Metamath Proof Explorer


Theorem symgsubg

Description: The value of the group subtraction operation of the symmetric group. (Contributed by Thierry Arnoux, 15-Oct-2023)

Ref Expression
Hypotheses symgsubg.g
|- G = ( SymGrp ` A )
symgsubg.b
|- B = ( Base ` G )
symgsubg.m
|- .- = ( -g ` G )
Assertion symgsubg
|- ( ( X e. B /\ Y e. B ) -> ( X .- Y ) = ( X o. `' Y ) )

Proof

Step Hyp Ref Expression
1 symgsubg.g
 |-  G = ( SymGrp ` A )
2 symgsubg.b
 |-  B = ( Base ` G )
3 symgsubg.m
 |-  .- = ( -g ` G )
4 eqid
 |-  ( +g ` G ) = ( +g ` G )
5 eqid
 |-  ( invg ` G ) = ( invg ` G )
6 2 4 5 3 grpsubval
 |-  ( ( X e. B /\ Y e. B ) -> ( X .- Y ) = ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) )
7 1 2 5 symginv
 |-  ( Y e. B -> ( ( invg ` G ) ` Y ) = `' Y )
8 7 adantl
 |-  ( ( X e. B /\ Y e. B ) -> ( ( invg ` G ) ` Y ) = `' Y )
9 8 oveq2d
 |-  ( ( X e. B /\ Y e. B ) -> ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) = ( X ( +g ` G ) `' Y ) )
10 1 2 elbasfv
 |-  ( X e. B -> A e. _V )
11 1 symggrp
 |-  ( A e. _V -> G e. Grp )
12 10 11 syl
 |-  ( X e. B -> G e. Grp )
13 2 5 grpinvcl
 |-  ( ( G e. Grp /\ Y e. B ) -> ( ( invg ` G ) ` Y ) e. B )
14 12 13 sylan
 |-  ( ( X e. B /\ Y e. B ) -> ( ( invg ` G ) ` Y ) e. B )
15 8 14 eqeltrrd
 |-  ( ( X e. B /\ Y e. B ) -> `' Y e. B )
16 1 2 4 symgov
 |-  ( ( X e. B /\ `' Y e. B ) -> ( X ( +g ` G ) `' Y ) = ( X o. `' Y ) )
17 15 16 syldan
 |-  ( ( X e. B /\ Y e. B ) -> ( X ( +g ` G ) `' Y ) = ( X o. `' Y ) )
18 6 9 17 3eqtrd
 |-  ( ( X e. B /\ Y e. B ) -> ( X .- Y ) = ( X o. `' Y ) )