Metamath Proof Explorer


Theorem cycpmconjv

Description: A formula for computing conjugacy classes of cyclic permutations. Formula in property (b) of Lang p. 32. (Contributed by Thierry Arnoux, 9-Oct-2023)

Ref Expression
Hypotheses cycpmconjv.s S = SymGrp D
cycpmconjv.m M = toCyc D
cycpmconjv.p + ˙ = + S
cycpmconjv.l - ˙ = - S
cycpmconjv.b B = Base S
Assertion cycpmconjv D V G B W dom M G + ˙ M W - ˙ G = M G W

Proof

Step Hyp Ref Expression
1 cycpmconjv.s S = SymGrp D
2 cycpmconjv.m M = toCyc D
3 cycpmconjv.p + ˙ = + S
4 cycpmconjv.l - ˙ = - S
5 cycpmconjv.b B = Base S
6 1 5 symgbasf1o G B G : D 1-1 onto D
7 6 3ad2ant2 D V G B W dom M G : D 1-1 onto D
8 simp3 D V G B W dom M W dom M
9 2 1 5 tocycf D V M : w Word D | w : dom w 1-1 D B
10 9 3ad2ant1 D V G B W dom M M : w Word D | w : dom w 1-1 D B
11 10 fdmd D V G B W dom M dom M = w Word D | w : dom w 1-1 D
12 8 11 eleqtrd D V G B W dom M W w Word D | w : dom w 1-1 D
13 id w = W w = W
14 dmeq w = W dom w = dom W
15 eqidd w = W D = D
16 13 14 15 f1eq123d w = W w : dom w 1-1 D W : dom W 1-1 D
17 16 elrab W w Word D | w : dom w 1-1 D W Word D W : dom W 1-1 D
18 12 17 sylib D V G B W dom M W Word D W : dom W 1-1 D
19 18 simprd D V G B W dom M W : dom W 1-1 D
20 f1f W : dom W 1-1 D W : dom W D
21 19 20 syl D V G B W dom M W : dom W D
22 21 frnd D V G B W dom M ran W D
23 7 22 cycpmconjvlem D V G B W dom M G D ran W G -1 = I D ran G ran W
24 rnco ran G W = ran G ran W
25 24 difeq2i D ran G W = D ran G ran W
26 25 reseq2i I D ran G W = I D ran G ran W
27 23 26 eqtr4di D V G B W dom M G D ran W G -1 = I D ran G W
28 coass G W cyclShift 1 W -1 G -1 = G W cyclShift 1 W -1 G -1
29 cnvco G W -1 = W -1 G -1
30 29 coeq2i G W cyclShift 1 G W -1 = G W cyclShift 1 W -1 G -1
31 28 30 eqtr4i G W cyclShift 1 W -1 G -1 = G W cyclShift 1 G W -1
32 31 a1i D V G B W dom M G W cyclShift 1 W -1 G -1 = G W cyclShift 1 G W -1
33 27 32 uneq12d D V G B W dom M G D ran W G -1 G W cyclShift 1 W -1 G -1 = I D ran G W G W cyclShift 1 G W -1
34 simp2 D V G B W dom M G B
35 10 12 ffvelrnd D V G B W dom M M W B
36 1 5 3 symgcl G B M W B G + ˙ M W B
37 34 35 36 syl2anc D V G B W dom M G + ˙ M W B
38 eqid inv g S = inv g S
39 5 3 38 4 grpsubval G + ˙ M W B G B G + ˙ M W - ˙ G = G + ˙ M W + ˙ inv g S G
40 37 34 39 syl2anc D V G B W dom M G + ˙ M W - ˙ G = G + ˙ M W + ˙ inv g S G
41 1 5 38 symginv G B inv g S G = G -1
42 41 3ad2ant2 D V G B W dom M inv g S G = G -1
43 42 oveq2d D V G B W dom M G + ˙ M W + ˙ inv g S G = G + ˙ M W + ˙ G -1
44 simp1 D V G B W dom M D V
45 f1ocnv G : D 1-1 onto D G -1 : D 1-1 onto D
46 7 45 syl D V G B W dom M G -1 : D 1-1 onto D
47 1 5 elsymgbas D V G -1 B G -1 : D 1-1 onto D
48 47 biimpar D V G -1 : D 1-1 onto D G -1 B
49 44 46 48 syl2anc D V G B W dom M G -1 B
50 1 5 3 symgov G + ˙ M W B G -1 B G + ˙ M W + ˙ G -1 = G + ˙ M W G -1
51 37 49 50 syl2anc D V G B W dom M G + ˙ M W + ˙ G -1 = G + ˙ M W G -1
52 40 43 51 3eqtrd D V G B W dom M G + ˙ M W - ˙ G = G + ˙ M W G -1
53 1 5 3 symgov G B M W B G + ˙ M W = G M W
54 34 35 53 syl2anc D V G B W dom M G + ˙ M W = G M W
55 18 simpld D V G B W dom M W Word D
56 2 44 55 19 tocycfv D V G B W dom M M W = I D ran W W cyclShift 1 W -1
57 56 coeq2d D V G B W dom M G M W = G I D ran W W cyclShift 1 W -1
58 coundi G I D ran W W cyclShift 1 W -1 = G I D ran W G W cyclShift 1 W -1
59 58 a1i D V G B W dom M G I D ran W W cyclShift 1 W -1 = G I D ran W G W cyclShift 1 W -1
60 54 57 59 3eqtrd D V G B W dom M G + ˙ M W = G I D ran W G W cyclShift 1 W -1
61 coires1 G I D ran W = G D ran W
62 61 a1i D V G B W dom M G I D ran W = G D ran W
63 coass G W cyclShift 1 W -1 = G W cyclShift 1 W -1
64 1zzd D V G B W dom M 1
65 f1of G : D 1-1 onto D G : D D
66 7 65 syl D V G B W dom M G : D D
67 cshco W Word D 1 G : D D G W cyclShift 1 = G W cyclShift 1
68 55 64 66 67 syl3anc D V G B W dom M G W cyclShift 1 = G W cyclShift 1
69 68 coeq1d D V G B W dom M G W cyclShift 1 W -1 = G W cyclShift 1 W -1
70 63 69 eqtr3id D V G B W dom M G W cyclShift 1 W -1 = G W cyclShift 1 W -1
71 62 70 uneq12d D V G B W dom M G I D ran W G W cyclShift 1 W -1 = G D ran W G W cyclShift 1 W -1
72 60 71 eqtrd D V G B W dom M G + ˙ M W = G D ran W G W cyclShift 1 W -1
73 72 coeq1d D V G B W dom M G + ˙ M W G -1 = G D ran W G W cyclShift 1 W -1 G -1
74 52 73 eqtrd D V G B W dom M G + ˙ M W - ˙ G = G D ran W G W cyclShift 1 W -1 G -1
75 coundir G D ran W G W cyclShift 1 W -1 G -1 = G D ran W G -1 G W cyclShift 1 W -1 G -1
76 74 75 eqtrdi D V G B W dom M G + ˙ M W - ˙ G = G D ran W G -1 G W cyclShift 1 W -1 G -1
77 wrdco W Word D G : D D G W Word D
78 55 66 77 syl2anc D V G B W dom M G W Word D
79 f1of1 G : D 1-1 onto D G : D 1-1 D
80 7 79 syl D V G B W dom M G : D 1-1 D
81 f1co G : D 1-1 D W : dom W 1-1 D G W : dom W 1-1 D
82 80 19 81 syl2anc D V G B W dom M G W : dom W 1-1 D
83 66 fdmd D V G B W dom M dom G = D
84 22 83 sseqtrrd D V G B W dom M ran W dom G
85 dmcosseq ran W dom G dom G W = dom W
86 84 85 syl D V G B W dom M dom G W = dom W
87 f1eq2 dom G W = dom W G W : dom G W 1-1 D G W : dom W 1-1 D
88 86 87 syl D V G B W dom M G W : dom G W 1-1 D G W : dom W 1-1 D
89 82 88 mpbird D V G B W dom M G W : dom G W 1-1 D
90 2 44 78 89 tocycfv D V G B W dom M M G W = I D ran G W G W cyclShift 1 G W -1
91 33 76 90 3eqtr4d D V G B W dom M G + ˙ M W - ˙ G = M G W