| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycsubg2cl.x |  |-  X = ( Base ` G ) | 
						
							| 2 |  | cycsubg2cl.t |  |-  .x. = ( .g ` G ) | 
						
							| 3 |  | cycsubg2cl.k |  |-  K = ( mrCls ` ( SubGrp ` G ) ) | 
						
							| 4 | 1 | subgacs |  |-  ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` X ) ) | 
						
							| 5 | 4 | acsmred |  |-  ( G e. Grp -> ( SubGrp ` G ) e. ( Moore ` X ) ) | 
						
							| 6 | 5 | 3ad2ant1 |  |-  ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( SubGrp ` G ) e. ( Moore ` X ) ) | 
						
							| 7 |  | simp2 |  |-  ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> A e. X ) | 
						
							| 8 | 7 | snssd |  |-  ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> { A } C_ X ) | 
						
							| 9 | 3 | mrccl |  |-  ( ( ( SubGrp ` G ) e. ( Moore ` X ) /\ { A } C_ X ) -> ( K ` { A } ) e. ( SubGrp ` G ) ) | 
						
							| 10 | 6 8 9 | syl2anc |  |-  ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( K ` { A } ) e. ( SubGrp ` G ) ) | 
						
							| 11 |  | simp3 |  |-  ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> N e. ZZ ) | 
						
							| 12 | 6 3 8 | mrcssidd |  |-  ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> { A } C_ ( K ` { A } ) ) | 
						
							| 13 |  | snssg |  |-  ( A e. X -> ( A e. ( K ` { A } ) <-> { A } C_ ( K ` { A } ) ) ) | 
						
							| 14 | 13 | 3ad2ant2 |  |-  ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( A e. ( K ` { A } ) <-> { A } C_ ( K ` { A } ) ) ) | 
						
							| 15 | 12 14 | mpbird |  |-  ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> A e. ( K ` { A } ) ) | 
						
							| 16 | 2 | subgmulgcl |  |-  ( ( ( K ` { A } ) e. ( SubGrp ` G ) /\ N e. ZZ /\ A e. ( K ` { A } ) ) -> ( N .x. A ) e. ( K ` { A } ) ) | 
						
							| 17 | 10 11 15 16 | syl3anc |  |-  ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( N .x. A ) e. ( K ` { A } ) ) |