| Step | Hyp | Ref | Expression | 
						
							| 1 |  | symgsubg.g |  |-  G = ( SymGrp ` A ) | 
						
							| 2 |  | symgsubg.b |  |-  B = ( Base ` G ) | 
						
							| 3 |  | symgsubg.m |  |-  .- = ( -g ` G ) | 
						
							| 4 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 5 |  | eqid |  |-  ( invg ` G ) = ( invg ` G ) | 
						
							| 6 | 2 4 5 3 | grpsubval |  |-  ( ( X e. B /\ Y e. B ) -> ( X .- Y ) = ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) ) | 
						
							| 7 | 1 2 5 | symginv |  |-  ( Y e. B -> ( ( invg ` G ) ` Y ) = `' Y ) | 
						
							| 8 | 7 | adantl |  |-  ( ( X e. B /\ Y e. B ) -> ( ( invg ` G ) ` Y ) = `' Y ) | 
						
							| 9 | 8 | oveq2d |  |-  ( ( X e. B /\ Y e. B ) -> ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) = ( X ( +g ` G ) `' Y ) ) | 
						
							| 10 | 1 2 | elbasfv |  |-  ( X e. B -> A e. _V ) | 
						
							| 11 | 1 | symggrp |  |-  ( A e. _V -> G e. Grp ) | 
						
							| 12 | 10 11 | syl |  |-  ( X e. B -> G e. Grp ) | 
						
							| 13 | 2 5 | grpinvcl |  |-  ( ( G e. Grp /\ Y e. B ) -> ( ( invg ` G ) ` Y ) e. B ) | 
						
							| 14 | 12 13 | sylan |  |-  ( ( X e. B /\ Y e. B ) -> ( ( invg ` G ) ` Y ) e. B ) | 
						
							| 15 | 8 14 | eqeltrrd |  |-  ( ( X e. B /\ Y e. B ) -> `' Y e. B ) | 
						
							| 16 | 1 2 4 | symgov |  |-  ( ( X e. B /\ `' Y e. B ) -> ( X ( +g ` G ) `' Y ) = ( X o. `' Y ) ) | 
						
							| 17 | 15 16 | syldan |  |-  ( ( X e. B /\ Y e. B ) -> ( X ( +g ` G ) `' Y ) = ( X o. `' Y ) ) | 
						
							| 18 | 6 9 17 | 3eqtrd |  |-  ( ( X e. B /\ Y e. B ) -> ( X .- Y ) = ( X o. `' Y ) ) |