Metamath Proof Explorer


Theorem cznrnglem

Description: Lemma for cznrng : The base set of the ring constructed from a Z/nZ structure by replacing the (multiplicative) ring operation by a constant operation is the base set of the Z/nZ structure. (Contributed by AV, 16-Feb-2020)

Ref Expression
Hypotheses cznrng.y
|- Y = ( Z/nZ ` N )
cznrng.b
|- B = ( Base ` Y )
cznrng.x
|- X = ( Y sSet <. ( .r ` ndx ) , ( x e. B , y e. B |-> C ) >. )
Assertion cznrnglem
|- B = ( Base ` X )

Proof

Step Hyp Ref Expression
1 cznrng.y
 |-  Y = ( Z/nZ ` N )
2 cznrng.b
 |-  B = ( Base ` Y )
3 cznrng.x
 |-  X = ( Y sSet <. ( .r ` ndx ) , ( x e. B , y e. B |-> C ) >. )
4 baseid
 |-  Base = Slot ( Base ` ndx )
5 basendxnmulrndx
 |-  ( Base ` ndx ) =/= ( .r ` ndx )
6 4 5 setsnid
 |-  ( Base ` Y ) = ( Base ` ( Y sSet <. ( .r ` ndx ) , ( x e. B , y e. B |-> C ) >. ) )
7 3 eqcomi
 |-  ( Y sSet <. ( .r ` ndx ) , ( x e. B , y e. B |-> C ) >. ) = X
8 7 fveq2i
 |-  ( Base ` ( Y sSet <. ( .r ` ndx ) , ( x e. B , y e. B |-> C ) >. ) ) = ( Base ` X )
9 2 6 8 3eqtri
 |-  B = ( Base ` X )