| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycsubg2cl.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | cycsubg2cl.t | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 3 |  | cycsubg2cl.k | ⊢ 𝐾  =  ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | 
						
							| 4 | 1 | subgacs | ⊢ ( 𝐺  ∈  Grp  →  ( SubGrp ‘ 𝐺 )  ∈  ( ACS ‘ 𝑋 ) ) | 
						
							| 5 | 4 | acsmred | ⊢ ( 𝐺  ∈  Grp  →  ( SubGrp ‘ 𝐺 )  ∈  ( Moore ‘ 𝑋 ) ) | 
						
							| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  →  ( SubGrp ‘ 𝐺 )  ∈  ( Moore ‘ 𝑋 ) ) | 
						
							| 7 |  | simp2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  →  𝐴  ∈  𝑋 ) | 
						
							| 8 | 7 | snssd | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  →  { 𝐴 }  ⊆  𝑋 ) | 
						
							| 9 | 3 | mrccl | ⊢ ( ( ( SubGrp ‘ 𝐺 )  ∈  ( Moore ‘ 𝑋 )  ∧  { 𝐴 }  ⊆  𝑋 )  →  ( 𝐾 ‘ { 𝐴 } )  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 10 | 6 8 9 | syl2anc | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  →  ( 𝐾 ‘ { 𝐴 } )  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 11 |  | simp3 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  →  𝑁  ∈  ℤ ) | 
						
							| 12 | 6 3 8 | mrcssidd | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  →  { 𝐴 }  ⊆  ( 𝐾 ‘ { 𝐴 } ) ) | 
						
							| 13 |  | snssg | ⊢ ( 𝐴  ∈  𝑋  →  ( 𝐴  ∈  ( 𝐾 ‘ { 𝐴 } )  ↔  { 𝐴 }  ⊆  ( 𝐾 ‘ { 𝐴 } ) ) ) | 
						
							| 14 | 13 | 3ad2ant2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  →  ( 𝐴  ∈  ( 𝐾 ‘ { 𝐴 } )  ↔  { 𝐴 }  ⊆  ( 𝐾 ‘ { 𝐴 } ) ) ) | 
						
							| 15 | 12 14 | mpbird | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  →  𝐴  ∈  ( 𝐾 ‘ { 𝐴 } ) ) | 
						
							| 16 | 2 | subgmulgcl | ⊢ ( ( ( 𝐾 ‘ { 𝐴 } )  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑁  ∈  ℤ  ∧  𝐴  ∈  ( 𝐾 ‘ { 𝐴 } ) )  →  ( 𝑁  ·  𝐴 )  ∈  ( 𝐾 ‘ { 𝐴 } ) ) | 
						
							| 17 | 10 11 15 16 | syl3anc | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  →  ( 𝑁  ·  𝐴 )  ∈  ( 𝐾 ‘ { 𝐴 } ) ) |