Step |
Hyp |
Ref |
Expression |
1 |
|
cycpmconjv.s |
|
2 |
|
cycpmconjv.m |
|
3 |
|
cycpmconjv.p |
|
4 |
|
cycpmconjv.l |
|
5 |
|
cycpmconjv.b |
|
6 |
1 5
|
symgbasf1o |
|
7 |
6
|
3ad2ant2 |
|
8 |
|
simp3 |
|
9 |
2 1 5
|
tocycf |
|
10 |
9
|
3ad2ant1 |
|
11 |
10
|
fdmd |
|
12 |
8 11
|
eleqtrd |
|
13 |
|
id |
|
14 |
|
dmeq |
|
15 |
|
eqidd |
|
16 |
13 14 15
|
f1eq123d |
|
17 |
16
|
elrab |
|
18 |
12 17
|
sylib |
|
19 |
18
|
simprd |
|
20 |
|
f1f |
|
21 |
19 20
|
syl |
|
22 |
21
|
frnd |
|
23 |
7 22
|
cycpmconjvlem |
|
24 |
|
rnco |
|
25 |
24
|
difeq2i |
|
26 |
25
|
reseq2i |
|
27 |
23 26
|
eqtr4di |
|
28 |
|
coass |
|
29 |
|
cnvco |
|
30 |
29
|
coeq2i |
|
31 |
28 30
|
eqtr4i |
|
32 |
31
|
a1i |
|
33 |
27 32
|
uneq12d |
|
34 |
|
simp2 |
|
35 |
10 12
|
ffvelrnd |
|
36 |
1 5 3
|
symgcl |
|
37 |
34 35 36
|
syl2anc |
|
38 |
|
eqid |
|
39 |
5 3 38 4
|
grpsubval |
|
40 |
37 34 39
|
syl2anc |
|
41 |
1 5 38
|
symginv |
|
42 |
41
|
3ad2ant2 |
|
43 |
42
|
oveq2d |
|
44 |
|
simp1 |
|
45 |
|
f1ocnv |
|
46 |
7 45
|
syl |
|
47 |
1 5
|
elsymgbas |
|
48 |
47
|
biimpar |
|
49 |
44 46 48
|
syl2anc |
|
50 |
1 5 3
|
symgov |
|
51 |
37 49 50
|
syl2anc |
|
52 |
40 43 51
|
3eqtrd |
|
53 |
1 5 3
|
symgov |
|
54 |
34 35 53
|
syl2anc |
|
55 |
18
|
simpld |
|
56 |
2 44 55 19
|
tocycfv |
|
57 |
56
|
coeq2d |
|
58 |
|
coundi |
|
59 |
58
|
a1i |
|
60 |
54 57 59
|
3eqtrd |
|
61 |
|
coires1 |
|
62 |
61
|
a1i |
|
63 |
|
coass |
|
64 |
|
1zzd |
|
65 |
|
f1of |
|
66 |
7 65
|
syl |
|
67 |
|
cshco |
|
68 |
55 64 66 67
|
syl3anc |
|
69 |
68
|
coeq1d |
|
70 |
63 69
|
eqtr3id |
|
71 |
62 70
|
uneq12d |
|
72 |
60 71
|
eqtrd |
|
73 |
72
|
coeq1d |
|
74 |
52 73
|
eqtrd |
|
75 |
|
coundir |
|
76 |
74 75
|
eqtrdi |
|
77 |
|
wrdco |
|
78 |
55 66 77
|
syl2anc |
|
79 |
|
f1of1 |
|
80 |
7 79
|
syl |
|
81 |
|
f1co |
|
82 |
80 19 81
|
syl2anc |
|
83 |
66
|
fdmd |
|
84 |
22 83
|
sseqtrrd |
|
85 |
|
dmcosseq |
|
86 |
84 85
|
syl |
|
87 |
|
f1eq2 |
|
88 |
86 87
|
syl |
|
89 |
82 88
|
mpbird |
|
90 |
2 44 78 89
|
tocycfv |
|
91 |
33 76 90
|
3eqtr4d |
|