Metamath Proof Explorer


Theorem cyc3fv3

Description: Function value of a 3-cycle at the third point. (Contributed by Thierry Arnoux, 19-Sep-2023)

Ref Expression
Hypotheses cycpm3.c C=toCycD
cycpm3.s S=SymGrpD
cycpm3.d φDV
cycpm3.i φID
cycpm3.j φJD
cycpm3.k φKD
cycpm3.1 φIJ
cycpm3.2 φJK
cycpm3.3 φKI
Assertion cyc3fv3 φC⟨“IJK”⟩K=I

Proof

Step Hyp Ref Expression
1 cycpm3.c C=toCycD
2 cycpm3.s S=SymGrpD
3 cycpm3.d φDV
4 cycpm3.i φID
5 cycpm3.j φJD
6 cycpm3.k φKD
7 cycpm3.1 φIJ
8 cycpm3.2 φJK
9 cycpm3.3 φKI
10 4 5 6 s3cld φ⟨“IJK”⟩WordD
11 4 5 6 7 8 9 s3f1 φ⟨“IJK”⟩:dom⟨“IJK”⟩1-1D
12 3pos 0<3
13 s3len ⟨“IJK”⟩=3
14 12 13 breqtrri 0<⟨“IJK”⟩
15 14 a1i φ0<⟨“IJK”⟩
16 13 oveq1i ⟨“IJK”⟩1=31
17 3m1e2 31=2
18 16 17 eqtr2i 2=⟨“IJK”⟩1
19 18 a1i φ2=⟨“IJK”⟩1
20 1 3 10 11 15 19 cycpmfv2 φC⟨“IJK”⟩⟨“IJK”⟩2=⟨“IJK”⟩0
21 s3fv2 KD⟨“IJK”⟩2=K
22 6 21 syl φ⟨“IJK”⟩2=K
23 22 fveq2d φC⟨“IJK”⟩⟨“IJK”⟩2=C⟨“IJK”⟩K
24 s3fv0 ID⟨“IJK”⟩0=I
25 4 24 syl φ⟨“IJK”⟩0=I
26 20 23 25 3eqtr3d φC⟨“IJK”⟩K=I