgsubg.b 𝐵 = ( Base ‘ 𝐺 )
3 symgsubg.m = ( -g𝐺 )
4 eqid ( +g𝐺 ) = ( +g𝐺 )
5 eqid ( invg𝐺 ) = ( invg𝐺 )
6 2 4 5 3 grpsubval ( ( 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) = ( 𝑋 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑌 ) ) )
7 1 2 5 symginv ( 𝑌𝐵 → ( ( invg𝐺 ) ‘ 𝑌 ) = 𝑌 )
8 7 adantl ( ( 𝑋𝐵𝑌𝐵 ) → ( ( invg𝐺 ) ‘ 𝑌 ) = 𝑌 )
9 8 oveq2d ( ( 𝑋𝐵𝑌𝐵 ) → ( 𝑋 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑌 ) ) = ( 𝑋 ( +g𝐺 ) 𝑌 ) )
10 1 2 elbasfv ( 𝑋𝐵𝐴 ∈ V )
11 1 symggrp ( 𝐴 ∈ V → 𝐺 ∈ Grp )
12 10 11 syl ( 𝑋𝐵𝐺 ∈ Grp )
13 2 5 grpinvcl ( ( 𝐺 ∈ Grp ∧ 𝑌𝐵 ) → ( ( invg𝐺 ) ‘ 𝑌 ) ∈ 𝐵 )
14 12 13 sylan ( ( 𝑋𝐵𝑌𝐵 ) → ( ( invg𝐺 ) ‘ 𝑌 ) ∈ 𝐵 )
15 8 14 eqeltrrd ( ( 𝑋𝐵𝑌𝐵 ) → 𝑌𝐵 )
16 1 2 4 symgov ( ( 𝑋𝐵 𝑌𝐵 ) → ( 𝑋 ( +g𝐺 ) 𝑌 ) = ( 𝑋 𝑌 ) )
17 15 16 syldan ( ( 𝑋𝐵𝑌𝐵 ) → ( 𝑋 ( +g𝐺 ) 𝑌 ) = ( 𝑋 𝑌 ) )
18 6 9 17 3eqtrd ( ( 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) = ( 𝑋 𝑌 ) )