| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cznrng.y |
|- Y = ( Z/nZ ` N ) |
| 2 |
|
cznrng.b |
|- B = ( Base ` Y ) |
| 3 |
|
cznrng.x |
|- X = ( Y sSet <. ( .r ` ndx ) , ( x e. B , y e. B |-> C ) >. ) |
| 4 |
|
baseid |
|- Base = Slot ( Base ` ndx ) |
| 5 |
|
basendxnmulrndx |
|- ( Base ` ndx ) =/= ( .r ` ndx ) |
| 6 |
4 5
|
setsnid |
|- ( Base ` Y ) = ( Base ` ( Y sSet <. ( .r ` ndx ) , ( x e. B , y e. B |-> C ) >. ) ) |
| 7 |
3
|
eqcomi |
|- ( Y sSet <. ( .r ` ndx ) , ( x e. B , y e. B |-> C ) >. ) = X |
| 8 |
7
|
fveq2i |
|- ( Base ` ( Y sSet <. ( .r ` ndx ) , ( x e. B , y e. B |-> C ) >. ) ) = ( Base ` X ) |
| 9 |
2 6 8
|
3eqtri |
|- B = ( Base ` X ) |