Metamath Proof Explorer


Theorem cycpmconjv

Description: A formula for computing conjugacy classes of cyclic permutations. Formula in property (b) of Lang p. 32. (Contributed by Thierry Arnoux, 9-Oct-2023)

Ref Expression
Hypotheses cycpmconjv.s S=SymGrpD
cycpmconjv.m M=toCycD
cycpmconjv.p +˙=+S
cycpmconjv.l -˙=-S
cycpmconjv.b B=BaseS
Assertion cycpmconjv DVGBWdomMG+˙MW-˙G=MGW

Proof

Step Hyp Ref Expression
1 cycpmconjv.s S=SymGrpD
2 cycpmconjv.m M=toCycD
3 cycpmconjv.p +˙=+S
4 cycpmconjv.l -˙=-S
5 cycpmconjv.b B=BaseS
6 1 5 symgbasf1o GBG:D1-1 ontoD
7 6 3ad2ant2 DVGBWdomMG:D1-1 ontoD
8 simp3 DVGBWdomMWdomM
9 2 1 5 tocycf DVM:wWordD|w:domw1-1DB
10 9 3ad2ant1 DVGBWdomMM:wWordD|w:domw1-1DB
11 10 fdmd DVGBWdomMdomM=wWordD|w:domw1-1D
12 8 11 eleqtrd DVGBWdomMWwWordD|w:domw1-1D
13 id w=Ww=W
14 dmeq w=Wdomw=domW
15 eqidd w=WD=D
16 13 14 15 f1eq123d w=Ww:domw1-1DW:domW1-1D
17 16 elrab WwWordD|w:domw1-1DWWordDW:domW1-1D
18 12 17 sylib DVGBWdomMWWordDW:domW1-1D
19 18 simprd DVGBWdomMW:domW1-1D
20 f1f W:domW1-1DW:domWD
21 19 20 syl DVGBWdomMW:domWD
22 21 frnd DVGBWdomMranWD
23 7 22 cycpmconjvlem DVGBWdomMGDranWG-1=IDranGranW
24 rnco ranGW=ranGranW
25 24 difeq2i DranGW=DranGranW
26 25 reseq2i IDranGW=IDranGranW
27 23 26 eqtr4di DVGBWdomMGDranWG-1=IDranGW
28 coass GWcyclShift1W-1G-1=GWcyclShift1W-1G-1
29 cnvco GW-1=W-1G-1
30 29 coeq2i GWcyclShift1GW-1=GWcyclShift1W-1G-1
31 28 30 eqtr4i GWcyclShift1W-1G-1=GWcyclShift1GW-1
32 31 a1i DVGBWdomMGWcyclShift1W-1G-1=GWcyclShift1GW-1
33 27 32 uneq12d DVGBWdomMGDranWG-1GWcyclShift1W-1G-1=IDranGWGWcyclShift1GW-1
34 simp2 DVGBWdomMGB
35 10 12 ffvelcdmd DVGBWdomMMWB
36 1 5 3 symgcl GBMWBG+˙MWB
37 34 35 36 syl2anc DVGBWdomMG+˙MWB
38 eqid invgS=invgS
39 5 3 38 4 grpsubval G+˙MWBGBG+˙MW-˙G=G+˙MW+˙invgSG
40 37 34 39 syl2anc DVGBWdomMG+˙MW-˙G=G+˙MW+˙invgSG
41 1 5 38 symginv GBinvgSG=G-1
42 41 3ad2ant2 DVGBWdomMinvgSG=G-1
43 42 oveq2d DVGBWdomMG+˙MW+˙invgSG=G+˙MW+˙G-1
44 simp1 DVGBWdomMDV
45 f1ocnv G:D1-1 ontoDG-1:D1-1 ontoD
46 7 45 syl DVGBWdomMG-1:D1-1 ontoD
47 1 5 elsymgbas DVG-1BG-1:D1-1 ontoD
48 47 biimpar DVG-1:D1-1 ontoDG-1B
49 44 46 48 syl2anc DVGBWdomMG-1B
50 1 5 3 symgov G+˙MWBG-1BG+˙MW+˙G-1=G+˙MWG-1
51 37 49 50 syl2anc DVGBWdomMG+˙MW+˙G-1=G+˙MWG-1
52 40 43 51 3eqtrd DVGBWdomMG+˙MW-˙G=G+˙MWG-1
53 1 5 3 symgov GBMWBG+˙MW=GMW
54 34 35 53 syl2anc DVGBWdomMG+˙MW=GMW
55 18 simpld DVGBWdomMWWordD
56 2 44 55 19 tocycfv DVGBWdomMMW=IDranWWcyclShift1W-1
57 56 coeq2d DVGBWdomMGMW=GIDranWWcyclShift1W-1
58 coundi GIDranWWcyclShift1W-1=GIDranWGWcyclShift1W-1
59 58 a1i DVGBWdomMGIDranWWcyclShift1W-1=GIDranWGWcyclShift1W-1
60 54 57 59 3eqtrd DVGBWdomMG+˙MW=GIDranWGWcyclShift1W-1
61 coires1 GIDranW=GDranW
62 61 a1i DVGBWdomMGIDranW=GDranW
63 coass GWcyclShift1W-1=GWcyclShift1W-1
64 1zzd DVGBWdomM1
65 f1of G:D1-1 ontoDG:DD
66 7 65 syl DVGBWdomMG:DD
67 cshco WWordD1G:DDGWcyclShift1=GWcyclShift1
68 55 64 66 67 syl3anc DVGBWdomMGWcyclShift1=GWcyclShift1
69 68 coeq1d DVGBWdomMGWcyclShift1W-1=GWcyclShift1W-1
70 63 69 eqtr3id DVGBWdomMGWcyclShift1W-1=GWcyclShift1W-1
71 62 70 uneq12d DVGBWdomMGIDranWGWcyclShift1W-1=GDranWGWcyclShift1W-1
72 60 71 eqtrd DVGBWdomMG+˙MW=GDranWGWcyclShift1W-1
73 72 coeq1d DVGBWdomMG+˙MWG-1=GDranWGWcyclShift1W-1G-1
74 52 73 eqtrd DVGBWdomMG+˙MW-˙G=GDranWGWcyclShift1W-1G-1
75 coundir GDranWGWcyclShift1W-1G-1=GDranWG-1GWcyclShift1W-1G-1
76 74 75 eqtrdi DVGBWdomMG+˙MW-˙G=GDranWG-1GWcyclShift1W-1G-1
77 wrdco WWordDG:DDGWWordD
78 55 66 77 syl2anc DVGBWdomMGWWordD
79 f1of1 G:D1-1 ontoDG:D1-1D
80 7 79 syl DVGBWdomMG:D1-1D
81 f1co G:D1-1DW:domW1-1DGW:domW1-1D
82 80 19 81 syl2anc DVGBWdomMGW:domW1-1D
83 66 fdmd DVGBWdomMdomG=D
84 22 83 sseqtrrd DVGBWdomMranWdomG
85 dmcosseq ranWdomGdomGW=domW
86 84 85 syl DVGBWdomMdomGW=domW
87 f1eq2 domGW=domWGW:domGW1-1DGW:domW1-1D
88 86 87 syl DVGBWdomMGW:domGW1-1DGW:domW1-1D
89 82 88 mpbird DVGBWdomMGW:domGW1-1D
90 2 44 78 89 tocycfv DVGBWdomMMGW=IDranGWGWcyclShift1GW-1
91 33 76 90 3eqtr4d DVGBWdomMG+˙MW-˙G=MGW