| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cznrng.y |
⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) |
| 2 |
|
cznrng.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
| 3 |
|
cznrng.x |
⊢ 𝑋 = ( 𝑌 sSet 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 〉 ) |
| 4 |
|
baseid |
⊢ Base = Slot ( Base ‘ ndx ) |
| 5 |
|
basendxnmulrndx |
⊢ ( Base ‘ ndx ) ≠ ( .r ‘ ndx ) |
| 6 |
4 5
|
setsnid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ ( 𝑌 sSet 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 〉 ) ) |
| 7 |
3
|
eqcomi |
⊢ ( 𝑌 sSet 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 〉 ) = 𝑋 |
| 8 |
7
|
fveq2i |
⊢ ( Base ‘ ( 𝑌 sSet 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 〉 ) ) = ( Base ‘ 𝑋 ) |
| 9 |
2 6 8
|
3eqtri |
⊢ 𝐵 = ( Base ‘ 𝑋 ) |