| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tocyccntz.s |
⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) |
| 2 |
|
tocyccntz.z |
⊢ 𝑍 = ( Cntz ‘ 𝑆 ) |
| 3 |
|
tocyccntz.m |
⊢ 𝑀 = ( toCyc ‘ 𝐷 ) |
| 4 |
|
tocyccntz.1 |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
| 5 |
|
tocyccntz.2 |
⊢ ( 𝜑 → Disj 𝑥 ∈ 𝐴 ran 𝑥 ) |
| 6 |
|
tocyccntz.a |
⊢ ( 𝜑 → 𝐴 ⊆ dom 𝑀 ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 8 |
3 1 7
|
tocycf |
⊢ ( 𝐷 ∈ 𝑉 → 𝑀 : { 𝑐 ∈ Word 𝐷 ∣ 𝑐 : dom 𝑐 –1-1→ 𝐷 } ⟶ ( Base ‘ 𝑆 ) ) |
| 9 |
|
fimass |
⊢ ( 𝑀 : { 𝑐 ∈ Word 𝐷 ∣ 𝑐 : dom 𝑐 –1-1→ 𝐷 } ⟶ ( Base ‘ 𝑆 ) → ( 𝑀 “ 𝐴 ) ⊆ ( Base ‘ 𝑆 ) ) |
| 10 |
4 8 9
|
3syl |
⊢ ( 𝜑 → ( 𝑀 “ 𝐴 ) ⊆ ( Base ‘ 𝑆 ) ) |
| 11 |
|
difss |
⊢ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ⊆ 𝐴 |
| 12 |
|
disjss1 |
⊢ ( ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ⊆ 𝐴 → ( Disj 𝑥 ∈ 𝐴 ran 𝑥 → Disj 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ran 𝑥 ) ) |
| 13 |
11 5 12
|
mpsyl |
⊢ ( 𝜑 → Disj 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ran 𝑥 ) |
| 14 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) → 𝐷 ∈ 𝑉 ) |
| 15 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) → 𝐴 ⊆ dom 𝑀 ) |
| 16 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) → 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) |
| 17 |
16
|
eldifad |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) → 𝑥 ∈ 𝐴 ) |
| 18 |
15 17
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) → 𝑥 ∈ dom 𝑀 ) |
| 19 |
|
fdm |
⊢ ( 𝑀 : { 𝑐 ∈ Word 𝐷 ∣ 𝑐 : dom 𝑐 –1-1→ 𝐷 } ⟶ ( Base ‘ 𝑆 ) → dom 𝑀 = { 𝑐 ∈ Word 𝐷 ∣ 𝑐 : dom 𝑐 –1-1→ 𝐷 } ) |
| 20 |
14 8 19
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) → dom 𝑀 = { 𝑐 ∈ Word 𝐷 ∣ 𝑐 : dom 𝑐 –1-1→ 𝐷 } ) |
| 21 |
18 20
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) → 𝑥 ∈ { 𝑐 ∈ Word 𝐷 ∣ 𝑐 : dom 𝑐 –1-1→ 𝐷 } ) |
| 22 |
|
id |
⊢ ( 𝑐 = 𝑥 → 𝑐 = 𝑥 ) |
| 23 |
|
dmeq |
⊢ ( 𝑐 = 𝑥 → dom 𝑐 = dom 𝑥 ) |
| 24 |
|
eqidd |
⊢ ( 𝑐 = 𝑥 → 𝐷 = 𝐷 ) |
| 25 |
22 23 24
|
f1eq123d |
⊢ ( 𝑐 = 𝑥 → ( 𝑐 : dom 𝑐 –1-1→ 𝐷 ↔ 𝑥 : dom 𝑥 –1-1→ 𝐷 ) ) |
| 26 |
25
|
elrab |
⊢ ( 𝑥 ∈ { 𝑐 ∈ Word 𝐷 ∣ 𝑐 : dom 𝑐 –1-1→ 𝐷 } ↔ ( 𝑥 ∈ Word 𝐷 ∧ 𝑥 : dom 𝑥 –1-1→ 𝐷 ) ) |
| 27 |
21 26
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) → ( 𝑥 ∈ Word 𝐷 ∧ 𝑥 : dom 𝑥 –1-1→ 𝐷 ) ) |
| 28 |
27
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) → 𝑥 ∈ Word 𝐷 ) |
| 29 |
27
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) → 𝑥 : dom 𝑥 –1-1→ 𝐷 ) |
| 30 |
16
|
eldifbd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) → ¬ 𝑥 ∈ ( ◡ ♯ “ { 0 , 1 } ) ) |
| 31 |
|
hashgt1 |
⊢ ( 𝑥 ∈ V → ( ¬ 𝑥 ∈ ( ◡ ♯ “ { 0 , 1 } ) ↔ 1 < ( ♯ ‘ 𝑥 ) ) ) |
| 32 |
31
|
elv |
⊢ ( ¬ 𝑥 ∈ ( ◡ ♯ “ { 0 , 1 } ) ↔ 1 < ( ♯ ‘ 𝑥 ) ) |
| 33 |
30 32
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) → 1 < ( ♯ ‘ 𝑥 ) ) |
| 34 |
3 14 28 29 33
|
cycpmrn |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) → ran 𝑥 = dom ( ( 𝑀 ‘ 𝑥 ) ∖ I ) ) |
| 35 |
16
|
fvresd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) → ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ) |
| 36 |
35
|
difeq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) → ( ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ∖ I ) = ( ( 𝑀 ‘ 𝑥 ) ∖ I ) ) |
| 37 |
36
|
dmeqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) → dom ( ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ∖ I ) = dom ( ( 𝑀 ‘ 𝑥 ) ∖ I ) ) |
| 38 |
34 37
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) → ran 𝑥 = dom ( ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ∖ I ) ) |
| 39 |
38
|
disjeq2dv |
⊢ ( 𝜑 → ( Disj 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ran 𝑥 ↔ Disj 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) dom ( ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ∖ I ) ) ) |
| 40 |
13 39
|
mpbid |
⊢ ( 𝜑 → Disj 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) dom ( ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ∖ I ) ) |
| 41 |
4 8
|
syl |
⊢ ( 𝜑 → 𝑀 : { 𝑐 ∈ Word 𝐷 ∣ 𝑐 : dom 𝑐 –1-1→ 𝐷 } ⟶ ( Base ‘ 𝑆 ) ) |
| 42 |
41
|
ffdmd |
⊢ ( 𝜑 → 𝑀 : dom 𝑀 ⟶ ( Base ‘ 𝑆 ) ) |
| 43 |
6
|
ssdifssd |
⊢ ( 𝜑 → ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ⊆ dom 𝑀 ) |
| 44 |
42 43
|
fssresd |
⊢ ( 𝜑 → ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) : ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ⟶ ( Base ‘ 𝑆 ) ) |
| 45 |
41 6
|
fssdmd |
⊢ ( 𝜑 → 𝐴 ⊆ { 𝑐 ∈ Word 𝐷 ∣ 𝑐 : dom 𝑐 –1-1→ 𝐷 } ) |
| 46 |
45
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → 𝐴 ⊆ { 𝑐 ∈ Word 𝐷 ∣ 𝑐 : dom 𝑐 –1-1→ 𝐷 } ) |
| 47 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) |
| 48 |
47
|
eldifad |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → 𝑠 ∈ 𝐴 ) |
| 49 |
46 48
|
sseldd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → 𝑠 ∈ { 𝑐 ∈ Word 𝐷 ∣ 𝑐 : dom 𝑐 –1-1→ 𝐷 } ) |
| 50 |
|
id |
⊢ ( 𝑐 = 𝑠 → 𝑐 = 𝑠 ) |
| 51 |
|
dmeq |
⊢ ( 𝑐 = 𝑠 → dom 𝑐 = dom 𝑠 ) |
| 52 |
|
eqidd |
⊢ ( 𝑐 = 𝑠 → 𝐷 = 𝐷 ) |
| 53 |
50 51 52
|
f1eq123d |
⊢ ( 𝑐 = 𝑠 → ( 𝑐 : dom 𝑐 –1-1→ 𝐷 ↔ 𝑠 : dom 𝑠 –1-1→ 𝐷 ) ) |
| 54 |
53
|
elrab |
⊢ ( 𝑠 ∈ { 𝑐 ∈ Word 𝐷 ∣ 𝑐 : dom 𝑐 –1-1→ 𝐷 } ↔ ( 𝑠 ∈ Word 𝐷 ∧ 𝑠 : dom 𝑠 –1-1→ 𝐷 ) ) |
| 55 |
49 54
|
sylib |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → ( 𝑠 ∈ Word 𝐷 ∧ 𝑠 : dom 𝑠 –1-1→ 𝐷 ) ) |
| 56 |
55
|
simpld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → 𝑠 ∈ Word 𝐷 ) |
| 57 |
|
wrdf |
⊢ ( 𝑠 ∈ Word 𝐷 → 𝑠 : ( 0 ..^ ( ♯ ‘ 𝑠 ) ) ⟶ 𝐷 ) |
| 58 |
|
frel |
⊢ ( 𝑠 : ( 0 ..^ ( ♯ ‘ 𝑠 ) ) ⟶ 𝐷 → Rel 𝑠 ) |
| 59 |
56 57 58
|
3syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → Rel 𝑠 ) |
| 60 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) |
| 61 |
47
|
fvresd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( 𝑀 ‘ 𝑠 ) ) |
| 62 |
16
|
ad5ant13 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) |
| 63 |
62
|
fvresd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ) |
| 64 |
60 61 63
|
3eqtr3rd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → ( 𝑀 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑠 ) ) |
| 65 |
64
|
difeq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → ( ( 𝑀 ‘ 𝑥 ) ∖ I ) = ( ( 𝑀 ‘ 𝑠 ) ∖ I ) ) |
| 66 |
65
|
dmeqd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → dom ( ( 𝑀 ‘ 𝑥 ) ∖ I ) = dom ( ( 𝑀 ‘ 𝑠 ) ∖ I ) ) |
| 67 |
4
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → 𝐷 ∈ 𝑉 ) |
| 68 |
17
|
ad5ant13 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → 𝑥 ∈ 𝐴 ) |
| 69 |
46 68
|
sseldd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → 𝑥 ∈ { 𝑐 ∈ Word 𝐷 ∣ 𝑐 : dom 𝑐 –1-1→ 𝐷 } ) |
| 70 |
69 26
|
sylib |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → ( 𝑥 ∈ Word 𝐷 ∧ 𝑥 : dom 𝑥 –1-1→ 𝐷 ) ) |
| 71 |
70
|
simpld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → 𝑥 ∈ Word 𝐷 ) |
| 72 |
70
|
simprd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → 𝑥 : dom 𝑥 –1-1→ 𝐷 ) |
| 73 |
33
|
ad5ant13 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → 1 < ( ♯ ‘ 𝑥 ) ) |
| 74 |
3 67 71 72 73
|
cycpmrn |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → ran 𝑥 = dom ( ( 𝑀 ‘ 𝑥 ) ∖ I ) ) |
| 75 |
55
|
simprd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → 𝑠 : dom 𝑠 –1-1→ 𝐷 ) |
| 76 |
6
|
ssdifd |
⊢ ( 𝜑 → ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ⊆ ( dom 𝑀 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) |
| 77 |
76
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) → 𝑠 ∈ ( dom 𝑀 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) |
| 78 |
77
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → 𝑠 ∈ ( dom 𝑀 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) |
| 79 |
78
|
eldifbd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → ¬ 𝑠 ∈ ( ◡ ♯ “ { 0 , 1 } ) ) |
| 80 |
|
hashgt1 |
⊢ ( 𝑠 ∈ 𝐴 → ( ¬ 𝑠 ∈ ( ◡ ♯ “ { 0 , 1 } ) ↔ 1 < ( ♯ ‘ 𝑠 ) ) ) |
| 81 |
80
|
biimpa |
⊢ ( ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ∈ ( ◡ ♯ “ { 0 , 1 } ) ) → 1 < ( ♯ ‘ 𝑠 ) ) |
| 82 |
48 79 81
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → 1 < ( ♯ ‘ 𝑠 ) ) |
| 83 |
3 67 56 75 82
|
cycpmrn |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → ran 𝑠 = dom ( ( 𝑀 ‘ 𝑠 ) ∖ I ) ) |
| 84 |
66 74 83
|
3eqtr4rd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → ran 𝑠 = ran 𝑥 ) |
| 85 |
84
|
ineq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → ( ran 𝑥 ∩ ran 𝑠 ) = ( ran 𝑥 ∩ ran 𝑥 ) ) |
| 86 |
|
inidm |
⊢ ( ran 𝑥 ∩ ran 𝑥 ) = ran 𝑥 |
| 87 |
85 86
|
eqtrdi |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → ( ran 𝑥 ∩ ran 𝑠 ) = ran 𝑥 ) |
| 88 |
|
rneq |
⊢ ( 𝑥 = 𝑦 → ran 𝑥 = ran 𝑦 ) |
| 89 |
88
|
cbvdisjv |
⊢ ( Disj 𝑥 ∈ 𝐴 ran 𝑥 ↔ Disj 𝑦 ∈ 𝐴 ran 𝑦 ) |
| 90 |
5 89
|
sylib |
⊢ ( 𝜑 → Disj 𝑦 ∈ 𝐴 ran 𝑦 ) |
| 91 |
90
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → Disj 𝑦 ∈ 𝐴 ran 𝑦 ) |
| 92 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → ¬ 𝑠 = 𝑥 ) |
| 93 |
92
|
neqned |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → 𝑠 ≠ 𝑥 ) |
| 94 |
93
|
necomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → 𝑥 ≠ 𝑠 ) |
| 95 |
|
rneq |
⊢ ( 𝑦 = 𝑥 → ran 𝑦 = ran 𝑥 ) |
| 96 |
|
rneq |
⊢ ( 𝑦 = 𝑠 → ran 𝑦 = ran 𝑠 ) |
| 97 |
95 96
|
disji2 |
⊢ ( ( Disj 𝑦 ∈ 𝐴 ran 𝑦 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ 𝑥 ≠ 𝑠 ) → ( ran 𝑥 ∩ ran 𝑠 ) = ∅ ) |
| 98 |
91 68 48 94 97
|
syl121anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → ( ran 𝑥 ∩ ran 𝑠 ) = ∅ ) |
| 99 |
87 98
|
eqtr3d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → ran 𝑥 = ∅ ) |
| 100 |
84 99
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → ran 𝑠 = ∅ ) |
| 101 |
|
relrn0 |
⊢ ( Rel 𝑠 → ( 𝑠 = ∅ ↔ ran 𝑠 = ∅ ) ) |
| 102 |
101
|
biimpar |
⊢ ( ( Rel 𝑠 ∧ ran 𝑠 = ∅ ) → 𝑠 = ∅ ) |
| 103 |
59 100 102
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → 𝑠 = ∅ ) |
| 104 |
|
wrdf |
⊢ ( 𝑥 ∈ Word 𝐷 → 𝑥 : ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ⟶ 𝐷 ) |
| 105 |
|
frel |
⊢ ( 𝑥 : ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ⟶ 𝐷 → Rel 𝑥 ) |
| 106 |
71 104 105
|
3syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → Rel 𝑥 ) |
| 107 |
|
relrn0 |
⊢ ( Rel 𝑥 → ( 𝑥 = ∅ ↔ ran 𝑥 = ∅ ) ) |
| 108 |
107
|
biimpar |
⊢ ( ( Rel 𝑥 ∧ ran 𝑥 = ∅ ) → 𝑥 = ∅ ) |
| 109 |
106 99 108
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → 𝑥 = ∅ ) |
| 110 |
103 109
|
eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → 𝑠 = 𝑥 ) |
| 111 |
110
|
pm2.18da |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) → 𝑠 = 𝑥 ) |
| 112 |
111
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) → ( ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) → 𝑠 = 𝑥 ) ) |
| 113 |
112
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ) → ( ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) → 𝑠 = 𝑥 ) ) |
| 114 |
113
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ∀ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ( ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) → 𝑠 = 𝑥 ) ) |
| 115 |
|
dff13 |
⊢ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) : ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) –1-1→ ( Base ‘ 𝑆 ) ↔ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) : ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑠 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ∀ 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ( ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) → 𝑠 = 𝑥 ) ) ) |
| 116 |
44 114 115
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) : ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) –1-1→ ( Base ‘ 𝑆 ) ) |
| 117 |
|
f1f1orn |
⊢ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) : ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) –1-1→ ( Base ‘ 𝑆 ) → ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) : ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) –1-1-onto→ ran ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ) |
| 118 |
116 117
|
syl |
⊢ ( 𝜑 → ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) : ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) –1-1-onto→ ran ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ) |
| 119 |
|
df-ima |
⊢ ( 𝑀 “ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) = ran ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) |
| 120 |
119
|
a1i |
⊢ ( 𝜑 → ( 𝑀 “ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) = ran ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ) |
| 121 |
120
|
f1oeq3d |
⊢ ( 𝜑 → ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) : ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) –1-1-onto→ ( 𝑀 “ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ↔ ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) : ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) –1-1-onto→ ran ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ) ) |
| 122 |
118 121
|
mpbird |
⊢ ( 𝜑 → ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) : ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) –1-1-onto→ ( 𝑀 “ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ) |
| 123 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑐 = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) → 𝑐 = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) |
| 124 |
123
|
difeq1d |
⊢ ( ( 𝜑 ∧ 𝑐 = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) → ( 𝑐 ∖ I ) = ( ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ∖ I ) ) |
| 125 |
124
|
dmeqd |
⊢ ( ( 𝜑 ∧ 𝑐 = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) → dom ( 𝑐 ∖ I ) = dom ( ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ∖ I ) ) |
| 126 |
122 125
|
disjrdx |
⊢ ( 𝜑 → ( Disj 𝑥 ∈ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) dom ( ( ( 𝑀 ↾ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ∖ I ) ↔ Disj 𝑐 ∈ ( 𝑀 “ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) dom ( 𝑐 ∖ I ) ) ) |
| 127 |
40 126
|
mpbid |
⊢ ( 𝜑 → Disj 𝑐 ∈ ( 𝑀 “ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) dom ( 𝑐 ∖ I ) ) |
| 128 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑀 “ ( 𝐴 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( 𝑀 ‘ 𝑥 ) = 𝑐 ) → ( 𝑀 ‘ 𝑥 ) = 𝑐 ) |
| 129 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑀 “ ( 𝐴 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( 𝑀 ‘ 𝑥 ) = 𝑐 ) → 𝐷 ∈ 𝑉 ) |
| 130 |
6
|
ssrind |
⊢ ( 𝜑 → ( 𝐴 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ⊆ ( dom 𝑀 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) |
| 131 |
130
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑀 “ ( 𝐴 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( 𝑀 ‘ 𝑥 ) = 𝑐 ) → ( 𝐴 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ⊆ ( dom 𝑀 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) |
| 132 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑀 “ ( 𝐴 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( 𝑀 ‘ 𝑥 ) = 𝑐 ) → 𝑥 ∈ ( 𝐴 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) |
| 133 |
131 132
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑀 “ ( 𝐴 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( 𝑀 ‘ 𝑥 ) = 𝑐 ) → 𝑥 ∈ ( dom 𝑀 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) |
| 134 |
3
|
tocyc01 |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑥 ∈ ( dom 𝑀 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) → ( 𝑀 ‘ 𝑥 ) = ( I ↾ 𝐷 ) ) |
| 135 |
129 133 134
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑀 “ ( 𝐴 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( 𝑀 ‘ 𝑥 ) = 𝑐 ) → ( 𝑀 ‘ 𝑥 ) = ( I ↾ 𝐷 ) ) |
| 136 |
128 135
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑀 “ ( 𝐴 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( 𝑀 ‘ 𝑥 ) = 𝑐 ) → 𝑐 = ( I ↾ 𝐷 ) ) |
| 137 |
136
|
difeq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑀 “ ( 𝐴 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( 𝑀 ‘ 𝑥 ) = 𝑐 ) → ( 𝑐 ∖ I ) = ( ( I ↾ 𝐷 ) ∖ I ) ) |
| 138 |
137
|
dmeqd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑀 “ ( 𝐴 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( 𝑀 ‘ 𝑥 ) = 𝑐 ) → dom ( 𝑐 ∖ I ) = dom ( ( I ↾ 𝐷 ) ∖ I ) ) |
| 139 |
|
resdifcom |
⊢ ( ( I ↾ 𝐷 ) ∖ I ) = ( ( I ∖ I ) ↾ 𝐷 ) |
| 140 |
|
difid |
⊢ ( I ∖ I ) = ∅ |
| 141 |
140
|
reseq1i |
⊢ ( ( I ∖ I ) ↾ 𝐷 ) = ( ∅ ↾ 𝐷 ) |
| 142 |
|
0res |
⊢ ( ∅ ↾ 𝐷 ) = ∅ |
| 143 |
139 141 142
|
3eqtri |
⊢ ( ( I ↾ 𝐷 ) ∖ I ) = ∅ |
| 144 |
143
|
dmeqi |
⊢ dom ( ( I ↾ 𝐷 ) ∖ I ) = dom ∅ |
| 145 |
|
dm0 |
⊢ dom ∅ = ∅ |
| 146 |
144 145
|
eqtri |
⊢ dom ( ( I ↾ 𝐷 ) ∖ I ) = ∅ |
| 147 |
138 146
|
eqtrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑀 “ ( 𝐴 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( 𝑀 ‘ 𝑥 ) = 𝑐 ) → dom ( 𝑐 ∖ I ) = ∅ ) |
| 148 |
41
|
ffund |
⊢ ( 𝜑 → Fun 𝑀 ) |
| 149 |
|
fvelima |
⊢ ( ( Fun 𝑀 ∧ 𝑐 ∈ ( 𝑀 “ ( 𝐴 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ) → ∃ 𝑥 ∈ ( 𝐴 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ( 𝑀 ‘ 𝑥 ) = 𝑐 ) |
| 150 |
148 149
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑀 “ ( 𝐴 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ) → ∃ 𝑥 ∈ ( 𝐴 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ( 𝑀 ‘ 𝑥 ) = 𝑐 ) |
| 151 |
147 150
|
r19.29a |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑀 “ ( 𝐴 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ) → dom ( 𝑐 ∖ I ) = ∅ ) |
| 152 |
151
|
disjxun0 |
⊢ ( 𝜑 → ( Disj 𝑐 ∈ ( ( 𝑀 “ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∪ ( 𝑀 “ ( 𝐴 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ) dom ( 𝑐 ∖ I ) ↔ Disj 𝑐 ∈ ( 𝑀 “ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) dom ( 𝑐 ∖ I ) ) ) |
| 153 |
127 152
|
mpbird |
⊢ ( 𝜑 → Disj 𝑐 ∈ ( ( 𝑀 “ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∪ ( 𝑀 “ ( 𝐴 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ) dom ( 𝑐 ∖ I ) ) |
| 154 |
|
uncom |
⊢ ( ( 𝑀 “ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∪ ( 𝑀 “ ( 𝐴 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ) = ( ( 𝑀 “ ( 𝐴 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∪ ( 𝑀 “ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ) |
| 155 |
|
imaundi |
⊢ ( 𝑀 “ ( ( 𝐴 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ∪ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ) = ( ( 𝑀 “ ( 𝐴 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∪ ( 𝑀 “ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ) |
| 156 |
|
inundif |
⊢ ( ( 𝐴 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ∪ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) = 𝐴 |
| 157 |
156
|
imaeq2i |
⊢ ( 𝑀 “ ( ( 𝐴 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ∪ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ) = ( 𝑀 “ 𝐴 ) |
| 158 |
154 155 157
|
3eqtr2i |
⊢ ( ( 𝑀 “ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∪ ( 𝑀 “ ( 𝐴 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ) = ( 𝑀 “ 𝐴 ) |
| 159 |
158
|
a1i |
⊢ ( 𝜑 → ( ( 𝑀 “ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∪ ( 𝑀 “ ( 𝐴 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ) = ( 𝑀 “ 𝐴 ) ) |
| 160 |
159
|
disjeq1d |
⊢ ( 𝜑 → ( Disj 𝑐 ∈ ( ( 𝑀 “ ( 𝐴 ∖ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∪ ( 𝑀 “ ( 𝐴 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ) dom ( 𝑐 ∖ I ) ↔ Disj 𝑐 ∈ ( 𝑀 “ 𝐴 ) dom ( 𝑐 ∖ I ) ) ) |
| 161 |
153 160
|
mpbid |
⊢ ( 𝜑 → Disj 𝑐 ∈ ( 𝑀 “ 𝐴 ) dom ( 𝑐 ∖ I ) ) |
| 162 |
1 7 2 10 161
|
symgcntz |
⊢ ( 𝜑 → ( 𝑀 “ 𝐴 ) ⊆ ( 𝑍 ‘ ( 𝑀 “ 𝐴 ) ) ) |