Step |
Hyp |
Ref |
Expression |
1 |
|
cycsubg2cl.x |
|- X = ( Base ` G ) |
2 |
|
cycsubg2cl.t |
|- .x. = ( .g ` G ) |
3 |
|
cycsubg2cl.k |
|- K = ( mrCls ` ( SubGrp ` G ) ) |
4 |
1
|
subgacs |
|- ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` X ) ) |
5 |
4
|
acsmred |
|- ( G e. Grp -> ( SubGrp ` G ) e. ( Moore ` X ) ) |
6 |
5
|
3ad2ant1 |
|- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( SubGrp ` G ) e. ( Moore ` X ) ) |
7 |
|
simp2 |
|- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> A e. X ) |
8 |
7
|
snssd |
|- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> { A } C_ X ) |
9 |
3
|
mrccl |
|- ( ( ( SubGrp ` G ) e. ( Moore ` X ) /\ { A } C_ X ) -> ( K ` { A } ) e. ( SubGrp ` G ) ) |
10 |
6 8 9
|
syl2anc |
|- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( K ` { A } ) e. ( SubGrp ` G ) ) |
11 |
|
simp3 |
|- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> N e. ZZ ) |
12 |
6 3 8
|
mrcssidd |
|- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> { A } C_ ( K ` { A } ) ) |
13 |
|
snssg |
|- ( A e. X -> ( A e. ( K ` { A } ) <-> { A } C_ ( K ` { A } ) ) ) |
14 |
13
|
3ad2ant2 |
|- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( A e. ( K ` { A } ) <-> { A } C_ ( K ` { A } ) ) ) |
15 |
12 14
|
mpbird |
|- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> A e. ( K ` { A } ) ) |
16 |
2
|
subgmulgcl |
|- ( ( ( K ` { A } ) e. ( SubGrp ` G ) /\ N e. ZZ /\ A e. ( K ` { A } ) ) -> ( N .x. A ) e. ( K ` { A } ) ) |
17 |
10 11 15 16
|
syl3anc |
|- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( N .x. A ) e. ( K ` { A } ) ) |