| Step |
Hyp |
Ref |
Expression |
| 1 |
|
symgsubg.g |
|- G = ( SymGrp ` A ) |
| 2 |
|
symgsubg.b |
|- B = ( Base ` G ) |
| 3 |
|
symgsubg.m |
|- .- = ( -g ` G ) |
| 4 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 5 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
| 6 |
2 4 5 3
|
grpsubval |
|- ( ( X e. B /\ Y e. B ) -> ( X .- Y ) = ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) ) |
| 7 |
1 2 5
|
symginv |
|- ( Y e. B -> ( ( invg ` G ) ` Y ) = `' Y ) |
| 8 |
7
|
adantl |
|- ( ( X e. B /\ Y e. B ) -> ( ( invg ` G ) ` Y ) = `' Y ) |
| 9 |
8
|
oveq2d |
|- ( ( X e. B /\ Y e. B ) -> ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) = ( X ( +g ` G ) `' Y ) ) |
| 10 |
1 2
|
elbasfv |
|- ( X e. B -> A e. _V ) |
| 11 |
1
|
symggrp |
|- ( A e. _V -> G e. Grp ) |
| 12 |
10 11
|
syl |
|- ( X e. B -> G e. Grp ) |
| 13 |
2 5
|
grpinvcl |
|- ( ( G e. Grp /\ Y e. B ) -> ( ( invg ` G ) ` Y ) e. B ) |
| 14 |
12 13
|
sylan |
|- ( ( X e. B /\ Y e. B ) -> ( ( invg ` G ) ` Y ) e. B ) |
| 15 |
8 14
|
eqeltrrd |
|- ( ( X e. B /\ Y e. B ) -> `' Y e. B ) |
| 16 |
1 2 4
|
symgov |
|- ( ( X e. B /\ `' Y e. B ) -> ( X ( +g ` G ) `' Y ) = ( X o. `' Y ) ) |
| 17 |
15 16
|
syldan |
|- ( ( X e. B /\ Y e. B ) -> ( X ( +g ` G ) `' Y ) = ( X o. `' Y ) ) |
| 18 |
6 9 17
|
3eqtrd |
|- ( ( X e. B /\ Y e. B ) -> ( X .- Y ) = ( X o. `' Y ) ) |