Metamath Proof Explorer


Theorem tocyccntz

Description: All elements of a (finite) set of cycles commute if their orbits are disjoint. (Contributed by Thierry Arnoux, 27-Nov-2023)

Ref Expression
Hypotheses tocyccntz.s 𝑆 = ( SymGrp ‘ 𝐷 )
tocyccntz.z 𝑍 = ( Cntz ‘ 𝑆 )
tocyccntz.m 𝑀 = ( toCyc ‘ 𝐷 )
tocyccntz.1 ( 𝜑𝐷𝑉 )
tocyccntz.2 ( 𝜑Disj 𝑥𝐴 ran 𝑥 )
tocyccntz.a ( 𝜑𝐴 ⊆ dom 𝑀 )
Assertion tocyccntz ( 𝜑 → ( 𝑀𝐴 ) ⊆ ( 𝑍 ‘ ( 𝑀𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 tocyccntz.s 𝑆 = ( SymGrp ‘ 𝐷 )
2 tocyccntz.z 𝑍 = ( Cntz ‘ 𝑆 )
3 tocyccntz.m 𝑀 = ( toCyc ‘ 𝐷 )
4 tocyccntz.1 ( 𝜑𝐷𝑉 )
5 tocyccntz.2 ( 𝜑Disj 𝑥𝐴 ran 𝑥 )
6 tocyccntz.a ( 𝜑𝐴 ⊆ dom 𝑀 )
7 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
8 3 1 7 tocycf ( 𝐷𝑉𝑀 : { 𝑐 ∈ Word 𝐷𝑐 : dom 𝑐1-1𝐷 } ⟶ ( Base ‘ 𝑆 ) )
9 fimass ( 𝑀 : { 𝑐 ∈ Word 𝐷𝑐 : dom 𝑐1-1𝐷 } ⟶ ( Base ‘ 𝑆 ) → ( 𝑀𝐴 ) ⊆ ( Base ‘ 𝑆 ) )
10 4 8 9 3syl ( 𝜑 → ( 𝑀𝐴 ) ⊆ ( Base ‘ 𝑆 ) )
11 difss ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ⊆ 𝐴
12 disjss1 ( ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ⊆ 𝐴 → ( Disj 𝑥𝐴 ran 𝑥Disj 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ran 𝑥 ) )
13 11 5 12 mpsyl ( 𝜑Disj 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ran 𝑥 )
14 4 adantr ( ( 𝜑𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) → 𝐷𝑉 )
15 6 adantr ( ( 𝜑𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) → 𝐴 ⊆ dom 𝑀 )
16 simpr ( ( 𝜑𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) → 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) )
17 16 eldifad ( ( 𝜑𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) → 𝑥𝐴 )
18 15 17 sseldd ( ( 𝜑𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) → 𝑥 ∈ dom 𝑀 )
19 fdm ( 𝑀 : { 𝑐 ∈ Word 𝐷𝑐 : dom 𝑐1-1𝐷 } ⟶ ( Base ‘ 𝑆 ) → dom 𝑀 = { 𝑐 ∈ Word 𝐷𝑐 : dom 𝑐1-1𝐷 } )
20 14 8 19 3syl ( ( 𝜑𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) → dom 𝑀 = { 𝑐 ∈ Word 𝐷𝑐 : dom 𝑐1-1𝐷 } )
21 18 20 eleqtrd ( ( 𝜑𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) → 𝑥 ∈ { 𝑐 ∈ Word 𝐷𝑐 : dom 𝑐1-1𝐷 } )
22 id ( 𝑐 = 𝑥𝑐 = 𝑥 )
23 dmeq ( 𝑐 = 𝑥 → dom 𝑐 = dom 𝑥 )
24 eqidd ( 𝑐 = 𝑥𝐷 = 𝐷 )
25 22 23 24 f1eq123d ( 𝑐 = 𝑥 → ( 𝑐 : dom 𝑐1-1𝐷𝑥 : dom 𝑥1-1𝐷 ) )
26 25 elrab ( 𝑥 ∈ { 𝑐 ∈ Word 𝐷𝑐 : dom 𝑐1-1𝐷 } ↔ ( 𝑥 ∈ Word 𝐷𝑥 : dom 𝑥1-1𝐷 ) )
27 21 26 sylib ( ( 𝜑𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) → ( 𝑥 ∈ Word 𝐷𝑥 : dom 𝑥1-1𝐷 ) )
28 27 simpld ( ( 𝜑𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) → 𝑥 ∈ Word 𝐷 )
29 27 simprd ( ( 𝜑𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) → 𝑥 : dom 𝑥1-1𝐷 )
30 16 eldifbd ( ( 𝜑𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) → ¬ 𝑥 ∈ ( ♯ “ { 0 , 1 } ) )
31 hashgt1 ( 𝑥 ∈ V → ( ¬ 𝑥 ∈ ( ♯ “ { 0 , 1 } ) ↔ 1 < ( ♯ ‘ 𝑥 ) ) )
32 31 elv ( ¬ 𝑥 ∈ ( ♯ “ { 0 , 1 } ) ↔ 1 < ( ♯ ‘ 𝑥 ) )
33 30 32 sylib ( ( 𝜑𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) → 1 < ( ♯ ‘ 𝑥 ) )
34 3 14 28 29 33 cycpmrn ( ( 𝜑𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) → ran 𝑥 = dom ( ( 𝑀𝑥 ) ∖ I ) )
35 16 fvresd ( ( 𝜑𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) → ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) = ( 𝑀𝑥 ) )
36 35 difeq1d ( ( 𝜑𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) → ( ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ∖ I ) = ( ( 𝑀𝑥 ) ∖ I ) )
37 36 dmeqd ( ( 𝜑𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) → dom ( ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ∖ I ) = dom ( ( 𝑀𝑥 ) ∖ I ) )
38 34 37 eqtr4d ( ( 𝜑𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) → ran 𝑥 = dom ( ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ∖ I ) )
39 38 disjeq2dv ( 𝜑 → ( Disj 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ran 𝑥Disj 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) dom ( ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ∖ I ) ) )
40 13 39 mpbid ( 𝜑Disj 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) dom ( ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ∖ I ) )
41 4 8 syl ( 𝜑𝑀 : { 𝑐 ∈ Word 𝐷𝑐 : dom 𝑐1-1𝐷 } ⟶ ( Base ‘ 𝑆 ) )
42 41 ffdmd ( 𝜑𝑀 : dom 𝑀 ⟶ ( Base ‘ 𝑆 ) )
43 6 ssdifssd ( 𝜑 → ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ⊆ dom 𝑀 )
44 42 43 fssresd ( 𝜑 → ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) : ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ⟶ ( Base ‘ 𝑆 ) )
45 41 6 fssdmd ( 𝜑𝐴 ⊆ { 𝑐 ∈ Word 𝐷𝑐 : dom 𝑐1-1𝐷 } )
46 45 ad4antr ( ( ( ( ( 𝜑𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → 𝐴 ⊆ { 𝑐 ∈ Word 𝐷𝑐 : dom 𝑐1-1𝐷 } )
47 simp-4r ( ( ( ( ( 𝜑𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → 𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) )
48 47 eldifad ( ( ( ( ( 𝜑𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → 𝑠𝐴 )
49 46 48 sseldd ( ( ( ( ( 𝜑𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → 𝑠 ∈ { 𝑐 ∈ Word 𝐷𝑐 : dom 𝑐1-1𝐷 } )
50 id ( 𝑐 = 𝑠𝑐 = 𝑠 )
51 dmeq ( 𝑐 = 𝑠 → dom 𝑐 = dom 𝑠 )
52 eqidd ( 𝑐 = 𝑠𝐷 = 𝐷 )
53 50 51 52 f1eq123d ( 𝑐 = 𝑠 → ( 𝑐 : dom 𝑐1-1𝐷𝑠 : dom 𝑠1-1𝐷 ) )
54 53 elrab ( 𝑠 ∈ { 𝑐 ∈ Word 𝐷𝑐 : dom 𝑐1-1𝐷 } ↔ ( 𝑠 ∈ Word 𝐷𝑠 : dom 𝑠1-1𝐷 ) )
55 49 54 sylib ( ( ( ( ( 𝜑𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → ( 𝑠 ∈ Word 𝐷𝑠 : dom 𝑠1-1𝐷 ) )
56 55 simpld ( ( ( ( ( 𝜑𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → 𝑠 ∈ Word 𝐷 )
57 wrdf ( 𝑠 ∈ Word 𝐷𝑠 : ( 0 ..^ ( ♯ ‘ 𝑠 ) ) ⟶ 𝐷 )
58 frel ( 𝑠 : ( 0 ..^ ( ♯ ‘ 𝑠 ) ) ⟶ 𝐷 → Rel 𝑠 )
59 56 57 58 3syl ( ( ( ( ( 𝜑𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → Rel 𝑠 )
60 simplr ( ( ( ( ( 𝜑𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) )
61 47 fvresd ( ( ( ( ( 𝜑𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( 𝑀𝑠 ) )
62 16 ad5ant13 ( ( ( ( ( 𝜑𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) )
63 62 fvresd ( ( ( ( ( 𝜑𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) = ( 𝑀𝑥 ) )
64 60 61 63 3eqtr3rd ( ( ( ( ( 𝜑𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → ( 𝑀𝑥 ) = ( 𝑀𝑠 ) )
65 64 difeq1d ( ( ( ( ( 𝜑𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → ( ( 𝑀𝑥 ) ∖ I ) = ( ( 𝑀𝑠 ) ∖ I ) )
66 65 dmeqd ( ( ( ( ( 𝜑𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → dom ( ( 𝑀𝑥 ) ∖ I ) = dom ( ( 𝑀𝑠 ) ∖ I ) )
67 4 ad4antr ( ( ( ( ( 𝜑𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → 𝐷𝑉 )
68 17 ad5ant13 ( ( ( ( ( 𝜑𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → 𝑥𝐴 )
69 46 68 sseldd ( ( ( ( ( 𝜑𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → 𝑥 ∈ { 𝑐 ∈ Word 𝐷𝑐 : dom 𝑐1-1𝐷 } )
70 69 26 sylib ( ( ( ( ( 𝜑𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → ( 𝑥 ∈ Word 𝐷𝑥 : dom 𝑥1-1𝐷 ) )
71 70 simpld ( ( ( ( ( 𝜑𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → 𝑥 ∈ Word 𝐷 )
72 70 simprd ( ( ( ( ( 𝜑𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → 𝑥 : dom 𝑥1-1𝐷 )
73 33 ad5ant13 ( ( ( ( ( 𝜑𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → 1 < ( ♯ ‘ 𝑥 ) )
74 3 67 71 72 73 cycpmrn ( ( ( ( ( 𝜑𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → ran 𝑥 = dom ( ( 𝑀𝑥 ) ∖ I ) )
75 55 simprd ( ( ( ( ( 𝜑𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → 𝑠 : dom 𝑠1-1𝐷 )
76 6 ssdifd ( 𝜑 → ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ⊆ ( dom 𝑀 ∖ ( ♯ “ { 0 , 1 } ) ) )
77 76 sselda ( ( 𝜑𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) → 𝑠 ∈ ( dom 𝑀 ∖ ( ♯ “ { 0 , 1 } ) ) )
78 77 ad3antrrr ( ( ( ( ( 𝜑𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → 𝑠 ∈ ( dom 𝑀 ∖ ( ♯ “ { 0 , 1 } ) ) )
79 78 eldifbd ( ( ( ( ( 𝜑𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → ¬ 𝑠 ∈ ( ♯ “ { 0 , 1 } ) )
80 hashgt1 ( 𝑠𝐴 → ( ¬ 𝑠 ∈ ( ♯ “ { 0 , 1 } ) ↔ 1 < ( ♯ ‘ 𝑠 ) ) )
81 80 biimpa ( ( 𝑠𝐴 ∧ ¬ 𝑠 ∈ ( ♯ “ { 0 , 1 } ) ) → 1 < ( ♯ ‘ 𝑠 ) )
82 48 79 81 syl2anc ( ( ( ( ( 𝜑𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → 1 < ( ♯ ‘ 𝑠 ) )
83 3 67 56 75 82 cycpmrn ( ( ( ( ( 𝜑𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → ran 𝑠 = dom ( ( 𝑀𝑠 ) ∖ I ) )
84 66 74 83 3eqtr4rd ( ( ( ( ( 𝜑𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → ran 𝑠 = ran 𝑥 )
85 84 ineq2d ( ( ( ( ( 𝜑𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → ( ran 𝑥 ∩ ran 𝑠 ) = ( ran 𝑥 ∩ ran 𝑥 ) )
86 inidm ( ran 𝑥 ∩ ran 𝑥 ) = ran 𝑥
87 85 86 eqtrdi ( ( ( ( ( 𝜑𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → ( ran 𝑥 ∩ ran 𝑠 ) = ran 𝑥 )
88 rneq ( 𝑥 = 𝑦 → ran 𝑥 = ran 𝑦 )
89 88 cbvdisjv ( Disj 𝑥𝐴 ran 𝑥Disj 𝑦𝐴 ran 𝑦 )
90 5 89 sylib ( 𝜑Disj 𝑦𝐴 ran 𝑦 )
91 90 ad4antr ( ( ( ( ( 𝜑𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → Disj 𝑦𝐴 ran 𝑦 )
92 simpr ( ( ( ( ( 𝜑𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → ¬ 𝑠 = 𝑥 )
93 92 neqned ( ( ( ( ( 𝜑𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → 𝑠𝑥 )
94 93 necomd ( ( ( ( ( 𝜑𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → 𝑥𝑠 )
95 rneq ( 𝑦 = 𝑥 → ran 𝑦 = ran 𝑥 )
96 rneq ( 𝑦 = 𝑠 → ran 𝑦 = ran 𝑠 )
97 95 96 disji2 ( ( Disj 𝑦𝐴 ran 𝑦 ∧ ( 𝑥𝐴𝑠𝐴 ) ∧ 𝑥𝑠 ) → ( ran 𝑥 ∩ ran 𝑠 ) = ∅ )
98 91 68 48 94 97 syl121anc ( ( ( ( ( 𝜑𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → ( ran 𝑥 ∩ ran 𝑠 ) = ∅ )
99 87 98 eqtr3d ( ( ( ( ( 𝜑𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → ran 𝑥 = ∅ )
100 84 99 eqtrd ( ( ( ( ( 𝜑𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → ran 𝑠 = ∅ )
101 relrn0 ( Rel 𝑠 → ( 𝑠 = ∅ ↔ ran 𝑠 = ∅ ) )
102 101 biimpar ( ( Rel 𝑠 ∧ ran 𝑠 = ∅ ) → 𝑠 = ∅ )
103 59 100 102 syl2anc ( ( ( ( ( 𝜑𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → 𝑠 = ∅ )
104 wrdf ( 𝑥 ∈ Word 𝐷𝑥 : ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ⟶ 𝐷 )
105 frel ( 𝑥 : ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ⟶ 𝐷 → Rel 𝑥 )
106 71 104 105 3syl ( ( ( ( ( 𝜑𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → Rel 𝑥 )
107 relrn0 ( Rel 𝑥 → ( 𝑥 = ∅ ↔ ran 𝑥 = ∅ ) )
108 107 biimpar ( ( Rel 𝑥 ∧ ran 𝑥 = ∅ ) → 𝑥 = ∅ )
109 106 99 108 syl2anc ( ( ( ( ( 𝜑𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → 𝑥 = ∅ )
110 103 109 eqtr4d ( ( ( ( ( 𝜑𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) ∧ ¬ 𝑠 = 𝑥 ) → 𝑠 = 𝑥 )
111 110 pm2.18da ( ( ( ( 𝜑𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) → 𝑠 = 𝑥 )
112 111 ex ( ( ( 𝜑𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) → ( ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) → 𝑠 = 𝑥 ) )
113 112 anasss ( ( 𝜑 ∧ ( 𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ) → ( ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) → 𝑠 = 𝑥 ) )
114 113 ralrimivva ( 𝜑 → ∀ 𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ∀ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ( ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) → 𝑠 = 𝑥 ) )
115 dff13 ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) : ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) –1-1→ ( Base ‘ 𝑆 ) ↔ ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) : ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑠 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ∀ 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ( ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑠 ) = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) → 𝑠 = 𝑥 ) ) )
116 44 114 115 sylanbrc ( 𝜑 → ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) : ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) –1-1→ ( Base ‘ 𝑆 ) )
117 f1f1orn ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) : ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) –1-1→ ( Base ‘ 𝑆 ) → ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) : ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) –1-1-onto→ ran ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) )
118 116 117 syl ( 𝜑 → ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) : ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) –1-1-onto→ ran ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) )
119 df-ima ( 𝑀 “ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) = ran ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) )
120 119 a1i ( 𝜑 → ( 𝑀 “ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) = ran ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) )
121 120 f1oeq3d ( 𝜑 → ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) : ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) –1-1-onto→ ( 𝑀 “ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ↔ ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) : ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) –1-1-onto→ ran ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ) )
122 118 121 mpbird ( 𝜑 → ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) : ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) –1-1-onto→ ( 𝑀 “ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) )
123 simpr ( ( 𝜑𝑐 = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) → 𝑐 = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) )
124 123 difeq1d ( ( 𝜑𝑐 = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) → ( 𝑐 ∖ I ) = ( ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ∖ I ) )
125 124 dmeqd ( ( 𝜑𝑐 = ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ) → dom ( 𝑐 ∖ I ) = dom ( ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ∖ I ) )
126 122 125 disjrdx ( 𝜑 → ( Disj 𝑥 ∈ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) dom ( ( ( 𝑀 ↾ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ‘ 𝑥 ) ∖ I ) ↔ Disj 𝑐 ∈ ( 𝑀 “ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) dom ( 𝑐 ∖ I ) ) )
127 40 126 mpbid ( 𝜑Disj 𝑐 ∈ ( 𝑀 “ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) dom ( 𝑐 ∖ I ) )
128 simpr ( ( ( ( 𝜑𝑐 ∈ ( 𝑀 “ ( 𝐴 ∩ ( ♯ “ { 0 , 1 } ) ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∩ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( 𝑀𝑥 ) = 𝑐 ) → ( 𝑀𝑥 ) = 𝑐 )
129 4 ad3antrrr ( ( ( ( 𝜑𝑐 ∈ ( 𝑀 “ ( 𝐴 ∩ ( ♯ “ { 0 , 1 } ) ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∩ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( 𝑀𝑥 ) = 𝑐 ) → 𝐷𝑉 )
130 6 ssrind ( 𝜑 → ( 𝐴 ∩ ( ♯ “ { 0 , 1 } ) ) ⊆ ( dom 𝑀 ∩ ( ♯ “ { 0 , 1 } ) ) )
131 130 ad3antrrr ( ( ( ( 𝜑𝑐 ∈ ( 𝑀 “ ( 𝐴 ∩ ( ♯ “ { 0 , 1 } ) ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∩ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( 𝑀𝑥 ) = 𝑐 ) → ( 𝐴 ∩ ( ♯ “ { 0 , 1 } ) ) ⊆ ( dom 𝑀 ∩ ( ♯ “ { 0 , 1 } ) ) )
132 simplr ( ( ( ( 𝜑𝑐 ∈ ( 𝑀 “ ( 𝐴 ∩ ( ♯ “ { 0 , 1 } ) ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∩ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( 𝑀𝑥 ) = 𝑐 ) → 𝑥 ∈ ( 𝐴 ∩ ( ♯ “ { 0 , 1 } ) ) )
133 131 132 sseldd ( ( ( ( 𝜑𝑐 ∈ ( 𝑀 “ ( 𝐴 ∩ ( ♯ “ { 0 , 1 } ) ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∩ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( 𝑀𝑥 ) = 𝑐 ) → 𝑥 ∈ ( dom 𝑀 ∩ ( ♯ “ { 0 , 1 } ) ) )
134 3 tocyc01 ( ( 𝐷𝑉𝑥 ∈ ( dom 𝑀 ∩ ( ♯ “ { 0 , 1 } ) ) ) → ( 𝑀𝑥 ) = ( I ↾ 𝐷 ) )
135 129 133 134 syl2anc ( ( ( ( 𝜑𝑐 ∈ ( 𝑀 “ ( 𝐴 ∩ ( ♯ “ { 0 , 1 } ) ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∩ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( 𝑀𝑥 ) = 𝑐 ) → ( 𝑀𝑥 ) = ( I ↾ 𝐷 ) )
136 128 135 eqtr3d ( ( ( ( 𝜑𝑐 ∈ ( 𝑀 “ ( 𝐴 ∩ ( ♯ “ { 0 , 1 } ) ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∩ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( 𝑀𝑥 ) = 𝑐 ) → 𝑐 = ( I ↾ 𝐷 ) )
137 136 difeq1d ( ( ( ( 𝜑𝑐 ∈ ( 𝑀 “ ( 𝐴 ∩ ( ♯ “ { 0 , 1 } ) ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∩ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( 𝑀𝑥 ) = 𝑐 ) → ( 𝑐 ∖ I ) = ( ( I ↾ 𝐷 ) ∖ I ) )
138 137 dmeqd ( ( ( ( 𝜑𝑐 ∈ ( 𝑀 “ ( 𝐴 ∩ ( ♯ “ { 0 , 1 } ) ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∩ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( 𝑀𝑥 ) = 𝑐 ) → dom ( 𝑐 ∖ I ) = dom ( ( I ↾ 𝐷 ) ∖ I ) )
139 resdifcom ( ( I ↾ 𝐷 ) ∖ I ) = ( ( I ∖ I ) ↾ 𝐷 )
140 difid ( I ∖ I ) = ∅
141 140 reseq1i ( ( I ∖ I ) ↾ 𝐷 ) = ( ∅ ↾ 𝐷 )
142 0res ( ∅ ↾ 𝐷 ) = ∅
143 139 141 142 3eqtri ( ( I ↾ 𝐷 ) ∖ I ) = ∅
144 143 dmeqi dom ( ( I ↾ 𝐷 ) ∖ I ) = dom ∅
145 dm0 dom ∅ = ∅
146 144 145 eqtri dom ( ( I ↾ 𝐷 ) ∖ I ) = ∅
147 138 146 eqtrdi ( ( ( ( 𝜑𝑐 ∈ ( 𝑀 “ ( 𝐴 ∩ ( ♯ “ { 0 , 1 } ) ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∩ ( ♯ “ { 0 , 1 } ) ) ) ∧ ( 𝑀𝑥 ) = 𝑐 ) → dom ( 𝑐 ∖ I ) = ∅ )
148 41 ffund ( 𝜑 → Fun 𝑀 )
149 fvelima ( ( Fun 𝑀𝑐 ∈ ( 𝑀 “ ( 𝐴 ∩ ( ♯ “ { 0 , 1 } ) ) ) ) → ∃ 𝑥 ∈ ( 𝐴 ∩ ( ♯ “ { 0 , 1 } ) ) ( 𝑀𝑥 ) = 𝑐 )
150 148 149 sylan ( ( 𝜑𝑐 ∈ ( 𝑀 “ ( 𝐴 ∩ ( ♯ “ { 0 , 1 } ) ) ) ) → ∃ 𝑥 ∈ ( 𝐴 ∩ ( ♯ “ { 0 , 1 } ) ) ( 𝑀𝑥 ) = 𝑐 )
151 147 150 r19.29a ( ( 𝜑𝑐 ∈ ( 𝑀 “ ( 𝐴 ∩ ( ♯ “ { 0 , 1 } ) ) ) ) → dom ( 𝑐 ∖ I ) = ∅ )
152 151 disjxun0 ( 𝜑 → ( Disj 𝑐 ∈ ( ( 𝑀 “ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∪ ( 𝑀 “ ( 𝐴 ∩ ( ♯ “ { 0 , 1 } ) ) ) ) dom ( 𝑐 ∖ I ) ↔ Disj 𝑐 ∈ ( 𝑀 “ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) dom ( 𝑐 ∖ I ) ) )
153 127 152 mpbird ( 𝜑Disj 𝑐 ∈ ( ( 𝑀 “ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∪ ( 𝑀 “ ( 𝐴 ∩ ( ♯ “ { 0 , 1 } ) ) ) ) dom ( 𝑐 ∖ I ) )
154 uncom ( ( 𝑀 “ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∪ ( 𝑀 “ ( 𝐴 ∩ ( ♯ “ { 0 , 1 } ) ) ) ) = ( ( 𝑀 “ ( 𝐴 ∩ ( ♯ “ { 0 , 1 } ) ) ) ∪ ( 𝑀 “ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) )
155 imaundi ( 𝑀 “ ( ( 𝐴 ∩ ( ♯ “ { 0 , 1 } ) ) ∪ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ) = ( ( 𝑀 “ ( 𝐴 ∩ ( ♯ “ { 0 , 1 } ) ) ) ∪ ( 𝑀 “ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) )
156 inundif ( ( 𝐴 ∩ ( ♯ “ { 0 , 1 } ) ) ∪ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) = 𝐴
157 156 imaeq2i ( 𝑀 “ ( ( 𝐴 ∩ ( ♯ “ { 0 , 1 } ) ) ∪ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ) = ( 𝑀𝐴 )
158 154 155 157 3eqtr2i ( ( 𝑀 “ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∪ ( 𝑀 “ ( 𝐴 ∩ ( ♯ “ { 0 , 1 } ) ) ) ) = ( 𝑀𝐴 )
159 158 a1i ( 𝜑 → ( ( 𝑀 “ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∪ ( 𝑀 “ ( 𝐴 ∩ ( ♯ “ { 0 , 1 } ) ) ) ) = ( 𝑀𝐴 ) )
160 159 disjeq1d ( 𝜑 → ( Disj 𝑐 ∈ ( ( 𝑀 “ ( 𝐴 ∖ ( ♯ “ { 0 , 1 } ) ) ) ∪ ( 𝑀 “ ( 𝐴 ∩ ( ♯ “ { 0 , 1 } ) ) ) ) dom ( 𝑐 ∖ I ) ↔ Disj 𝑐 ∈ ( 𝑀𝐴 ) dom ( 𝑐 ∖ I ) ) )
161 153 160 mpbid ( 𝜑Disj 𝑐 ∈ ( 𝑀𝐴 ) dom ( 𝑐 ∖ I ) )
162 1 7 2 10 161 symgcntz ( 𝜑 → ( 𝑀𝐴 ) ⊆ ( 𝑍 ‘ ( 𝑀𝐴 ) ) )